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ABSTRACT Variation in gene copy number can significantly affect organism fitness. When one allele is
missing in a diploid, the phenotype can be compromised because of haploinsufficiency. In this work, we
identified associations between Saccharomyces cerevisiae gene properties and genome-scale haploinsuffi-
ciency phenotypes from previous work. We compared the haploinsufficiency profiles against 23 gene
properties and found that genes with higher level of connectivity (degree) in a protein–protein interaction
network, higher genetic interaction degree, greater gene sequence conservation, and higher protein ex-
pression were significantly more likely to be haploinsufficient. Additionally, haploinsufficiency showed
negative relationships with cell cycle regulation and promoter sequence conservation.
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We exploited the association between Saccharomyces cerevisiae gene
properties and genome-scale haploinsufficiency (HI) phenotypes using
linear discriminant analysis to predict HI in existing data and to guide
experimental identification of six novel haploinsufficient phenotypes,
previously undetected in genome-scale screenings. Using a similar ap-
proach, we identified significant relationships between haploinsuffi-
ciency and two gene properties in Schizosaccharomyces pombe,
relationships that hold despite the lack of conserved HI between Sac-
charomyces cerevisiae and Sz. pombe ortholog pairs. These data suggest
associations between haploinsufficiency and gene properties are con-
served among hemiascomycetes yeasts. The relationships and predictive
model presented here are a useful step toward understanding haploin-
sufficiency and its underlying mechanisms.

A gene is considered haploinsufficient when a reduction of the gene
copy number from 2 to 1 induces a growth defect. HI may be caused by
a lower amount of protein being produced, such that it is insufficient to

perform the biological function effectively. Moreover, if the protein is
part of a larger network, then stoichiometry among different members
of a protein complex can be altered. Alternatively, if a protein is an
enzyme with a high flux control coefficient, the entire metabolic
pathway efficiency can be disrupted.

The availability of a comprehensive S. cerevisiae knockout library has
enabled studies of HI across the genome. A previous work determined the
HI profile of almost all genes in yeast cultures grown in rich and minimal
medium (Deutschbauer et al. 2005). The study showed that approxi-
mately 3% of yeast genes display HI, comprising 98 essential genes and
86 nonessential genes. Interestingly, the fitness distributions of essential
and nonessential HI strains are approximately the same, and only 98 out
of 1102 essential genes are HI in rich medium. These observations suggest
that the relationship between gene essentiality and HI is not simple.

More recently, HI phenotypes have been studied in chemostat,
where nutrients and pH were rigorously kept constant throughout the
competition. The HI profile was analyzed in cultures grown on
complex natural media, such as in grape juice extract, and in different
chemical-defined media limited for carbon, nitrogen, and phosphate
(Delneri et al. 2008). Although in grape juice a small proportion of
genes were found to be HI, in the nutrient-limited medium a much
larger number of HI genes were detected (10–20% of the genome).

It is, however, likely that in rich medium, some HI phenotypes
were missed because of the large-scale “top down” nature of such
experiments. These data are obtained by simultaneously competing
6000 different mutant strains, and therefore are likely to contain
“false-negative” observations because of interactions between strains
in the culture. Because all the knockout strains share the same environ-
ment during the competition, different metabolites can be excreted
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by the different mutants, altering the fitness of the other strains in-
dependently from the environmental limitation imposed. Studies of
the yeast exometabolome have shown how complex and diverse the
pattern of metabolites in the supernatant of different yeast mutants can
be (Allen et al. 2003). To avoid strain interactions, HI profiles should
ideally be recorded by comparing growth curves of monocultures, be-
cause these contain only the mutant strain being studied. One-to-one
competition experiments with a reference strain may also be better than
pooled competition experiments in this respect, although results from
such experiments may still be affected by interactions between the
reference strain and the mutant. Another issue with genome-scale stud-
ies is that the significance of HI identification is determined by levels of
agreement between biological replicates, and genuine HI assignments
can be disregarded if one biological replicate is of low quality.

In our study, we set out to explore cases in which genuine HI
phenotypes may have been missed in earlier genome-scale experi-
ments. We searched for these cases using a computational model that,
for each gene, calculates an inferred probability of the gene being HI.
The model infers HI probabilities by exploiting relationships between
previously observed HI and systems-level gene properties. Our
modeling approach based on gene properties is similar to a study
published recently in which gene properties were used to predict
genetic interaction (GI) degree in S. cerevisiae and Sz. pombe (Koch
et al. 2012). Many gene properties correlated with GI degree in both
organisms, despite the lack of GI degree conservation between
S. cerevisiae and Sz. pombe ortholog pairs.

In this work, we chose a set of candidate genes that had high
model-inferred HI probability but were not found to be HI in an
earlier genome-scale screen. We have opted to determine HI
phenotypes using monoculture experiments, because this method
avoids phenotypic effects caused by strain interactions. The gene
prioritization approach allowed us to find novel phenotypes without
resorting to the laborious process of measuring monoculture growth
curves of strains hemizygous for all known yeast genes.

To build our model, we compared HI profiles in six nutrient
environments against 23 systems-level gene properties. For many of
these gene properties, values differed significantly between HI and
non-HI genes. We used six gene properties that associated strongly
with HI but had low correlation between them to build a machine-
learning model for predicting HI. Many gene properties such as
protein interaction degree (Jeong et al. 2001; He and Zhang 2006;
Zotenko et al. 2008) have been shown to positively correlate with
gene essentiality. Because essential genes are over-represented among
HI genes (Deutschbauer et al. 2005), we investigated the possibility
that gene essentiality might be a confounding factor between HI and
gene properties used in our model. Our data show that in most cases,
gene essentiality does not fully explain the relationships between HI
and gene properties. This finding suggests that there is an interesting
difference between the mechanisms of HI and gene essentiality.

Our model used the established linear discriminant analysis (LDA)
method (Hastie et al. 2009). Training of the model was performed
using HI profiles in rich, minimal, carbon-limited, nitrogen-limited,
phosphate-limited, and grape juice environments (Deutschbauer et al.
2005; Delneri et al. 2008).

We found that the models constructed for rich and minimal media
were capable of predicting HI in these environments effectively. Of the
mutants that were not identified as HI in the large-scale rich medium
study, we selected 23 genes with the highest probabilities of HI
according to our model. We tested the corresponding mutants for HI
in rich medium by measuring and comparing growth curves of
monocultures. Interestingly, 26% of our candidate genes showed

a clear HI phenotype, validating our prediction method for use in
refining HI phenotype profiles in S. cerevisiae.

To explore whether the relationships between gene properties and
HI found in S. cerevisiae hold for other organisms, we examined ORF
conservation and protein interaction degree in Sz. pombe and found
weak but significant relationships with HI in rich medium. We argue
that our HI prediction method could be applied to other species,
because two S. cerevisiae associations are also found in Sz. pombe;
these are seen even though HI profiles are not conserved between
S. cerevisiae and Sz. pombe orthologs. The associations uncovered here
between gene properties and HI are valuable in terms of identifying
novel HI phenotypes and understanding underlying HI mechanisms.

MATERIALS AND METHODS

Haploinsufficiency data
Haploinsufficiency data for yeast peptone dextrose (YPD)
and minimal media (MM) were obtained from a previous study
(Deutschbauer et al. 2005). Genes identified as significantly HI in
the earlier study were considered HI in this work. Haploinsuffi-
ciency data for carbon-limited, nitrogen-limited, phosphate-limited,
and grape juice environments were also accessed (Delneri et al.
2008). As before, genes identified as significantly HI were considered
HI in this work. ORF names from the two data sources were stan-
dardized to the most up-to-date Saccharomyces Genome Database
(SGD) gene identifier (Cherry et al. 2011). In some cases, because of
gene name changes, gene identifiers from data sources mapped to
either no SGD ORF or to multiple SGD ORF identifiers; such genes
were excluded from the analysis. Genes identified as dubious in SGD
were also disregarded.

Gene property data
For each gene property, standardization of gene names from the
appropriate data source was performed as described. Genes that did
not appear in either of the two genome-scale HI studies were
excluded. Gene essentiality data for YPD medium were obtained
from a previous study (Giaever et al. 2002).

The Perl Graph::Undirected library was used to calculate genetic
interaction degree and betweenness centrality (Freeman 1977) from
the stringent, intermediate, and lenient cut-off datasets available in the
Drygin database (Koh et al. 2009). Scores for mRNA expression var-
iation through the yeast cell cycle were obtained from a previous study
(Spellman et al. 1998). Summed intensities describing combined hap-
loid and diploid abundance of protein were obtained from a previous
proteomics study (de Godoy et al. 2008).

Interaction network data were downloaded from the BioGRID
database (Stark 2006) on 26 January 2012. Two filtered datasets were
produced alongside an unfiltered dataset; these excluded reactions
reported less than either twice or three times in the literature. Both
the filtered and the unfiltered datasets only included interactions
reported as physical, thereby excluding genetic interactions. Degree
and betweenness (Freeman 1977) for physical interactions were then
calculated using the Perl Graph::Undirected library.

S. paradoxus strain CBS432 sequence data were retrieved from the
Saccharomyces Genome Resequencing project website (Liti et al.
2009). Sequences of the S. kudriavzevii strain IFO 1802 and the
S. bayanus strain MCYC623 were obtained from two studies (Scannell
et al. 2011; Kellis et al. 2003). The S. cerevisiae sequence was the SGD
reference strain, S288C (Cherry et al. 2011). Alignments were per-
formed using the BioPerl library; for each gene, cDNAs from S. cer-
evisiae and a selected clade member were first translated into protein,
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followed by alignment using dynamic programming (with the BioPerl
dpAlign function, default parameters), and then projection of protein
sequence alignments back to DNA. DNA and protein percentage
identity, dN, dS, and dN/dS (Hurst 2002) were then calculated.

Because of the high rate of evolution for promoter regions,
sequence comparisons were performed between S. cerevisiae and
S. paradoxus, the most closely related sensu stricto (Scannell et al.
2011) species according to current knowledge. Promoter sequence
was defined as the region spanning 500 bp upstream of the ORF start
codon, but trimmed such that it did not overlap adjacent ORFs.
Although consideration of transcription start sites (TSS) would be
advantageous, these were not considered as gene boundaries because
of unavailable TSS annotations for S. paradoxus. Hence, promoter
regions used in this work were inclusive approximations based on
the current knowledge of ORF boundaries. Sequences were aligned
using dynamic programming with the BioPerl dpAlign method (de-
fault parameters) and percentage identity was calculated.

After standardization of gene names as described, gene
property data from the sources described were combined into
a single table with genes as rows and properties as columns,
allowing data to be easily manipulated. The resultant table, used
in statistics tests and LDA model generation, is provided in Supporting
Information, File S1.

Statistical tests
To determine whether gene property value distributions were
significantly different between HI and non-HI genes, the Mann-
Whitney U-test (Mann and Whitney 1947) was performed using the
wilcox.test() function from the R “stats” package to produce estimated
p-values. To provide information about the difference between the
means of HI and non-HI gene properties, z-scores were also cal-
culated. To assess the predictive ability of single gene properties,
receiver-operating characteristic (ROC) plot areas under curves
(AUCs) were calculated using the R “ROCR” package and 20 repeats
of five-fold cross-validation were performed as described. Pairwise
relationships between gene properties were assessed by determining
Pearson product-moment coefficient (Pearson 1896) using the R sta-
tistics cor.test() function.

In many cases described in this text, the variance-stabilizing
transformation log10(x + 0.5) was applied to gene properties with
values that followed a log-normal distribution. Properties transformed
in this manner include protein–protein interaction (PPI) degree and
betweenness, genetic interaction (GI) degree, mRNA expression var-
iation, and protein expression levels.

HI prediction in S. cerevisiae

LDA was performed using the lda() function from the R package
“MASS.” This method assumes data are normally distributed. Many
gene properties had values following a log-normal distribution, so
variance-stabilizing transformations were applied as described. Over-
fitting was avoided by performing five-fold cross validation, with 20
repeats to overcome variability. Five-fold cross-validation was chosen
to ensure a reasonably large sample size in the left-out set.

Several methods were attempted to deal with incomplete cases
in which the properties of genes had missing values. The simplest
method removed genes with missing data. Another method
involved drawing the posterior probability of a gene’s haploin-
sufficiency from the most complete simpler model when missing
values were encountered. In other words, if a gene had four
properties, A, B, C, and D, and B was missing, then the posterior

probability of HI was taken from the model that considered the
properties A, C, and D.

Imputation methods to estimate missing values were also exam-
ined. Expectation maximization (EM) (Do and Batzoglou 2008) and
multiple imputation (MI) (Kenward and Carpenter 2007) were per-
formed using functions from the R “mix” package. MI and EM were
performed separately for each cross-validation fold. EM and MI meth-
ods were used with selected gene properties along with observed
haploinsufficiency as a Boolean categorical variable. MI was also used
as an alternative method. For each gene property, missing values were
set to the median of that property within either the HI or the non-HI
category based on the gene’s observed haploinsufficiency. When cross-
validation and missing value imputation were performed together, the
left-out fold was hidden from the imputation process.

After producing LDA models, the R predict() function was used to
generate posterior probabilities, describing the likelihood of particular
genes being either HI or non-HI. To assess level of agreement between
predicted HI likelihoods and HI observations, ROC curves were
produced using the R “ROCR” package. False-positive rate (FPR) and
true-positive rate (TPR) were calculated by sweeping a posterior prob-
ability cut-off. In cases in which cross-validation was performed, 5 ·
20 ROC curves were produced.

Analysis of HI in Sz. pombe

PPI data were downloaded from the BioGRID website (Stark 2006),
and predicted GI degrees were obtained from a previous study (Koch
et al. 2012). cDNA sequence data for Sz. pombe, Sz. octosporus, and Sz.
cryophilus (Rhind et al. 2011) were downloaded from the Broad In-
stitute website (http://www.broadinstitute.org/). Orthologous cDNAs
were then aligned using the same algorithm as described for S. cer-
evisiae. DNA and protein percentage identity, dN, dS, and dN/dS, for
Sz. pombe against Sz. octosporus and Sz. pombe against Sz. cryophilus
were then calculated and considered as gene properties. These gene
properties were compared against HI data from a previous work (Kim
et al. 2010). Genes with fitness relative to wild-type (WT) less than
0.95 and p-value , 0.05 were considered significantly HI. Relation-
ships between sequence conservation statistics and HI were examined
through the Mann-Whitney U-test, calculation of z-scores, and draw-
ing of ROC curves as described for S. cerevisiae. We used orthology
data from PomBase (Wood et al. 2012) to determine the level of rich
medium HI phenotype overlap between S. cerevisiae and Sz. pombe
orthologs.

Strains and growth media
The S. cerevisiae BY4743 WT strain and hemizygous mutants for
genes of interest were obtained from a genome-wide deletion collec-
tion (EUROSCARF http://web.uni-frankfurt.de/fb15/mikro/euroscarf/
index.html).

YPD medium was prepared using 2% (w/v) peptone, 1% (w/v)
yeast extract, and 2% (w/v) glucose. YPDA was made as YPD, but
with the addition of 1% (w/v) agar. Synthetic-defined F1 medium was
prepared as described previously (Delneri 2011) with the following per
liter: 62 mg inositol; 14 mg thiamine HCl; 4 mg pyridoxine; 4 mg
calcium panthothenate; 0.3 mg biotin; 70 mg ZnSO4(H2O)7; 10 mg
CuSO4(H2O)5; 10 mg H3BO3; 10 mg KI; 50 mg FeCl3(H2O)6; 3.13 g
(NH4)2SO4; 2 g KH2PO4; 0.55 g MgSO4(H2O)7; 0.1 g NaCl; 90 mg
CaCl2(H2O)2; and 2% w/v glucose. To produce F1 medium with
carbon limitation, the F1 medium mixture was modified by changing
the glucose concentration to 0.25% (w/v). F1 medium with nitrogen
limitation was produced as the synthetic-defined F1 medium, but with
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(NH4)2SO4 concentration changed to 0.46 g/liter. All F1 medium
preparations were supplemented with the following per liter: 20 mg
histidine; 100 mg leucine; 30 mg lysine; 20 mg methionine; and 20 mg
uracil.

Experimental determination of HI in S. cerevisiae

To assay for HI, strains were plated onto YPDA medium. After 48
hr, strains were inoculated into overnight cultures, comprising
either 5 ml YPD for obtaining growth curves in YPD medium or
5 ml synthetic-defined F1 medium for testing in F1 media with
carbon or nitrogen limitation. These cultures were left in
a shaker-incubator at 30� for 20 hr. The next day, cultures were
diluted to a final OD595 of 0.1 in either YPD, nitrogen-limited
media, or carbon-limited media as appropriate. The diluted cul-
tures were then distributed in a 96-well plate (240 mL per well)
with six replicates per strain. The outermost wells were filled only
with sterile medium to test for cross-contamination of culture
between wells. The positions of all the biological replicates of
the mutant strains were randomized on the plate to minimize

bias. Growth curves were obtained by measuring absorbance at
595 nM in 5-min intervals for 24 hr with shaking at each interval
using a BMG Labtech FLUOstar OPTIMA plate reader. The av-
erage absorbance of the wells containing sterile medium was sub-
tracted from absorbance of each well containing culture. The lag
phase, growth rate, and biomass of the growth curves were then
compared between mutant and WT strains.

To analyze the data and determine growth defects, we calculated
the area under the growth curve (AUGC) across each strain and
replicate. AUGCs were calculated for the first 15 hr of growth in YPD,
the first 25 hr of growth in nitrogen-limited medium, and the first 23
hr of growth in carbon-limited medium. These time intervals were
chosen to capture the region of the growth curve before the stationary
phase. Using Welch t-test, we calculated p-values for the significance
of the difference between the mutant and WT AUGC sets. The set of
p-values for all mutants vs.WTwas then corrected using the Benjamini–
Hochberg procedure (Benjamini and Hochberg 1995) to control for false
discoveries.

n Table 1 List of the 23 gene properties that were considered for LDA model building

Gene Property Description

Protein–protein interaction degree, $1· reported Generated by calculating degree and betweenness for each
gene according to physical interactions in the BioGRID
(Stark 2006) database after filtering to remove interactions
reported less than once, twice, or three times

Protein–protein interaction degree, $2· reported
Protein–protein interaction degree, $3· reported
Protein–protein interaction

betweenness, $1· reported
Protein–protein interaction

betweenness, $2· reported
Protein–protein interaction

betweenness, $3· reported
Genetic interaction degree, lenient cut-off Generated from genetic interaction data in the DRYGIN

(Koh et al. 2009) database. There are three data sets
provided by the aforementioned work, generated from
“lenient,” “intermediate,” and “stringent” cut-offs. These
data sets were tested for predictive ability separately.

Genetic interaction degree, intermediate cut-off
Genetic interaction degree, stringent cut-off
Genetic interaction betweenness, intermediate cut-off
Genetic interaction betweenness, stringent cut-off
ORF protein sequence identity Sc 4 Sp Calculated by examining protein sequence conservation

between S. cerevisiae and S. paradoxus for each gene
ORF DNA sequence identity Sc 4 Sp Gene DNA sequence identity between S. cerevisiae and

S. paradoxus
ORF DNA dN/dS Sc 4 Sp dN/dS calculated by comparing ORF sequence between

S. cerevisiae and S. paradoxus
ORF protein sequence identity Sc 4 Sk Calculated by examining protein sequence conservation

between S. cerevisiae and S. kudriavzevii for each gene
ORF DNA sequence identity Sc 4 Sk Gene DNA sequence identity between S. cerevisiae and

S. kudriavzevii
ORF DNA dN/dS Sc 4 Sk dN/dS calculated by comparing ORF sequence between

S. cerevisiae and S. kudriavzevii
ORF protein sequence identity Sc 4 Sb Calculated by examining protein sequence conservation

between S. cerevisiae and S. bayanus for each gene
ORF DNA sequence identity Sc 4 Sb Gene DNA sequence identity between S. cerevisiae and

S. bayanus
ORF DNA dN/dS Sc 4 Sb dN/dS calculated by comparing ORF sequence between

S. cerevisiae and S. bayanus
Promoter DNA sequence identity Sc 4 Sb Calculated by comparing the noncoding region upstream

of the ORF between S. cerevisiae and S. bayanus.
Cell-cycle mRNA expression variation mRNA expression variation scores were obtained from

a previous study (Spellman et al. 1998)
Proteomics summed intensity This value represents the level of protein expression as the

combined sum of haploid and diploid protein abundance
from a previous study (de Godoy et al. 2008)

The first column gives the gene property name, and the second column describes the source of the gene property data.
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Figure 1 Distributions of gene property values with respect to HI phenotypes in six different media. To find relationships between HI and gene
properties, the gene property data were divided into HI and non-HI groups. The significance of the difference between HI and non-HI property
values was then estimated through the Mann-Whitney U-test (significant differences are indicated with white panels and p-values). The X axis
indicates fitness loss values relative to wild-type (WT) in six nutrient environments, whereas the Y axis describes gene property values. We have
visualized the raw HI fitness values using a scatter plot, with each dot representing an individual gene. The overlaid box plots represent non-HI
(blue) and HI (red) gene property distributions. The box represents the upper and lower quartiles, and the central line represents the median.
Whiskers represent the lowest point within the 1.5 interquartile range (IQR) of the lower quartile and represent the highest point within 1.5 IQR of
the upper quartile.
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RESULTS

Strategy to assess relationships between gene
properties and HI in S. cerevisiae

We investigated associations between 23 gene properties (Table
1) and HI detected in six different nutrient environments. After
comparing HI and non-HI gene property value distributions to
identify gene properties significantly associated with HI, we chose
six gene properties that were suitable for building a machine-
learning model. Comparisons between these properties and HI
across six nutrient environments are shown in Figure 1.

To select particular gene properties suitable for building a model,
we performed a number of analyses. For each of the 23 candidate gene
properties, the difference between the HI and non-HI gene property
value means was examined by classifying each mutant as either HI or
non-HI in each environment. For each analysis subsequently
performed, genes were removed when they had missing gene property
values. The z-scores were calculated, which describe the number of
SDs the HI and non-HI gene property means are below or above the
population mean. A positive z-score for the HI group indicates that HI
genes tend to have greater gene property values, with a negative z-
score indicating tendency of HI genes to have lower gene property
values. Estimated p-values for the significance of the difference be-
tween HI and non-HI gene property distributions were obtained
through the Mann-Whitney U-test. The p-values and z-scores for rich
medium are summarized in Figure 2A and Figure 2B. The p-values
and z-scores for all six nutrient environments examined are reported
in Figure S1.

Our data generally show that gene properties associate best with
HI scored in rich medium (Figure 1). Relationships in minimal me-
dium are moderate, and associations with HI in the limited nutrient

environments including grape juice are much weaker. However, HI
measured in nitrogen-limited medium interestingly associates signif-
icantly with several gene properties, and many of these relationships
are not present in the other two limited media.

The observation that gene property values associate with rich
medium HI more than the other media HI could be a consequence of
most gene property values being obtained from rich medium experi-
ments, making them more relevant to that environment. The strong
relationships in rich medium might also be a consequence of the yeast
laboratory strain being better adapted to rich medium. Therefore, we
mainly focused on rich medium phenotypes and their relationships
with the gene properties.

In rich medium, protein interaction network degree associates
strongest with HI. Other gene properties that show strong relation-
ships with HI in this medium include GI network degree, ORF
sequence identity, and protein expression magnitude. We observed
weaker associations with HI for promoter sequence conservation and
mRNA expression through the cell cycle. Interestingly, although
promoter sequence conservation showed a weak relationship with HI,
we found significant relationships in five out of six environments,
although this result should be interpreted with caution, because there
is a strong link between promoter conservation and gene essentiality.

To check the predictive power of the 23 gene properties, we
performed ROC curve analysis on each gene property and nutrient
environment combination. We generated 100 ROC curves through 20
repeats of five-fold cross-validation. For each of the 100 ROC curves,
we calculated the AUC. The distributions of these AUC data show
that predictive abilities of gene properties are strongest for rich
medium HI. Figure 2C shows gene property prediction effectiveness
in rich medium, and Figure S1 shows details of this analysis in all six
environments.

Figure 2 Relationships between HI and non-HI gene properties in rich medium. (A) The p-values testing the difference between HI and non-HI
gene property value distributions. These are on a log10 scale and are as estimated by the Mann-Whitney U-test. The vertical line shows a p-value
of 0.05. (B) Mean z-scores of HI (red) and non-HI (blue) gene properties. Error bars represent the SEM. (C) The receiver-operating characteristic
(ROC) area under curve (AUC) distributions. These were generated using cross-validation (see Materials and Methods). Whiskers represent the
lowest point within 1.5 interquartile range (IQR) of the lower quartile and the highest point within 1.5 IQR of the upper quartile. Dots represent
outliers of the aforementioned ranges. The vertical line in the center of the chart represents the random expectation for the ROC plot.

1970 | M. Norris, S. Lovell, and D. Delneri

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008144/-/DC1/FigureS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008144/-/DC1/FigureS1.pdf


We focused on HI prediction in rich medium because the gene
properties associate strongest with HI in this environment. To
determine gene properties suitable for machine-learning model
construction, we selected properties with an AUC higher than 0.5,
because this represents the neutral expectation under a random
model. Some properties could be expressed in several ways, an
example being GI degree, in which calculations came from “lenient,”
“intermediate,” and “stringent” cut-off datasets (see Materials and
Methods for full details of gene property variants). When variants

of gene properties existed, the variant with the best predictive ability
was carried forward and the others were discarded.

Using the method described, we selected eight gene properties as
candidates for building a prediction model. These properties included
protein expression level, mRNA cell-cycle regulation score, promoter
sequence identity between S. cerevisiae and S. paradoxus, cDNA se-
quence identity between S. cerevisiae and S. kudriavzevii, degree and
betweenness in a genetic interaction network, PPI network degree
calculated using the unfiltered BioGRID interaction network, and

Figure 3 Relationships between five gene properties and HI, stratified according to gene essentiality. The p-values and z-scores represent the
differences between the distributions of HI and non-HI gene property values among nonessential and essential, essential, and nonessential gene
sets. Error bars represent the SEM. Gene properties include (A) PPI network degree, (B) ORF sequence identity between S. cerevisiae and
S. kudriavzevii, (C) promoter sequence identity between S. cerevisiae and S. bayanus, (D) mRNA expression variation through the cell cycle, and
(E) protein expression level.
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PPI network betweenness calculated using the BioGRID network pre-
viously filtered to remove interactions reported less than twice.

Relationships between the gene properties
To build a machine-learning model, we sought sets of gene properties
that each contributed unique information. To provide initial clues
about the uniqueness of gene properties, we correlated each gene
property pair using the Pearson method. These correlations were
completed after performing variance-stabilizing transformations when
appropriate (see Materials and Methods). Most gene property pairs
showed weak correlation (Figure S2), and these properties were con-
sidered later for building the machine-learning model. PPI and GI
network betweenness were excluded from our model, because we
observed a very strong correlation between GI degree and between-
ness and a similar strong correlation between PPI degree and be-
tweenness. In both cases, betweenness was discarded because it
yielded the lower AUC (Figure 2C). The correlation between degree
and betweenness for both the GI and PPI networks suggests that genes
and proteins with large numbers of interactions are considerably more
likely to be central in their networks.

To demonstrate the uniqueness of gene properties, we produced
models with different gene properties left out. We found that models
incorporating all chosen gene properties (i.e., those with low correla-
tions between them) performed best, demonstrating that each gene
property contributes unique information to the model.

Associations between gene essentiality, HI,
and gene properties
The rich medium study performed previously, on which most of our
analysis is based (Deutschbauer et al. 2005), showed that HI genes
have a tendency to be essential. We sought to determine whether gene
essentiality exhibits a confounding effect between HI and our chosen
gene properties, because some properties, such as PPI degree (Jeong
et al. 2001; He and Zhang 2006; Zotenko et al. 2008), have been
shown to correlate with gene essentiality.

We investigated this by stratifying the data according to essenti-
ality in rich media. Within each of the two resulting strata,
corresponding to either essential or nonessential genes, we analyzed
the relationships between HI and each gene property. The results of
this analysis for five out of six gene properties are shown in Figure 3.
Genetic interaction degree is missing from the analysis because the
data we used for this gene property (Costanzo et al. 2010) only include
interactions between homozygous-null mutants and thus do not con-
tain any information about essential genes.

Among nonessential genes, all five gene properties associate
significantly with HI. For essential genes, four gene properties
associate significantly with HI, with the remaining relationship
involving promoter sequence identity being insignificant. Because
HI associates with PPI degree, gene sequence conservation, cell-cycle
expression variation, and protein abundance among both essential

and nonessential genes, we can infer that although a confounding
effect exists between gene essentiality and HI (Figure 3), gene essen-
tiality does not fully explain the relationships between the gene prop-
erties and HI. Although the association between promoter sequence
identity and HI among essential genes was insignificant, suggesting
a strong confounding effect, we included this property in our model
because it improves predictive performance.

Construction of LDA model for HI prediction
in S. cerevisiae

Using the selection methods, we ultimately chose six unique gene
properties that we inferred would be effective at building our HI
prediction model. These properties were protein abundance, mRNA
expression variation through the cell cycle, DNA percentage identity
of the promoter between S. cerevisiae and S. paradoxus, ORF DNA
percentage identity between S. cerevisiae and S. kudriavzevii, GI degree
from DRYGIN, and PPI degree from BioGRID calculated using the
unfiltered network.

The model with the best combination of gene properties was
established by producing an LDA model for each possible gene
property combination. Every model thus produced was validated
through 20 repeats of five-fold cross-validation (see Materials and
Methods), yielding 100 ROC curves.

All gene properties included in our model have missing data for
some genes (Table 2). To handle missing data, we tested five methods,
including rolling back to a simpler model, excluding incomplete cases,
EM algorithm, MI, and median imputation (see Materials and Meth-
ods). We examined model performance by calculating the AUC in the
region of the ROC plot where false-positive rate is no larger than 0.1
(FPR # 0.1 AUC). A high FPR # 0.1 AUC minimizes the FPR and
indicates a model in which genes with the highest posterior probabil-
ities are most likely to be HI. High FPR # 0.1 AUC models therefore
allow genes to be ranked by their posterior probabilities such that
genes at the top of the list are highly enriched for HI.

The missing value handling methods produced similar ROC
curves, showing that prediction quality is largely independent of the
imputation method used. We chose median imputation to produce
our candidate models because it yields a high FPR# 0.1 AUC and has
low cross-validation AUC variation. The FPR # 0.1 AUC distribu-
tions for our median imputation models incorporating all possible
combinations of gene properties are presented in Figure 4. These
distributions are shown for all imputation methods tested in
Figure S3.

We observed a positive correlation between number of gene
properties in the model and the FPR# 0.1 AUC, indicating that each
gene property contributes useful information for predicting HI. The
model incorporating all six gene properties (6GP) was chosen as our
candidate for prediction because it has the highest value for FPR# 0.1
AUC. The ROC curve for the 6GP model is shown in Figure 5. We

n Table 2 List of the 6 gene properties used in the 6GP model showing proportion of gene property data missing
across the yeast genome

Gene Property Proportion of Genes with No Data (%)

PPI network degree 2.02
GI network degree 34.31
% ORF sequence identity 10.48
% Promoter sequence identity 5.00
Cell-cycle mRNA expression variation 0.50
Protein expression magnitude 17.65

PPI, protein–protein interaction; GI, genetic interaction.
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used this model to produce posterior probabilities of HI for all yeast
genes, which are listed in File S2.

Prediction of HI and experimental verification of HI
in S. cerevisiae

We used the LDA 6GP model to rank each gene by its inferred
probability of being HI. To test whether the model could infer novel
and previously undetected HI phenotypes, we selected 23 candidate
genes that had not been identified as HI in the previous large-scale
study (Deutschbauer et al. 2005) but had the highest probability scores
according to our model. Assays for HI were performed for all candi-
date genes. We found fitness defects for 6 out of 23 candidates in rich
medium, identified 5 out of 23 candidates as HI in F1 medium with
nitrogen limitation, and found HI in 1 out of 23 candidate genes for
carbon-limited medium.

To identify significantly HI strains, we calculated an AUGC
for each replicate well containing either mutant or WT culture.
The p-value, describing the difference between mutant and WT
AUGC distributions, was then calculated using the Welch t-test.
We have reported the ratio between WT and mutant AUGC
means as a quantitative measure of fitness for each candidate
gene in Table 3 together with p-values for these differences as
calculated using the Welch t-test and corrected using the Benjamini-
Hochberg procedure.

In addition to the 23 candidates, we selected three positive control
genes that were detected as significantly HI in the earlier rich medium
study. These included two genes, TUB1 and RPL25, displaying severe
fitness loss in heterozygosis (relative fitness losses of 0.921 and 0.818,
respectively), and RPN11, displaying a weak but significant HI phe-
notype (with a relative fitness loss of 0.971). As negative controls, we
selected 24 genes that had both low HI likelihood according to the
model and no significant HI phenotype in the earlier experimental
work. As background controls, we randomly selected 42 genes from
the entire genome to produce an estimate of the rate of HI in the
genome, as measured via rich medium monocultures. All controls
were tested for HI using the same method used with the candidate
genes.

Only 1 out of 42 background control genes showed a significant HI
phenotype, in line with the expected frequency of HI as described in
previous studies (Table S2). Growth curves for all significantly HI
strains, corresponding to both candidate genes and controls, are
shown in Figure S4

Our candidate strains each carried mutations in genes that were
previously undetected in the large-scale rich medium HI profiling
study (Deutschbauer et al. 2005). This result confirms that our pro-
posed method for choosing HI candidates has a very good predictive
power, because 26% of the candidate genes from the model were
found to be HI compared to a total of 3% HI genes detected in the

Figure 4 False-positive rate
(FPR) # 0.1 area under curve
(AUC) distributions across all
combinations of gene proper-
ties, using median imputation.
This demonstrates that model
performance tends to increase
as more gene properties are
added. Our candidate six gene
properties (6GP) model is high-
lighted with an arrow. The three
letter codes identify gene prop-
erties and are described in the
legend. Distributions are for
100 receiver-operating charac-
teristic (ROC) curves generated
during cross-validation (see
Materials andMethods). Whiskers
represent the lowest point within
1.5 interquartile range (IQR) of
the lower quartile and the highest
point within 1.5 IQR of the upper
quartile. Dots represent outliers
of the aforementioned ranges.
The black horizontal line repre-
sents the random expectation
from the ROC plot.
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earlier rich medium experiment and 2.3% HI gene coverage among
our randomly selected background controls. All of our negative con-
trol genes showed no significant growth rate difference from the WT
BY4743 strain, demonstrating that our new phenotype identifications
are unlikely to be attributable to experimental sample variation.

The HI-positive controls, RPL25 and TUB1, showed pronounced
and significant haploinsufficiency. RPN11, used as a weak haploinsuf-
ficiency-positive control, appeared to grow slightly slower than the
WT strain, although the difference was not significant. These data
suggest that the experimental method used may miss some weakly
HI genes; therefore, the extent of the verification of the HI from our
model is probably conservative.

We tested the 23 candidate genes in F1 media with nitrogen and
carbon limitation, in addition to our rich medium studies, to see
whether the new HI phenotypes are displayed in other environments
(Table 3). The gene BCY1 showed a HI phenotype in all three envi-
ronments tested, and the genes RPS6B, BCY1, and BRE5 showed HI
phenotypes in both rich medium and the synthetically defined media
with nitrogen limitation. Interestingly, in F1 medium with nitrogen
limitation, we found another two candidate genes to be HI, SEC28 and
HMO1.

Analysis of HI in Sz. pombe

In addition to our work performed on S. cerevisiae, we examined the
available HI data for Sz. pombe (Kim et al. 2010). In particular, we
looked at relationships between HI and DNA sequence conservation,
PPI degree from BioGRID (Stark 2006), and predicted GI degree from
a recent study (Koch et al. 2012). Other biological properties were not
examined because of unavailability of comprehensive data in Sz.
pombe. To determine gene sequence conservation, we compared the
ORF sequence data between Sz. pombe and two closely related species,
Sz. octosporus and Sz. cryophilus. Using genome annotations, we per-
formed ORF alignments and calculated sequence conservation statis-
tics before comparing these statistics against Sz. pombe HI data.
Interestingly, we found significant positive associations with HI for
DNA and protein sequence identity between Sz. pombe and both Sz.
octosporus and Sz. cryophilus, although correlation between HI and
dN/dS was insignificant (Figure 6). We also found a significant mod-
erate positive relationship between HI and PPI degree. The association

between HI and predicted GI degree was not significant. In general,
these preliminary results suggest that our HI prediction method based
on the biological properties of the cell could be applied to other
microorganisms.

We also examined the level of HI phenotype conservation between
S. cerevisiae and Sz. pombe ortholog genes. A set of 2372 Sz. pombe
genes was considered. This set contained 279 Sz. pombe and 93
S. cerevisiae HI genes. The set also only contained those genes with
no duplicate gene orthologs in S. cerevisiae and was such that rich
medium heterozygous-null mutant phenotypes were available from
both organisms. We found that only 17 out of 2372 genes were HI
in both S. cerevisiae and Sz. pombe. This result shows that orthology is
not informative of HI in these two yeasts because HI does not tend to
be conserved between members of orthologous gene pairs.

DISCUSSION
In this work, we identified several gene properties with significant
differences between HI and non-HI genes. We exploited these
associations by building a machine-learning model that prioritizes
candidate genes according to their inferred HI probabilities. By
prioritizing candidate genes, we discovered novel HI phenotypes that
were not detected previously in genome-scale screens. In addition, the
relationships uncovered here between HI and gene properties provide
useful clues in terms of understanding HI mechanisms.

The relationships identified here show that HI genes tend to be
highly expressed and highly conserved, with large numbers of genetic
and physical interactions. We have also shown that HI genes tend to
have slightly less conservation at the promoter and slightly less cell-
cycle regulation. The reduced cell-cycle regulation suggests that HI
genes tend to be constitutively expressed (i.e., “always on”), at least in
terms of the cell cycle. One would expect hemizygosity of a constitu-
tively expressed gene to cause a greater reduction in protein expres-
sion than a more highly regulated gene, because there are probably
fewer regulatory mechanisms to respond to gene copy number vari-
ation in constitutively expressed genes. The relationship between tran-
scriptional regulation and HI could be explored more fully by
examining microarray data beyond the cell cycle.

We found that PPI degree associates most strongly with HI in rich
medium. This relationship supports the idea that gene dosage is
important for viability of protein complexes. During construction of
our model, we tested three PPI networks, each of which was generated
from physical interaction data in BioGRID. These included an
unprocessed interaction network along with two stringent networks
that only considered interactions reported at least two or three times.
Interestingly, the unprocessed network performed best. We think the
stringent networks performed less well because considerable amounts
of data are excluded during the filtering process. Approximately 80%
of interactions are removed when only considering interactions
reported at least twice, whereas approximately 90% are removed
when only considering interactions reported at least three times.

Our study demonstrates that some HI phenotypes are missing
from existing genome-scale data. This could be attributable to
interactions between heterogeneous strains sharing the same environ-
ment, disagreements between biological replicates, or assay sensitivity
limitations. For example, there could be a dependency of HI
phenotypes on the structure of the competing population and from
general growth conditions. In fact, competition environments in
which multiple mutants are grown together can be rather different
from medium containing only monocultures or two strains. Six
thousands mutants competing in the same nutritional context are

Figure 5 Performance of the six gene property (6GP) candidate
model. Receiver-operating characteristic (ROC) curve of the best
model (6GP), which combines the six gene properties described in
the text. The dark line shows the average of 100 ROC curves, with
error bars indicating 1 SD. Gray lines represent 100 ROC curves
produced during cross-validation superimposed.
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likely to excrete several different types and quantities of metabolites
(Allen et al. 2003), which could affect the growth of the population
both in the negative direction and in the positive direction. Although
the extent of this cross-feeding effect is not known, obtaining genome-
scale monoculture HI profile data would be a useful step toward un-
derstanding it.

The level at which false-positives are present in large-scale genomic
data is also not entirely known. Deutschbauer et al. (2005) tested 30
HI genes in individual growth assays to prove the validity of the
molecular bar-coding to reproducibly score quantitative fitness differ-
ences as small as 2%.

HI phenotype differences could also arise from differences between
experimental methods. This study and the two previous studies
(Deutschbauer et al. 2005; Delneri et al. 2008) each used different
experimental methods and metrics to identify HI genes. In the
Deutschbauer et al. (2005) study, a batch serial dilution competition
approach was used. Two independently constructed pools of hemi-
zygous strains were diluted at five generation intervals. Hybridization
tags were used in combination with a microarray and a regression-
based approach to quantify differences between the growth rates of
strains relative to WT. Genes were considered significantly HI when
both replicates had a fitness value less than 0.95 and at least one tag in
both replicates had a p-value , 0.05.

The Delneri et al. (2008) work used competition experiments in
continuous cultures to identify HI genes via hybridization of the strain
bar codes. The advantage of this method was that both growth rate
and pH are kept constant, allowing a more sensitive identification of
HI phenotypes. To determine significant HI strains, a regression-
based method was used, followed by calculation of p-values. False
discovery rates were estimated using the Benjamini-Hochberg method

to produce Q-values. Growth rates with Q , 0.01 were considered
statistically significant.

Both of these studies, based on strain-specific tag hybridization, are
sensitive and quantitative in nature for the determination of HI. In our
study, we measured growth curves of monocultures and used the
difference between mutant and WT AUGC means as a quantitative
measure of fitness. To determine the significance of the difference
between these means, we calculated p-values using the Welch t-test,
followed by correction using the Benjamini–Hochberg procedure. De-
spite the fact that growth curves are typically less sensitive than genome-
wide competition experiments to detect fitness declines, we were
successful in identifying new HI phenotypes.

Our gene properties associate most strongly with rich medium HI,
with weaker relationships between gene properties and HI in minimal,
nitrogen-limited, carbon-limited, phosphate-limited, and grape juice
media. For some gene properties, this might be because property data
were produced largely in experiments that used rich medium.
Properties potentially affected by environmental conditions include
PPI and GI degree, protein expression level, and magnitude of cell-
cycle regulation. For example, the PPI data mostly comprise
interactions reported through affinity capture methods, which are
affected by the nutrient environment. The strong associations with HI
in rich medium may also be attributable to the laboratory strains
being more adapted to rich medium, thus resulting in gene properties
showing stronger relationships in this environment. The associations
between gene properties and HI are much weaker for carbon-limited,
nitrogen-limited, phosphate-limited, and grape juice environments.
This may be a result of different experimental conditions in the
corresponding study (Delneri et al. 2008); in that work, the cell culture
was held at maximum growth rate, whereas the rich medium study

n Table 3 Summary of phenotypes for the 23 candidate genes tested

AUGC Mutant/AUGC WT (p-value)

Gene Rich Media F1 Nitrogen-Limited F1 Carbon-Limited

BEM2 1.011 (0.315) 0.987 (0.462) 0.972 (0.544)
ASC1 1.017 (0.627) 1.008 (0.445) 0.972 (0.242)
RPL16A 1.007 (0.590) 0.999 (0.962) 1.002 (0.996)
RPL8B 0.999 (0.952) 0.995 (0.445) 1.007 (0.976)
UBI4 0.967 (5.33 · 1022) 0.996 (0.682) 1.015 (0.841)
RPL8A 1.009 (0.698) 1.008 (0.431) 1.057 (6.82 · 1022)
UBP3 1.003 (0.899) 1.009 (0.642) 1.003 (0.976)
EFT2 1.004 (0.794) 1.019 (0.104) 1.027 (0.544)
RPS6B 0.908 (8.31 · 1024)

�
0.965 (1.35 · 1024)

�
1.000 (0.996)

BCY1 0.903 (3.87 · 1025)
�

0.925 (5.39 · 1025)
�

0.874 (3.53 · 1024)
BRE5 0.947 (1.48 · 1022)

�
0.956 (1.00 · 1023)

�
0.963 (0.107)

RPS19B 0.998 (0.899) 0.991 (0.404) 0.959 (0.159)
RPL3 0.996 (0.821) 0.973 (0.158) 0.978 (0.611)
ADH1 0.998 (0.922) 0.993 (0.445) 0.998 (0.976)
GCN5 0.966 (3.47 · 1022)

�
0.982 (0.445) 0.982 (0.752)

ERG6 0.990 (0.627) 1.003 (0.720) 1.016 (0.840)
SEC28 0.994 (0.698) 0.948 (3.33 · 1024)

�
0.990 (0.824)

RPL28 0.994 (0.718) 1.001 (0.992) 1.000 (0.996)
HOM6 1.035 (5.10 · 1022) 1.003 (0.791) 0.995 (0.958)
HMO1 0.994 (0.846) 0.970 (3.47 · 1022)

�
0.991 (0.841)

PHO23 1.036 (0.118) 0.986 (0.158) 0.989 (0.824)
RPL10 0.942 (1.48 · 1022)

�
0.986 (0.104) 0.990 (0.841)

RPN10 0.961 (1.48 · 1022)
�

0.994 (0.431) 1.002 (0.996)

The first column shows the gene names and the remaining columns describe phenotypes in rich medium (YPD), F1 medium with nitrogen
limitation, and F1 medium with carbon limitation. Phenotypes are described according to the average area under growth curve (AUGC)
relative to the average wild-type (WT) AUGC. The number in brackets is a p-value representing the significance of the difference between
mutant and WT AUGCs, calculated as described in Materials and Methods.�
Significantly HI phenotypes, i.e., those with p-value , 0.05.
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(Deutschbauer et al. 2005) and our study have not attempted to do
this. In general, however, more experimental HI phenotype data, ide-
ally using different strain backgrounds, would be necessary to deter-
mine the extent to which these conditions might affect HI phenotypes
detected.

To investigate the sensitivity of our method for detecting small
fitness differences, we selected the gene RPN1 as a “weak” positive
control. This gene had a subtle but significant HI phenotype in a pre-
vious rich medium study (fitness difference for RPN1 = 0.971 vs.
TUB1 = 0.921 and RPL25 = 0.818 for our two “strong” positive con-
trols). When we tested this gene for HI using our growth curve assay,
the fitness loss registered was very small and therefore not significant.
This undetected HI might be either a consequence of the limited
sensitivity of the method compared to the genomic bar code analysis
or a consequence of the lack of yeast competitors in the monoculture.
An improved sensitivity for HI phenotypes might, in fact, be achieved
via one-to-one competition experiments, although such experiments
could be affected by cross-feeding interactions between the reference
strain and the mutant. These results show that our experimental
validation of the model is likely to underestimate the HI phenotypes
and is a conservative evaluation of the predictive power of our
method.

Ribosomal and core cellular process genes were heavily over-
represented in the earlier rich medium study (Deutschbauer et al.
2005). Our six newly identified rich medium HI genes include two
ribosomal genes (RPS6B and RPL10), a proteasome gene (RPN10),
and three core cellular process genes (BCY1, BRE5, and GCN5), one
of which is an enzyme (GCN5).

To see whether our rich medium phenotypes were displayed in
other environments, we performed additional experiments in different
nutrient-limited conditions using our 23 candidate genes. Five
candidates were found to be HI in F1 medium with nitrogen
limitation, and only one HI gene was detected in F1 medium with
carbon limitation. These data suggest that there is some overlap of HI
phenotypes between YPD and nitrogen-limited media, whereas in the
carbon-limited medium the overlap is smaller. This observation was
not unexpected because the HI genes in nitrogen-limited medium
associate moderately well with the various gene properties in the
model, whereas carbon-limited HI does not (Figure S1, C and D). One
of the genes we found to be HI in nitrogen-limited medium, SEC28, is
not HI in rich medium. Sec28p has been previously shown to interact

with and stabilize Cop1p (Duden et al. 1998), and COP1 was found to
be HI in nitrogen-limited medium previously (Delneri et al. 2008).
These results suggest that the genes SEC28 and COP1 might have
a shared role in nitrogen stress response.

Previous work (Deutschbauer et al. 2005) showed that HI genes
have a higher likelihood of being essential than other genes. Because
PPI degree is known to correlate with gene essentiality (Jeong et al.
2001; He and Zhang 2006; Zotenko et al. 2008), we set out to in-
vestigate the level by which gene essentiality is a confounding factor
between HI and our chosen gene properties. We divided genes into
essential and nonessential groups and then examined the associations
between gene properties and HI within those groups. For PPI degree,
gene sequence conservation, cell-cycle expression variation, and pro-
tein abundance, relationships between HI and gene properties were
significant among both essential and nonessential genes. This demon-
strates that associations between these properties and HI cannot fully
be explained by the over-representation of gene essentiality among HI
genes. We therefore suggest that HI and gene essentiality are, in part,
independent phenomena.

Promoter sequence identity was an exception among the proper-
ties tested; although it associated significantly with HI among
nonessential genes, the relationship between essential gene HI and
this variable was insignificant. This might be attributable to either the
overall weak association between HI and promoter sequence identity
or a result of gene essentiality fully explaining the relationship between
promoter conservation and HI. We opted to leave promoter sequence
identity in the model because it improved predictive performance.

Availability of gene property data in other organisms may allow
their HI to be predicted. We show that this may be possible in Sz.
pombe by demonstrating positive relationships between Sz. pombe HI
and both PPI degree and ORF sequence conservation. The sequence
conservation associations, although significant, were only weak. This
may reflect the fact that the two Schizosaccharomyces clade members
used to calculate conservation are more distantly related to Sz. pombe
than the Saccharomyces sensu stricto clade members are to S. cerevi-
siae. This greater evolutionary distance may cause signal loss when
calculating sequence conservation statistics for Sz. pombe. Evidence
supporting this argument includes the fact that DNA sequence con-
servation associates less with HI than protein sequence conservation.
Additionally, there is no significant relationship between dN/dS and
HI in Sz. pombe. The association between PPI degree and HI in Sz.

Figure 6 Relationships between HI and non-HI gene properties for Sz. pombe in rich medium. (A) The p-values testing the difference between HI
and non-HI gene property value distributions. These are on a log10 scale and are as estimated by the Mann-Whitney U-test. The vertical line
shows a p-value of 0.05. (B) Mean z-scores of HI (red) and non-HI (blue) gene properties. Error bars represent the SEM. (C) The receiver-operating
characteristic (ROC) area under curve (AUC) distributions. These were generated using cross-validation (see Materials and Methods). Whiskers
represent the lowest point within 1.5 interquartile range (IQR) of the lower quartile and the highest point within 1.5 IQR of the upper quartile. Dots
represent outliers of the aforementioned ranges. The vertical line in the center of the chart represents the random expectation for the ROC plot.
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pombe is weaker than the equivalent in S. cerevisiae, possibly because
the Sz. pombe interaction dataset is less complete than that of
S. cerevisiae. In accordance with the Kim et al. (2010) study, we found
low HI profile conservation between S. cerevisiae and Sz. pombe ortho-
logs, suggesting that methods that implement prediction of HI based
on gene properties could be crucial for identifying HI genes a priori in
different species. It is worth noting that Sz. pombe only becomes diploid
transiently, just before meiosis, and therefore the biological significance
of HI for this organism may be limited to a defined time interval.

In conclusion, we have shown significant relationships between
gene properties and HI phenotypes scored in rich medium. We have
used these associations to create a model to identify novel HI genes,
and we experimentally identified six new hemizygous mutant strains
with compromised fitness in rich medium, along with five HI
phenotypes in F1 medium with nitrogen limitation and one HI
phenotype in carbon-limited medium. This method could be applied
to uncover HI phenotypes in other species.
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