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France, 3Univ Paris Diderot, Sorbonne Paris Cité, UMRS 958, F-75010 Paris, France, 4INSERM, U958, F-75010 Paris,

France, 5Systems Biology Lab, C3BI, USR 3756, Institut Pasteur/CNRS, Institut Pasteur, F-75015 Paris, France,
6Functional Genetics of Infectious Diseases Unit, Institut Pasteur, F-75015 Paris, France, 7Univ Paris-Descartes,
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Abstract

Motivation: Most computational approaches for the analysis of omics data in the context of inter-

action networks have very long running times, provide single or partial, often heuristic, solutions

and/or contain user-tuneable parameters.

Results: We introduce local enrichment analysis (LEAN) for the identification of dysregulated sub-

networks from genome-wide omics datasets. By substituting the common subnetwork model with

a simpler local subnetwork model, LEAN allows exact, parameter-free, efficient and exhaustive

identification of local subnetworks that are statistically dysregulated, and directly implicates single

genes for follow-up experiments.

Evaluation on simulated and biological data suggests that LEAN generally detects dysregulated

subnetworks better, and reflects biological similarity between experiments more clearly than

standard approaches. A strong signal for the local subnetwork around Von Willebrand Factor

(VWF), a gene which showed no change on the mRNA level, was identified by LEAN in transcrip-

tome data in the context of the genetic disease Cerebral Cavernous Malformations (CCM). This sig-

nal was experimentally found to correspond to an unexpected strong cellular effect on the VWF

protein. LEAN can be used to pinpoint statistically significant local subnetworks in any genome-

scale dataset.

Availability and Implementation: The R-package LEANR implementing LEAN is supplied as supple

mentary material and available on CRAN (https://cran.r-project.org).

Contacts: benno@pasteur.fr or tournier-lasserve@univ-paris-diderot.fr

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

The organization of the molecular machinery of cells is thought to

be inherently modular (Alon, 2003; Hartwell et al., 1999). When

studying large-scale datasets, once gene-level scores have been com-

puted, a common next step is thus to aggregate them to the level of

gene sets.

Pathway analysis focuses on enrichment in annotated gene sets,

such as genes involved in a common biological process. For the re-

mainder of this article, we will use the terms pathway and gene set

interchangeably in the above sense of a set of genes sharing a com-

mon functional annotation. Significant scores for a particular path-

way suggest specific higher-level functional interpretations of the

dataset (Khatri et al., 2012). The MSigDB database (Subramanian

et al., 2005) for example includes pathways corresponding to genes

that share functional annotations, chromosomal locations or cis-

regulatory motifs, or are part of specific molecular (e.g. oncogenic

or immunologic) signatures.

Subnetwork-based analyses (for a recent review see (Mitra et al.,

2013)) follow the same general approach, except that candidate

gene sets are subnetworks of physical or functional interaction net-

works that are interconnected by known interactions. An obvious

advantage relative to pathway-based approaches is that gene sets

representing novel biological functions can be discovered. However,

the number of candidate subnetworks to be considered is usually

astronomical, and only identifying the most significant subnetwork

is computationally hard, even for simple versions of the problem

(Ideker et al., 2002). As a result, existing methods resort to compu-

tationally intensive heuristics (Ideker et al., 2002), to solving limited

versions of the computational problem (Backes et al., 2012) and/or

entirely different problem formalizations (West et al., 2013). As a

consequence of the computational hardness of the subnetwork prob-

lem, current methods do not allow exhaustive evaluation of all pos-

sible subnetworks and often require the user to set additional

parameters, a non-trivial step that can strongly influence the meth-

ods’ results in often unclear ways. Furthermore, the employed sub-

network scores of widely used methods have been shown to be

biased with respect to subnetwork size (Nacu et al., 2007;

Rajagopalan and Agarwal, 2005) and most methods do not provide

a sound estimate of statistical significance of their solutions.

Another typical challenge is the biological interpretation of resulting

subnetworks. Firstly, the resulting subnetworks have typically not

been studied previously, and interpretation and hypothesis gener-

ation from the observed results can therefore not rely upon existing

knowledge. Secondly, experimental methods typically do not allow

the study of subnetworks in their entirety, so that a non-trivial pri-

oritization step is required before further validation.

As a consequence, comparative studies on medically relevant

data have reported poor consistency between individual methods

(Jiang and Gribskov, 2014) and questioned the merit of applying

subnetwork-based methods altogether (Staiger et al., 2013)

We present here a novel network-based approach, termed local

enrichment analysis (LEAN). LEAN is designed to avoid computa-

tional and statistical issues through the use of a strongly constrained

subnetwork model. The strong constraint permits a combination of

fundamental advantages, relative to existing network analysis

approaches. In particular, the underlying optimization problem is ef-

ficiently solvable, allows to survey all solutions (not just the optimal

one), it has no parameters that have to be tweaked by the user, and

LEAN subnetworks of interest imply specific genes for experimental

follow-up. Supplementary table S1 compares key features of LEAN

with a range of other subnetwork analysis approaches.

We evaluated the performance of LEAN by comparing it to pre-

viously published subnetwork detection methods on simulated path-

ways and showed that it is able to extract biologically meaningful

common pathways even on a relatively small number of publicly

available datasets. An application to a transcriptomic dataset of the

response to invalidation of CCM genes in mouse models led to the

discovery of the previously unknown involvement of Von

Willebrand Factor (VWF) in the pathophysiology of CCM disease.

2 Methods

In the following paragraphs, we will introduce the key concepts of

the LEAN method. For better readability, detailed descriptions of

how presented results were obtained are relegated to the Results and

supplementary material, respectively.

2.1 The local subnetwork model
We introduce here a novel network-based analysis approach inte-

grating genome-wide measures of statistical significance (P-values)

with large-scale interaction networks. It is based on a local subnet-

work model, which assumes that higher-order biological activity can

be detected by aggregating signals from a single gene and its direct

network neighbors (cf. Fig. 1).

The local subnetwork model is much simpler than the common

(unconstrained) subnetwork model, in terms of computational com-

plexity, and the assessment of statistical significance. While the

number of subnetworks is typically exponential in the number of

genes, networks contain only a single local subnetwork per gene.

The identification of optimal subnetworks is computationally NP-

hard (Ideker et al., 2002), whereas optimal local subnetworks can

be identified by examining all genes and their neighborhoods in

turn. The relatively low number of local subnetworks also allows

the straightforward calculation of empirical P-values while for many

subnetwork-based analysis methods, no procedures exist to calcu-

late statistical significance.

2.2 Local enrichment analysis
LEAN is based on two ingredients: A list of measures of statistical

significance (P-values) for some or all genes and an interaction net-

work. In many applications, P-values originate from a statistical

test for differential expression, such as limma (Smyth, 2004).

While the approach is readily applicable to other types of datasets,

we will describe it in the following using the example of its appli-

cation to the results of a transcriptomic experiment evaluating dif-

ferential gene expression (input P-values). Analysis is performed

using the given interaction network restricted to genes for which

an input P-value has been calculated based on the transcriptomic

data. A local subnetwork Ng consists of a subset of genes formed

from a designated center gene g and its direct interactors in

the given network. Candidate subnetworks are all local subnet-

works Ng.

An equivalent characterization of local subnetworks uses the no-

tion of graph radius. The eccentricity of a node g is the maximal

graph distance of g to any other node h. A node g is a graph center if

it has minimal eccentricity, which is also called radius. Using these

notions, local subnetworks are exactly those subnetworks that have

a radius of 1.

2.3 LEAN P-values
For each candidate subnetwork Ng of size m, the method aims to

evaluate whether its genes are enriched for signals of differential
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expression. To this end, an unnormalized enrichment score ESg is

computed on the basis of the sorted sequence p1 � . . . � pm of the

input P-values assigned to the genes in the candidate subnetwork pg;

g 2 Ng (subnetwork P-values). To compute ESg, for each position

k ¼ 1; . . . ;m in the sorted subnetwork P-value list, we first calculate

the probability ~p
ðkÞ
g that, under the null hypothesis of i.i.d. uniform

distribution of the input P-values, at least k of the pi are lower or

equal to pk using the cumulative distribution function of the bino-

mial distribution:

~p
ðkÞ
g ¼

Xm
i¼k

m

i

 !
ðpkÞið1� pkÞm�i: (1)

We designate the position in the ordered subnetwork P-value list of

Ng at which minimum ~p
ðkÞ
g is achieved by k� ¼ argmink

~p
ðkÞ
g . The

unnormalized enrichment score ESg is then defined as:

ESg ¼ �log10ð~p
ðk�Þ
g Þ: (2)

To correct for biases due to subnetwork size and evaluate statistical

significance, the enrichment P-value p?g is computed by comparing

ESg to a background distribution of ESBG values obtained on ran-

dom gene sets of the same size as Ng:

p?g ¼ probðESBG � ESgÞ: (3)

Here, we empirically estimated p?g using 10 000 random samples of

size m from the set of input P-values to determine the background

distribution of ESBG values. To correct for the number of local sub-

networks being tested, the p? values of all candidate subnetworks

are subjected to a Benjamini-Hochberg multiple testing correction,

yielding the LEAN P-values. For each candidate subnetwork with a

significant LEAN P-value, our implementation of LEAN returns its

central gene along with the above mentioned intermediate scores

and additional information on the candidate subnetwork. Figure 2

provides an example for the calculation of p?g for a candidate subnet-

work of size 7.

2.4 Interaction network
For use in this study, we employed the murine STRING interaction

network (Franceschini et al., 2013). STRING represents one of the

largest publicly available collections of protein-protein interaction

data (for details on the STRING networks used see supplementary

methods). STRING gene interactions originate from different sour-

ces of evidence, such as experimental studies of physical inter-

actions, co-expression in public datasets, co-citation in literature

and evidence of functional or physical interaction extracted from

public databases. Each interaction has an associated global score

that reflects the overall strength of evidence for functional inter-

action. STRING has been used in numerous previous network-based

analyses (Abadie et al., 2011; Choudhary et al., 2009; Gaballa et al.,

2010; Hofree et al., 2013).

Fig. 1. Subnetwork and local subnetwork pathway models. Local subnetworks are specific subnetworks that consist of a center gene and its direct network

neighbors

A B

C D

E F

Fig. 2. Summary of LEAN. Inputs are (A) an interaction network and (B) an in-

put P-value for each gene in the network, as, e.g. obtained by analysis of dif-

ferential expression. For any gene g, the genes in its direct neighborhood

along with their individual input P-values are then extracted from the network

(C). The P-values within the neighborhood of g are sorted in increasing order

and the unnormalized enrichment score ESg is calculated according to

Equation 2 (D). To normalize by local subnetwork size, random samples of

equal size to Ng are drawn from all input P-values and a ESBG value is com-

puted for each of them (E). The distribution of ESBG values is then used to es-

timate the enrichment P-value p?
g , according to Equation 3 (F). Used

abbreviations: FC¼Fold Change (log2) between two conditions

The LEAN method 703

Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: <italic>p</italic>
Deleted Text: ,
Deleted Text: p
Deleted Text: p
Deleted Text: p
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
Deleted Text:  
Deleted Text: ,
Deleted Text: Abadie <italic>et<?A3B2 show $146#?>al.</italic>, 2011; 


3 Results

3.1 LEAN detects simulated deregulation of

subnetworks
To assess the capacity of the local subnetwork model to detect

deregulated pathways, we compared the performance of LEAN to

other common pathway analysis methods on simulated data from a

statistical model of transcriptomic pathway deregulation. Starting

with a high-confidence STRING functional network, we randomly

selected a small number of subnetworks as hypothetical pathways,

and assigned lower P-values to the genes contained in these subnet-

works (see supplementary methods for details). We then evaluated

the capacity of different methods to recover these simulated path-

ways. We verified that the graph radius of the simulated subnet-

works was substantially larger than 1 (mean subnetwork radius: 2.

68 6 0.7 SD) to ensure that our evaluation dataset is not biased to-

wards overly compact subnetworks, which would confer an advan-

tage to the local subnetwork model (see Supplementary Figs. S1 and

S2 for a more detailed evaluation of how the methods perform de-

pendent on subnetwork compactness).

We evaluated the performance of seven approaches: a gene-by-

gene approach not using network information, LEAN, the GSEA

(Subramanian et al., 2005) enrichment score applied to our defin-

ition of local subnetworks (‘local GSEA’), KeyPathwayMiner

(KPM) List et al. (2016), the jActiveModules method (Ideker et al.,

2002), GiGA (Breitling et al., 2004) and RegMOD (Qiu et al.,

2010). Performance was measured using Receiver-Operator-

Characteristic (ROC) analysis comparing true positive rates (TPR)

and false positive rates (FPR) over all possible detection cutoffs with

simulated pathway genes defined as positives and genes not con-

tained in simulated pathways as negatives. We varied the character-

istics of the simulated pathways using two parameters: To generate

low input P-values for genes within pathways, the P-values of these

genes were redrawn from [0, pscale] with probability penr per individ-

ual gene. In this model, pscale governs the difference in significance

of a pathway gene in comparison to a background gene and penr

is the expected proportion of pathway genes exhibiting smaller

P-values than the background genes.

Figure 3A shows ROC curves obtained on pathways with me-

dium P-value scaling and medium proportion of significant pathway

genes (penr ¼ 0:5; pscale ¼ 0:1). Since the KeyPathwayMiner,

jActiveModules and GiGA methods do not score individual genes,

but entire subnetworks, we could not evaluate them in the same

way. For these two methods, we thus obtained the ten highest-

scoring subnetworks and computed the TPR and FPR obtained by

selecting all genes contained in the highest scoring subnetwork, the

five or the ten best scoring subnetworks, respectively. On these data,

LEAN P-values provide significantly better separation between

pathway genes and background genes than most other tested meth-

ods (p � 0:05 for comparisons between LEAN and any other ROC

evaluation permitting method, DeLong’s method, see supplementary

methods for details). This finding was confirmed in an alternative

subnetwork model (see Supplementary Fig. S3). KPM was the only

method able to provide a slightly better separation than LEAN, pos-

sibly aided by the fact that it was run using the optimal choice of P-

value cutoff (for more details see supplementary methods).

LEAN results were relatively robust to network perturbations in

the form of random edge rewiring (see supplementary methods for

details) and yielded better performance than single-gene scoring up

to a perturbation of 30% of the network edges, which corresponds

to a situation where on average only about 58% of the genes in a

local subnetwork are kept unchanged (Fig. 3B).

For a more exhaustive evaluation of the impact of pathway simu-

lation parameter values, we computed partial areas under the ROC

curve (pAUCs) in the low FPR range (FPR � 0:05) for each of the

approaches allowing such evaluation (see Supplementary Fig. S4).

We observed that both LEAN and local GSEA substantially outper-

formed gene-by-gene scoring, especially in cases where the P-value

improvement of module genes over background genes was subtle.

Furthermore, LEAN clearly outperformed the local GSEA score in

cases where relatively few of the genes within a pathway were as-

signed low P-values; for high penr values the two methods yielded

comparable results.

3.2 LEAN P-values reflect similarity of biological

conditions
If statistical profiles resulting from an experiment are reflective of

the underlying biology, similar experiments should be expected to

lead to similar detections. To examine how much gene- and local

subnetwork-level P-values conform to this ideal, we evaluated the

overlap of genes detected as significant in six publicly available ex-

perimental datasets whose biological interpretation we were familiar

with.

A

B

Fig. 3. ROC analysis results: Panel A shows average true positive rates (TPR)

over 10 separate pathway simulation instances at, given false-positive rates

(FPR). Error bars denote standard error of the mean. Average TPR and FPR

obtained by 1, 5 and 10 highest-scoring KPM, jActiveModules and GiGA sub-

networks, respectively, are shown. All pathway simulations used in the cre-

ation of this figure were run with penr ¼ 0:5 and pscale ¼ 0:1. Panel B shows

areas under the curve (AUCs) after randomly rewiring up to 30% of the net-

work edges

704 F.Gwinner et al.

Deleted Text: p
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
Deleted Text:  
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
Deleted Text: (&hx0022;
Deleted Text: &hx0022;), 
Deleted Text: ,
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: p
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
Deleted Text: p
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
Deleted Text: Figure 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw676/-/DC1
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text:  


Four datasets measure the response of cell lines upon stimulation

with transforming growth factor beta (TGFb) and tumor necrosis

factor alpha (TNFa) in comparison to appropriate controls. The re-

maining two datasets respectively compare basal gene expression be-

tween two tissue types and a common reference tissue, murine

cerebellum. The characteristics of the selected datasets are summar-

ized in Supplementary Table S3. We note that the datasets might

contain uncontrolled biases due to variability in cell types and

microarray platforms.

We carried out limma gene-by-gene analysis of differential ex-

pression, as well as LEAN (for details see supplementary methods).

To ensure comparable sensitivity, the same cutoff of 0.05 was

applied on Benjamini Hochberg-corrected limma P-values and

equally corrected LEAN P-values to obtain 6 lists of significant

genes or local subnetwork centers in each case.

Figure 4 shows heat maps showing the number of overlapping

genes among each pair of lists (see supplementary methods for

details). Clustering based on their degree of overlap using limma

P-values did not yield groups of biologically similar datasets (Fig.

4A), possibly in part due to vastly different number of genes detected

as significant in the individual datasets. However, LEAN P-values

separated stimulation from tissue comparison datasets and—within

the stimulation experiments—separated the TGFb pathway and

TNFa pathway related datasets into two groups, irrespective of

array platform design used in individual datasets (Fig. 4B).

Enrichment analysis using Enrichr (Chen et al., 2013) of the sig-

nificant local subnetwork centers detected in both TNFa stimulation

datasets returned GO terms and pathways relevant to the studied

stimulus: The 65 proteins contained in the overlap showed enrich-

ment of GO biological processes ‘regulation of I-jB kinase/NF-jB

signaling’ (P-value 4 � 10�40, GO:0043122) as well as ‘activation of

innate immune response’ (P-value 1 � 10�33, GO:0002218), congru-

ent with the known role of TNFa in the induction of inflammatory

responses via the NFjB signaling cascade (Pober, 2002). Enrichment

analysis for the TGF-b and tissue comparison datasets also yielded

results congruent with the underlying biology (see supplementary

methods and supplemental files 1 and 2).

3.3 LEAN unveils striking cellular changes in cerebral

cavernous malformations
We applied LEAN to Cerebral Cavernous Malformations (CCM), a

condition characterized by vascular malformations of the central

nervous system that lead to cerebral hemorrhages. Familial CCM

(about 20% of CCM patients) occurs as a condition with autosomal

dominant transmission mode caused by loss-of-function mutations

in one of the 3 CCM genes: CCM1/KRIT1, CCM2/Malcavernin/

OSM and CCM3/PDCD10 (Bergametti et al., 2005; Denier et al.,

2004; Laberge et al., 1999; Liquori et al., 2003).

The CCM proteins show no sequence homology and are scaffold

proteins without catalytic activity. They have been shown to interact

in a ternary complex using CCM2 as a hub. A number of studies

have provided insights into CCM protein functions, including cyto-

skeletal remodelling, cell–cell junction homeostasis, lumen forma-

tion and polarization (for a review see (Faurobert and Albiges-Rizo,

2010)). Previously, three inducible, endothelial-specific CCM mouse

models (iCCM1-3) (Boulday et al., 2011) have been developed.

Inactivation of any of the CCM genes in these mouse models results

in the development of vascular lesions strikingly mimicking human

CCM lesions. In these mice, as well as in CCM patients, lesions de-

velop in the venous but not in the arterial beds.

To investigate the mechanisms underlying the development of

CCM lesions, we performed microarray analyses (for details see sup

plementary methods) to characterize and compare the transcrip-

tomic profiles of venous tissue of iCCM1-3 and control mice. As the

CCM proteins are known to be scaffolding proteins without cata-

lytic activity, the CCM-inactivation phenotype can be assumed to be

mediated by faulty or abolished protein-protein interactions and

thus presents an interesting case for LEAN.

To this end, gene-by-gene analysis of differential expression be-

tween CCM-invalidated and control mice was carried out and re-

sulting non-multiple-testing adjusted P-values were subjected to

LEAN using the high interaction confidence STRING network

(interaction confidence score � 0:9). This resulted in 68, 211 and

143 local subnetworks significantly enriched for deregulation

(LEAN P-value � 0:05) in the comparison of veins invalidated for

CCM1, CCM2 and CCM3 versus control tissue, respectively (cor-

responding lists of local subnetwork centers are supplied in file

Supplement3). Since features of the disease are similar independently

A

B

Fig. 4. Overlap of significant gene/local subnetwork center lists detected on

publicly available datasets: (A) Limma gene-by-gene analysis, (B) LEAN.

Numbers inside cells reflect absolute overlap, color corresponds to Jaccard

index (JI). Information about the perturbed pathway and used platform tech-

nology are shown as color strips on the top and right of the heat map, re-

spectively. Hierarchical complete linkage clustering of the datasets based on

Euclidean distance of Jaccard index profiles is represented as a dendrogram
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of the CCM gene ablated (in patients as well as in the mouse mod-

els), we examined the subnetworks common to the three groups to

determine shared targets and signaling pathways.

Two candidate subnetworks, centered on Coagulation-factor

VIII (FVIII) and Von Willebrand Factor (VWF), respectively, were

the only ones detected in all three of the CCM invalidation experi-

ments. Applying the approach on a medium-confidence version of

the STRING database (interaction confidence score � 0:4) failed to

identify FVIII, but confirmed significance of the VWF candidate sub-

network. Among the other tested subnetwork methods, only the

jActiveModules greedy search strategy led to a result containing

VWF, but only if a suitable setting of five or more top-scoring net-

works were used, which results in a large set of at least 82 unpriori-

tized genes (see Supplementary methods and Supplementary Table

S2 for details).

Both FVIII and VWF are mostly known for their role in hemosta-

sis. Given the above results and the fact that both the biological

functions and the local subnetworks of VWF and FVIII overlap sig-

nificantly, we focused our further evaluations on VWF. Figure 5 dis-

plays the most significantly deregulated genes in the local

subnetwork around VWF (genes showing an input P-value � pk� in

at least one of the three CCM mouse models). They are mainly com-

posed of genes involved in angiogenesis, blood coagulation and

hemopoiesis pathways (GO biological process terms: GO:0001525,

GO:0007596 and GO:0030097 respectively).

VWF itself is a well-established endothelium-expressed gene (for

a review see (Lenting et al., 2015)) and involvement of VWF in mod-

ulating angiogenesis has been recently proposed (Starke et al.,

2011). Using a classical gene-by-gene analysis of our transcriptomic

data, ablation of neither one of the three CCM genes lead to VWF

mRNA differential expression. GSEA analysis applied to the CCM

data did not find any significant gene set in all three CCM invalida-

tions using the MSigDB GO gene set database or the MSigDB cura-

ted gene set database (data not shown). Note also that the above

mentioned three main biological processes present in the neighbor-

hood of VWF did not achieve significant enrichment under any of

the CCM invalidations according to GSEA. A targeted single enrich-

ment test using a single manually compiled list of 56 known VWF-

related genes, however, detected significant deregulation of VWF-

related genes (hypergeometric test P-value ¼ 5 � 10�5; for the list of

56 genes see file Supplement 4).

These results pointed towards a potential post-transcriptional

modification of VWF induced by loss of CCM. Since VWF is

synthesized mainly by endothelial cells, we checked for the endothe-

lial VWF protein localization using a VWF-specific fluorescent stain-

ing on mouse tissues. In normal vessels of the brain and the retina,

we detected small dots of VWF, consistent with normal localization

of stored VWF within Weibel-Palade bodies in endothelial cells.

Strikingly, at the endothelial surface of cerebral and retinal CCM le-

sions in CCM2-ablated animals, the dotted staining was replaced by

abundant long filaments, so-called VWF strings (Fig. 6). Normal

vessels in CCM2-ablated animals showed comparable VWF local-

ization than in control tissues. Altogether, our results clearly con-

firmed a dysfunction of the VWF pathway in vivo in the CCM

mouse model.

4 Discussion

Despite continuous advances in omics data analysis methods, the in-

terpretation of genome-wide measurements is still difficult in the

face of a missing framework of knowledge in which the observed

changes can be interpreted. As noted previously, single-gene level in-

terpretation of transcriptomic datasets has a number of major limi-

tations (Subramanian et al., 2005): Reduced sensitivity due to

multiple testing, lacking power to detect slight, but concerted

changes within molecular pathways, and poor reproducibility of

biological results. To overcome these limitations, methods such as

GSEA focus on predefined biological pathways instead of single

genes, which is thought to increase detection sensitivity and allow

easier interpretation of results. Limiting the analysis to predefined

pathways, however, precludes detection of novel, previously un-

known functions.

Network-based models combine increased sensitivity with the

possibility to discover novel functions. The interpretation of subnet-

works returned by current network-based models, however, poses a

number of challenges: Firstly, validating the involvement of a de-

tected subnetwork in the mechanisms underlying a studied disease is

rarely straightforward. Experimental validation typically requires

experimental observation or yet better activation/suppression of its

activity. Such validation is feasible for single genes and thus also for

mechanistically well-understood biological pathways by using a

known upstream gene as a proxy. For predicted subnetworks, how-

ever, selecting a proxy gene is not straightforward, given the large

size of many such predictions (e.g. the 82 or more genes returned by

jActiveModules on the CCM data). Secondly, the interpretation of

predicted subnetworks is complicated by the fact that most

Fig. 5. Local subnetwork centered on VWF: The first k� genes contributing most to the significance of the VWF local subnetwork in the three CCM invalidation

mouse models are shown as gene networks. Genes are represented as nodes with node border color indicating differential expression. Edges represent func-

tional similarity between pairs of genes with a STRING interaction confidence score � 0:9. Interactions with VWF have been omitted for better visibility.

Annotation of proteins with the three GO biological process terms ‘angiogenesis’, ‘blood coagulation’ and ‘hemopoiesis’ are represented by correspondingly

labeled colored frames
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subnetwork methods do not indicate statistical significance of a de-

tection. Moreover, used subnetwork scores are oftentimes not com-

parable between different experiments. This additional degree of

uncertainty reduces the practical utility of such methods. Thirdly,

many approaches have limited practical value due to additionally

required input data, non-obvious choices of input parameters, de-

pendency on commercial software libraries and/or impracticably

long running times (Supplementary Table S2 gives an overview).

4.1 The LEAN approach
As other subnetwork-based models, and in contrast to classical gene

set enrichment analysis, LEAN combines the ability to detect activ-

ity of previously defined pathways with the potential to find active

local subnetworks representing biological functions not contained in

pathway databases. Activity of known pathways can be detected by

LEAN since functional interaction networks—especially when re-

stricted to high-confidence interactions—represent similar know-

ledge as pathway databases, albeit in a different form. In contrast to

other subnetwork-based models, however, the simple LEAN subnet-

work model offers the center gene as an evident starting point for

further exploration of statistical subnetwork dysregulation.

Importantly for practical applications, the simplified local subnet-

work model allows the computation of statistically valid P-values

for all possible local subnetworks in a short time.

The application of LEAN to different public datasets and to tran-

scriptome changes measured in the context of the genetic disease

CCM indicate that, despite the simplification of the local subnet-

work model, LEAN is capable of detecting previously described

pathways within the functional interaction network. One reason for

this may be that STRING represents a previously described pathway

by adding evidence of functional interaction to all possible pairs of

proteins contained therein.

The diversity of evidence represented in functional interaction

databases poses a challenge for any subnetwork method. With rap-

idly advancing technology, the number of known functional

interactions across multiple contexts increases, making it unlikely

that all known functional interactions of any given protein are

involved in the interpretation of any given set of experimental data.

This, together with experimental false-positives, can statistically be

interpreted as noise that can be expected to dilute the statistical sig-

nificance of the few relevant interactors. Just as GSEA, LEAN

guards against this problem through a statistic that emphasizes the

role of the most significant neighborhood P-values. The use of exact

binomial (instead of Kolmogorov-Smirnoff) statistics ensures sensi-

tivity even in the case of very few significant P-values across a wide

range of parameters.

A further interesting property of LEAN is its increased detec-

tion sensitivity for genes that participate in multiple dysregulated

pathways, since signals from all such pathways will contribute to

the LEAN P-value of the corresponding local subnetworks. A good

example of this behavior is VWF, whose local subnetwork covers

genes involved in angiogenesis, hemopoiesis and blood coagula-

tion. When analyzed as a set of known pathways, the transcrip-

tomic signals from these pathways each fail individually to meet

statistical significance, but the combination of their signal in

LEAN makes the joint signal detectable under all three CCM

invalidations.

4.2 Dependence on pathway compactness
The local subnetwork model is clearly a very restricted representa-

tion of biological pathways. This fact, however, does not appear to

restrict LEAN’s capability to detect important biological signals.

LEAN outperformed a reference method using the common uncon-

strained subnetwork model on simulated pathways which had a

significantly larger average graph radius (2.68, with SEM of

0.078) than the radius of 1 of the local subnetwork model. As ex-

pected, we detected a negative correlation between graph radius

and LEAN performance in a more detailed subnetwork simulation

study (see Supplementary Fig. S1). LEAN did, however, still per-

form well (average AUC of 0.8) on simulated subnetworks with a

radius of 4. The results obtained on publicly available datasets

equally indicate that LEAN is capable of detecting biologically

plausible pathways and we have no reasons to assume that these

pathways represent subnetworks with exceedingly small network

radii.

4.3 LEAN results on CCM data
LEAN analysis, applied to CCM transcriptomic data, detected two

consistently deregulated local subnetworks in all three CCM groups.

One of these local subnetworks was centered on VWF, which was

not shown to be deregulated itself at the transcription level using

gene-by-gene analysis. The hypothesis of a higher-level dysfunction

of the subnetwork around VWF was validated in vivo in our CCM

mouse model. Indeed, while a punctate VWF staining was detected

in cerebral and retinal vessels from control animals as well as in nor-

mal vessels of CCM2-ablated animals, an accumulation of ultra-

large VWF (UL-VWF) multimers was observed on the surface of

iCCM2 lesions. Observation of such ultra-large vWF multimers

in vivo is very unusual since they are proteolyzed very rapidly in nor-

mal conditions.

The biological question raised by our study is how this VWF dys-

function relates to the CCM pathogenesis. Our first hypothesis is

that VWF strings observed at the surface of the CCM lesions are a

consequence of an endothelial injury occurring early on during the

lesional process. Indeed, it is important to note that CCM

A B

C D

Fig. 6. VWF-specific fluorescent staining of mouse tissues shows a dysfunc-

tion of the VWF pathway in vivo in the CCM mouse model: The first row

shows cerebral sections, the second row whole mount retinas; The first col-

umn shows control tissues, the second column tissues from CCM2-ablated

animals. Vessels are shown in red (PECAM/isoB4-staining), VWF in green and

nuclei in blue. Scale bars: 10 mm (A,B), 50mm (C,D)
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transcriptomic analysis, used as inputs for LEAN, was performed on

vessels prior to CCM lesion development.

Another possibility is that the observed VWF strings play a func-

tional role in pathogenesis. UL-VWF multimers were reported

in vivo under several pathological conditions. VWF strings were de-

tected in human malignant melanoma tissues anchored at the micro-

vessel surface of the tumor, promoting cancer progression (Bauer

et al., 2015). Accumulation of UL-VWF multimers has also been re-

ported in patients affected by a thrombotic disorder called

Thrombotic Thombocytopenic Purpura (TTP). In the context of

CCM, VWF strings could thus promote the formation of thrombi

sometimes observed in human CCM caverns.

In the past few years, apart for its role in hemostasis, VWF has

been implicated in regulating angiogenesis, smooth muscle cell pro-

liferation and blood-brain-barrier (BBB) properties (Suidan et al.,

2013) (for a review, see (Luo et al., 2012)). VWF -/- mice showed a

reduction of BBB permeability, associated with an up-regulation of

Claudin-5 expression, a major component of the endothelial tight

junctions. In human CCM lesions, defective endothelial tight junc-

tions have been reported. We also showed in iCCM2 mouse models

that tight junction proteins Claudin-5 and ZO.1 were strongly

reduced specifically in the endothelium lining the lesions. Whether

abundant VWF strings attached to the lesion surface are involved in

the endothelial junction dismantling is so far unknown.

Regardless of the fact that the role of VWF pathway dysregula-

tion remains to be clarified, the present study, by the use of the

LEAN method, pointed to an entirely unexpected VWF dysfunction

that was confirmed to be relevant for the CCM disease.

4.4 Applicability to other types of genomic data
Here, we studied the application of LEAN to transcriptomic data,

but we believe that LEAN could equally well be applied to genomic

measurements of other biological states, as we see no reason to be-

lieve that the local subnetwork model represents an important facet

of pathway activity exclusively on the transcriptomic level.

Interesting application scenarios would include levels of genetic vari-

ants (identification of mutational ‘network hotspots’), proteomics

(‘hotspots of proteomic activity’) or integrated datasets comprising

multiple data sources. We note that LEAN also applies to incom-

plete data, as typical in the case of shotgun proteomics: Network

nodes without information can just be ignored in the computation

of the LEAN statistics.

5 Conclusions

We introduced here LEAN, an efficient, exact, exhaustive and

parameter-free method that complements single-gene analysis and

circumvents common problems in gene set enrichment and

network-based analysis through a restricted local subnetwork

model. In our evaluation on simulated data, LEAN–despite its re-

stricted subnetwork model–performs better than most other tested

methods. Applied to the transcriptome of murine models for the

genetic disease CCM, LEAN predicted the involvement of VWF,

which had neither been implicated in the pathophysiology of the

disease, nor shown detectable deregulation on the mRNA level.

Experimental evaluation of VWF protein in vivo confirmed abnor-

mal VWF conformation and localization in the mouse model of

CCM disease.
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