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Abstract: Mating behavior divergence can make significant contributions to reproductive isolation
and speciation in various biogeographic contexts. However, whether the genetic architecture
underlying mating behavior divergence is related to the biogeographic history and the tempo and
mode of speciation remains poorly understood. Here, we use quantitative trait locus (QTL) mapping
to infer the number, distribution, and effect size of mating song rhythm variations in the crickets
Laupala eukolea and Laupala cerasina, which occur on different islands (Maui and Hawaii). We then
compare these results with a similar study of an independently evolving species pair that diverged
within the same island. Finally, we annotate the L. cerasina transcriptome and test whether the QTL
fall in functionally enriched genomic regions. We document a polygenic architecture behind the song
rhythm divergence in the inter-island species pair that is remarkably similar to that previously found
for an intra-island species pair in the same genus. Importantly, the QTL regions were significantly
enriched for potential homologs of the genes involved in pathways that may be modulating the
cricket song rhythm. These clusters of loci could constrain the spatial genomic distribution of the
genetic variation underlying the cricket song variation and harbor several candidate genes that merit
further study.
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1. Introduction

Behavioral divergence can produce significant reproductive barriers in animals and can be an
important force driving speciation [1–5]. However, the genetic mechanisms leading to behavioral
divergence, suppression of interspecific recombination, and ultimately the origin of a new species
remain poorly understood [3,6–9]. One way to advance our understanding of the speciation process
and the evolution of behavioral divergence is to describe and compare the genetic architectures—the
number of genes, their effect size, and their genomic distribution—underlying behavioral isolation in
replicate species pairs that diverge in the same phenotype. In doing so, we can gain insight into the
genetic causes and consequences of divergence in important speciation forces and phenotypes.

The traits involved in behavioral isolation are often quantitative, and the divergence in these
traits is usually caused by many changes of small effect [3,6]. However, it has been argued that
the type of genetic architecture, specifically whether phenotypic change is the result of polygenic,
additive alleles (Type I) or of major effect alleles with strong epistatic modifiers (Type II) [10], can be
informative about the tempo and mode of speciation [11,12]. All else being equal, a genetic architecture
characterized by few alleles of major effect would allow for rapid phenotypic evolution, because
the phenotypic effect of a single mutation is expected to be larger; theoretical models for speciation
by sexual selection often assume such simple genetic architectures [13–16]. Moreover, it has been
suggested that Type II architectures may be lynch pins in the radiations involving founder effects [11],
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such as those accompanying the colonization of archipelagos, because of the volatile evolutionary
effects of epistatic interactions under fluctuating demography; founder effect speciation has received
mixed support theoretically and empirically [17]. Importantly, empirical studies show that divergent
sexual traits, which can be an important cause of rapidly evolving behavioral isolation [4], are often
associated with Type I genetic architectures [3,18], without a disproportionate contribution from
sex-linked loci [3,19] (albeit, the role of X-effects in the evolution of secondary sexual characters
remains somewhat contentious, e.g., [20]). A Type I architecture would allow for gradual (but not
necessarily slow) and orchestrated divergence of male and female sexual traits due to the predictable,
biometrical action of genetic variants on diverging traits [21,22]. However, few studies have directly
compared the genetic architecture of the behavioral barriers arising in different biogeographic contexts,
for example, by addressing the question of whether the divergence in sexual signaling phenotypes
between replicate species pairs diverging within the same island or on different islands is associated
with similar genetic architectures.

Other genomic influences may also affect the evolution of reproductive barriers. The number
of independent genetic factors and the rate of the phenotypic evolution can be strongly affected
when causal genes cluster in specific genomic regions. Fisher [23] suggested that genes associated
with the gradual adaptive change of complex phenotypes will become physically linked over time.
He imagined that this linkage would maintain the identity of groups with complex phenotypic
differences (e.g., divergent populations and dimorphic sexes) by reducing the disruptive effects of
recombination in the region with which the phenotype is associated. Indeed, linkage disequilibrium
within tight clusters of causal genes can be maintained by low recombination, for example, because of
chromosomal inversions [24]. Additionally, when populations diverge in the face of gene flow, the
interacting effects of the gene flow and divergent selection may favor co-adapted gene complexes to
become linked in regions of low recombination [25], as may be the case in, for example, stickleback [26].
Alternatively, (tight) physical linkage of multiple genes that jointly affect the same phenotype
could also constitute a gene cluster [27]. The involvement of gene clusters has been implicated
in the rapid evolution of (co)adaptive phenotypes in plants and animals [28], including courtship
behavior [29–32]. Such clusters allow for orchestrated adaptive responses by reducing recombination
between co-adaptive alleles and may be an important mechanism underlying the natural variation in
complex traits, such as altruistic signals (i.e., ‘green beard’ phenotypes) [33], behavior, and co-evolving
sexual signals and preferences [22,23,34].

Here, we examine the genetic basis of sexual trait divergence in the rapidly diversifying, endemic
Hawaiian cricket genus, Laupala. We test whether the biogeographic context of speciation can predict
the genetic architecture of courtship song divergence and whether the distribution of the causal loci
is potentially constrained by the clustering of functionally related genes. Differentiation in acoustic
sexual signaling behavior appears to play a central role in Laupala speciation, a group with one of
the highest speciation rates documented for arthropods [35]. Species are endemic to single islands
and show striking differentiation in male song and female (song) preference [35,36]. Like most other
cricket species, the male produces a song by rubbing together its specialized forewings. The songs of
Laupala crickets are relatively simple and consist of trains of pulses, each pulse produced by a single
closing movement of the wings. Evidence suggests that a critical trait used in female mate choice is the
repetition rate of these pulses (i.e., the pulse rate [37,38]), which is highly heritable and constitutes one
of the major sources of phenotypic divergence among the Laupala species [39–43].

So far, we have not been able to pin cricket song rhythm variation down to individual genes.
However, the neurobiology of the cricket song generation is generally well understood, involving
contributions from descending brain neurons, specialized motor neurons in the thorax called central
pattern generators, and related neuromuscular modulators such as ion channels and synaptic
targets [44–48]. Therefore, other organisms with known genetic and neurological pathways that
drive sex-specific and (acoustic) courtship behaviors can shed light on the potential mechanisms
at play in Laupala song divergence. In Drosophila melanogaster, sexual dimorphism in the nervous
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system, driven by the interaction between the transcription factors doublesex and fruitless, provides a
developmental foundation for the courtship song [49,50]. However, neither of these genes contributes
to interspecific differences in song rhythm [51]. Other genes, including slowpoke and cacophony, have
been implicated in species and population differences across Drosophila species: these genes control
the properties of the ion (calcium and potassium) channels at neuromuscular junctions [52–55] and
can transform the output of neuronal networks including central pattern generators [56]. Therefore,
we may expect similar neuromodulators as well as genes involved in the synaptic transmission at the
neuromuscular junctions and rhythmic behavior to contribute to variation in song rhythm in crickets.

The first goal of this study is to illuminate the genetic architecture of sexual trait divergence
in light of different geographic modes of speciation. Despite rapid phenotypic divergence between
Laupala cerasina and Laupala eukolea following the colonization of a new island [57], evidence from a
previous biometric study shows that multiple genetic factors (~5) underlie the pulse rate variation
between these species [43]. We build on this knowledge using quantitative trait locus (QTL) mapping
to examine the number, effect size, genomic distribution, and interactions of the loci contributing
to the interspecific pulse rate variation between L. cerasina and L. eukolea, in order to characterize
the genetic architecture as polygenic and mostly additive (Type I), or one of major effect loci with
strong epistasis (Type II). We compare these results to the polygenic genetic architecture known from
the independently evolving species pair, Laupala kohalensis and Laupala paranigra, which diverged in
pulse rate within a single island, that is, Hawaii [35,36,58]. Although L. cerasina (Hawaii Island) likely
arose as a consequence of an interisland speciation event from the ancestral source range (Maui) of
L. eukolea [57], we hypothesize a Type I genetic architecture, based on previously published biometrical
results [43].

The second aim of this study, inspired by theoretical predictions [23] as well as recent findings
on the genetics of mating behavior [29–31], is to test the hypothesis that functionally related genes
cluster in QTL regions. Using genome-wide, functional genetic data from both sexes, and across
ontogenetic stages and reproductive states, we assemble and annotate the L. cerasina transcriptome to
assign putative gene function to loci in the linkage map, and perform gene set enrichment analysis.
Based on neurobiological insights into cricket song generation and neurogenetic insight into song
variation in Drosophila, we expect QTL regions to be enriched for genes with putative functions in
neuromuscular processes associated with song production, rhythmic behaviors, or mating behavior.
This would suggest that ‘pools’ of functionally related genes associate with QTL regions, as opposed
to QTL regions harboring single genes.

2. Materials and Methods

L. eukolea nymphs were collected in 2012 in Kipahulu Valley on Maui at Ginger Camp (20◦41′60.000”
N; 156◦5′18.000” W) and Palikea Peak (20◦40′20.640” N; 156◦4′5.160” W); L. cerasina were collected in
Kalopa State Park (20◦2′13.200” N; 155◦26′36.960” W) on Hawaii Island. The animals were kept in the
lab in plastic cups under constant temperature (20 ◦C) and humidity, and were provided cricket chow
(Fluker Farms, Port Allen, LA, USA) ad libitum, as well as substrate to lay eggs. Males and females
were kept separately to ensure the virginity of all animals. They were phenotyped between three and
ten weeks after the final molt, during which time the sexual receptivity is maximized in Laupala [42].
Two families of first generation interspecific hybrids (HC1 and HC2) were each generated by mating a
L. cerasina male with a L. eukolea female. Several males and females from each family (14 full sib pairs
from each of the families) were used to obtain the second generation hybrids.

The male songs were recorded following the methods in Shaw (1996) [39]. A single recording
for each individual (L. cerasina, n = 24; L. eukolea, n = 16; F2, n = 230) was made between 10 a.m.
and 4 p.m. Virgin, adult males were recorded individually in a plastic container with screen covers
in an anechoic and temperature-controlled chamber, using a SONY Pro Walkman cassette recorder
and SONY microphone. The songs were then digitized using SOUNDSCOPE/16 (GWI Instruments,
Cambridge, MA, USA) at 44.1 kHz to generate an oscillogram displaying trains of pulses (singing
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bouts). We estimated the pulse rate by averaging the inverse of five pulse periods (measured from the
onset of a pulse to the onset on the next pulse) measured from a single singing bout.

We extracted DNA from whole adult male crickets using the DNeasy Blood and Tissue Kits
(Qiagen, Valencia, CA, USA). The genotype-by-sequencing library preparation and sequencing were
done in 2014 at the Genomic Diversity Facility at Cornell University following [59]. The Pst I restriction
enzyme was used for sequence digestion and was DNA was sequenced on the Illumina HiSeq
2000 platform (Illumina Inc., San Diego, CA, USA) with 100 bp single end reads.

The reads were trimmed and demultiplexed using Flexbar v2.5 [60] and then mapped to the
L. kohalensis de novo draft genome using Bowtie2 v2.2.6 [61] with default parameters. We then
called single nucleotide polymorphisms (SNPs) using two different pipelines, The Genome Analysis
Toolkit v3.6.0 (GATK) [62,63] and FreeBayes v0.9.13 [64]. For GATK we used individual BAM files to
generate gVCF files using ‘HaplotypeCaller’, followed by the joint genotyping step ‘GenotypeGVCF’.
We then evaluated the variation in SNP quality across all of the genotypes using custom scripts in
R v3.3.1 [65] to determine the appropriate settings for hard filtering using the following metrics,
based on the recommendations for hard filtering [66]: quality-by-depth, Phred-scaled p-value using
Fisher’s exact test to detect strand bias, root mean square of the mapping quality of the reads,
u-based z-approximation from the Mann–Whitney rank sum test for mapping qualities, u-based
z-approximation from the Mann–Whitney Rank Sum Test for the distance from the end of the read for
the reads with the alternate allele. For FreeBayes, we called variants from a merged BAM file using
standard filters. After the variant calling, we filtered the SNPs using ‘vcffilter’, a Perl library part of
the VCFtools package [67] based on the following metrics: quality (>30), depth of coverage (>10), and
strand bias for the alternative and reference alleles (SAP and SRP, both >0.0001). Finally, the variant
files from the GATK pipeline and the FreeBayes pipeline were filtered to contain only biallelic SNPs
with less than 10% missing genotypes, using VCFtools v0.1.15. We retained all of the SNPs that had
identical genotype calls between the two variant discovery pipelines. We then pruned our data further
to contain only ancestry informative markers (i.e., grandparents are homozygous for alternative alleles),
one SNP per scaffold, markers with no or only limited segregation distortion from the expected 1:2:1
(autosomal) and 1:1 (X-linked) ratios (χ2 associated q-value ≤ 0.05, i.e., a 5% false discovery rate, [68]),
and markers with fewer than 99% of their genotypes in common with other marker loci (i.e., exclude
one of each pair of marker loci with identical genotypes for all individuals).

For each of the hybrid cross families, HC1 and HC2, we created linkage maps separately using
MapMaker v3.0b [69], taking the following three steps. Firstly, markers were grouped into linkage
groups using the ‘group’ command with the ‘default linkage criteria’ set to 4.0 LOD (logarithm of
the odds) and 35 centimorgan (cM). Secondly, for each group, a subset of the marker passing a series
of quality criteria (i.e., informative, well-spaced markers) were ordered using the ‘order’ command.
The informative markers were those with no missing genotypes and that were more than 2.0 cM apart
from other markers. The marker order was compared with regression mapping in JoinMap v4.0 [70]
and the inconsistencies were resolved by minimizing the stress (in JoinMap) and map length, and
maximizing the likelihood (in MapMaker). Thirdly, the remaining markers were added with the ‘build’
command and the order was verified using the ‘ripple’ command. At this step, the markers were
added to the map, satisfying a log-likelihood threshold of 4.0 for the positioning of the marker (i.e., the
assigned marker position is 10,000 times more likely than all of the other positions), then adding the
remaining markers at a log-likelihood threshold of 3.0, followed by a final addition at a log-likelihood
threshold of 2.0. Subsequently, any unincorporated markers were discarded. To determine the final
marker order we used the ‘ripple’ command with a window size of six markers and a log-likelihood
threshold of 2.0. The arbitrary orders in marker dense regions (i.e., orders with similar likelihoods)
were resolved using information from both HC1 and HC2 maps, choosing the order that maximized
the likelihood and minimized the map length (measured in cM) for both cross families.

Finally, we merged the separate HC1 and HC2 maps using the R package LPmerge v1.6 [71].
LPmerge uses linear programming to combine two maps from independent populations, based on



Genes 2018, 9, 346 5 of 21

the similarities in the marker order. Incongruent marker orders between HC1 and HC2 (i.e., linear
inequalities) were solved based on the weight assigned to each independent linkage map. The solution
also depended on the size of the interval, K, in which the conflicting markers were detected and
re-ordered (or removed if no solution was found, removing a constraining marker improved the linear
equality). For each linkage group, separately, we varied the weighting of the two linkage maps and the
interval in which the linear inequality was resolved (K) in order to find the consensus map associated
with the lowest mean and the variance of the root-mean-squared error between the consensus map
and the original maps.

We used composite interval mapping (CIM) and multiple-QTL models (MQM) in the R/qtl
v1.42 [72] package to detect and locate QTL and to calculate the effect sizes independently for HC1,
HC2, and for the merged (consensus) map. We first performed a single QTL scan using the ’scanone’
function with the multiple imputation method [73] and the Haley–Knot regression [74]. For CIM, we
then ran a model using the Haley–Knot regression in 20 cM windows, with the number of included
marker covariates dependent on the number of QTL detected in the single QTL scan. We then
performed a two-dimensional (2D) QTL scan using the Haley–Knott regression to detect pairs of
QTL and the interaction effects among QTL and permuted the two-dimensional QTL to establish the
penalized likelihood criteria for the main and interaction effects. We subsequently built a multiple
QTL model, starting with the QTL, with the highest LOD score in the single QTL scan, refining
the position using ‘refineqtl’, and then scanning for additional QTL. We continued adding QTL
(followed by refining their position) until an additional QTL did not improve the LOD score of the
model beyond the penalized LOD score threshold for the main effects at the α = 0.05 level. After the
addition of each QTL, we checked for potential QTL interactions that would improve the multiple QTL
model beyond the (heavy) penalized LOD score threshold for interaction effects at the α = 0.05 level.
Finally, we estimated the effect sizes by fitting the QTL model and using the drop-one-term analysis.
In the merged map, we included the cross type as a covariate in all of the steps described above.

To estimate the true number of genetic loci underlying the pulse rate variation based on the QTL
results, we use the method of Otto and Jones [75]. We estimated the minimum detectable QTL effect
size using Equation (11) in Otto and Jones [75], specifying amin as the smallest QTL, we detected in the
QTL scan (for HC1, HC2, or for the combined map). We then used Equation (6) in the work of Otto and
Jones [75] to estimate the true number of loci. The calculations were done using custom functions in R.

To look for candidate genes in the QTL regions and to test for the enrichment of specific gene
functions, we first assembled the transcriptome to obtain information about the putative gene function
of the loci within the regions of interest. First generation, lab-reared, whole L. cerasina individuals
were used for RNA-sequencing and transcriptome assembly. A total of ten samples were stored in
RNAlater, following the manufacturer’s recommendations (Qiagen, Valencia, CA, USA), and were
pooled by sex prior to sequencing, as follows: four adult males (two sampled in the morning and two
sampled in the evening, one of which was sampled immediately after mating), four adult females
(likewise, two were sampled in the morning and two sampled in the evening, one of which was
sampled immediately after mating), and a juvenile male and female. We sampled both of the sexes, the
adult and juvenile life stages, and individuals of variable mating status to account for the differential
expression among such individuals, specifically when the genes are only expressed in one of the sexes
or only in the adults or juveniles. The tissue was homogenized using sterilized forceps in RNAlater.
The RNA was extracted using the RNAeasy kit (Qiagen, Valencia, CA, USA). A quality check was
done using a NanoDrop spectrophotometer (Thermoscientific, Wilmington, DE, USA) and the Agilent
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) [76]. The samples were then sequenced
on a single lane on the Illumina HiSeq 2000 platform, with 50 bp paired-end reads. The reads were
processed using Fastq-mcf from the Ea-Utils package [77] with the parameters -q 30 (nucleotides from
the extremes of the read with qscore below 30 were trimmed) and -l 30 (reads with lengths below
30 bp discarded). The read duplications were removed using PrinSeq v0.20.4 [78] and the reads were
corrected using Musket v1.0.8 [79] with the default parameters.
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We assembled the L. cerasina transcriptome using Trinity’s v.2.4.0 [80] genome-guided assembly
pipeline. We used the L. kohalensis reference genome [81] and a maximum intron size cut-off of 5000 bp.
We first created a HISAT v4.8.2 [82] index of the genome and then aligned the male and female
paired-end reads to the genome using the default settings. We sorted the resulting alignment SAM file
and converted it to BAM format using Samtools v1.5 [83]. We then did the genome-guided assembly
using Trinity and checked the quality of the assembly by calculating the N50 statistics, mapping the
male and female reads back to the transcriptome using Bowtie2, and searching for conserved eukaryote
and arthropod genes from the BUSCO database v.2.0.1 [84]. We then mapped the reads back to the
transcriptome using GMAP v 2017-05-08 [85] and BLAT v35x1 [86], and used custom R scripts to
retain a single best hit scaffold for each transcript, based on the coverage, identity, and number of
matched bases.

We checked for and removed contaminants using NCBI’s VecScreen, using the UniVec Core
database and the recommended BLASTn parameter values [87]. We then functionally annotated
the transcripts in three steps using BLAST [88,89], as follows: Firstly, we matched our transcripts
against the D. melanogaster proteome using an e-value cut-off of 1 × 10−5. Any transcripts that were
not assigned a putative D. melanogaster homolog were matched (at the same threshold) with the
Uniprot/Swissprot data base [90], limiting our search to arthropod proteins. Finally, we matched any
remaining transcripts after the second step against the non-redundant protein database at NCBI, with
an e-value cut-off of 1 × 10−5 and limiting our search to animal proteins.

We then used hmmer2go v3.1 (https://github.com/sestaton/HMMER2GO) to estimate the open
reading frames (ORFs) and translated only a single, longest ORF per transcript. We annotated the
retaining protein sequences using InterProScan v5 [91,92]. We imported the transcriptome FASTA
file, the XML output from the BLAST searches, and the InterPro results into Blast2Go v4.1.9 [93].
We recovered the original BLAST best hit and ran the Gene Ontology mapping using the default
settings. We then merged all of these results and ran the Annotation tool.

If the genes controlling pulse rate variation in Laupala are clustered in specific genomic regions
rather than distributed randomly across the genome, we expect the QTL regions to contain several
(putative) causal genes for interspecific pulse rate variation. We first used topGO v2.24.0 from R’s
BioConductor v3.3 environment [94] for the gene set enrichment analysis. We combined all of the
transcripts matching the scaffolds within the peak ±1 LOD interval for each of the seven QTL peaks in
the consensus linkage map (i.e., scaffolds with a marker linked to pulse rate variation at a likelihood
of no less than the peak LOD score minus 1). We then used the parent-child p-value correction [95]
and an additional false discovery correction [68] with the ‘p.adjust’ function in R (the genetic ontology
(GO) terms were considered enriched at a false discovery rate of 10% or less). As these analyses
are potentially confounded by pseudo-replication in the transcriptome assembly (e.g., because of
varying occurrences of exonic splice sites and transcription start sites), we perform the above analysis
after collapsing all of the transcripts that were mapped to the same scaffold and were considered
a putative alternative splice form based on their annotations (i.e., transcripts that have the same
predicted gene product, are annotated with different isoforms of the same gene or partial and full hits
of the same gene). For comparison, we also conduct the GO enrichment analysis before collapsing
the pseudo-replicates. Finally, we manually inspected the putative gene function in the QTL regions
by examining the experimentally proven biological and molecular functions for the highest ranked
BLAST annotations on FlyBase [96].

3. Results

3.1. Linkage Mapping

We mapped a total of 298 and 416 markers for HC1 (n = 94) and HC2 (n = 136), respectively,
to eight linkage groups corresponding to the seven autosomes and the X-chromosome in Laupala
(Figure S1). The map lengths were 821.2 cM and 734.1 cM, corresponding to 2.72 cM and 1.76 cM,

https://github.com/sestaton/HMMER2GO
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per marker, respectively. Merging the maps resulted in 508 unique markers at a total map length of
776 cM (1.52 cM/marker). The maps are broadly similar (in order and length) across the two mapping
families. One linkage group, LG1, shows substantially higher recombination rates among the markers
in HC1 relative to HC2 (Figure S1), which may be due to sampling variance, structural variation, or
both. Comparing the marker order on LG1 with the homologous LG in two interspecies crosses [81]
revealed that this region is inverted in the map for HC1 (Figure S2), suggesting that a large pericentric
inversion is segregating in either L. cerasina, L. eukolea, or both. However, without further evidence
from, for example, long-read sequencing data, we treat this inversion as putative.

3.2. QTL Mapping

L. cerasina and L. eukolea males have non-overlapping, normally distributed pulse rate distributions
(Figure 1). The mean pulse rate difference was 1.66 pulses per second (pps; Table 1). The F2 song
phenotype was normally distributed and the means of the HC1 and HC2 progeny did not differ
significantly (t = −1.8046, df = 228, p = 0.0724). Considering the joint F2 distribution, the slow tail of
the distribution partially overlapped with the L. cerasina phenotypic distributions, although the fast
tail did not overlap with the L. eukolea phenotypic distribution (Table 1, Figure 1).
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Table 1. Phenotypic distributions. The mean and standard deviation of the pulse rate (pulses per
second) and the sample size are shown for the parental species and the F2 generation (both cross types,
HC1 and HC2).

Mean (pps) sd n

Laupala cerasina 2.33 0.07 24
Laupala eukolea 3.99 0.12 16

Environmental variance * 0.02 0.13
F2 HC1 3.11 0.20 94
F2 HC2 3.16 0.23 136
F2 mean 3.14 0.22 230

* Environmental variance was calculate following the work of Fishman et al. [97]; ‘mean’ in this context refers to the
environmental variance, while ‘sd’ is the square root of that variance.

Using CIM and MQM, we detected two moderate effect (~10% of the species difference) QTL on
LG1 and LG3 (Figure 2, Table 2) in both the HC1 and HC2 mapping populations. We note that the
LOD profile for MQM in HC1 suggests an additional peak on the LG1 (at 37 cM), but neither CIM
nor MQM supports this. We believe the ‘phantom’ peak derives from the putative inversion creating
genotype-phenotype associations for markers outside the QTL region in some individuals, but not in
others. In HC2, we additionally detected two smaller effect QTL (<5%), on LG5 and LGX. Merging the
maps and combining the sample sizes also revealed the small effect of QTL on LG2, LG4, and LG7
(Table 3), using MQM (Figure 2). When adding these additional QTL to the MQM model, the peak on
LG3 shifts approximately 10 cM posteriorly, but the 1-LOD intervals of the former and refined QTL
overlap (Figure S1), and consequently does not impact our annotations (see below).

All of the (haploid) QTL effects were significantly larger than zero (p < 0.05) and of the same
sign (Tables 2 and 3). Together, the seven QTL for the combined HC1 and HC2 mapping populations
explained 35.41% (or 0.59 pps) of the haploid phenotypic difference between the parental lines (Table 3;
20.22% and 31.71% for HC1 and HC2, respectively, Table 2). None of the QTL had significant dominant
effects (Table S1) and no interactions between additive QTL were detected, thus the total amount
(twice the additive haploid effect) of the pulse rate difference explained by the seven QTL is 70.82%
(or 1.16 pps) of the species difference. The QTL on LG1 and LG3 was mapped to approximately the
same location in HC1 and HC2, with the marker nearest to the peak in HC2 directly flanking the peak
marker in HC1 (Figure 2, Table S2).

Based on the MQM results for HC1 and HC2, and using the method in the work of Otto and
Jones [75], we estimated the true number of loci to be 9.55 (95% confidence interval = [1.59–29.49];
detection threshold, θ = 0.08 pps) and 9.4 (95% confidence interval = [2.93–21.86]; θ = 0.03 pps),
respectively. Using all of the 230 F2 individuals, we estimated the true number of loci at 16.6 (95%
confidence interval = [7.14–32.12]; θ = 0.04 pps). The variation in the true number of loci between HC1,
HC2, and the combined sample, reflects the variation in the mean across all of the detected QTL effects,
as well as in the lowest detected QTL effect, which is dependent on the sample size.
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Figure 2. Quantitative trait locus (QTL) scan. Results from composite interval mapping (black lines)
and multiple QTL models (grey lines, only for linkage groups with significant QTL). The vertical
solid and dotted lines show the experiment-wide 5% significance threshold for the composite interval
mapping (CIM) for autosomes and the X-chromosome, respectively. Between HC1 and HC2, the
horizontal dotted lines connect the homologous markers associated with the QTL peaks (within the
CIM windows) to indicate the overlap between the QTL scans in the different mapping families (see
Figure S1 for more detail). The panels on the far right show the effect size of each of the QTL as
the pulse rate mean ± standard error for each of the genotype categories AA (left), AB (center), and
BB (right).
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Table 2. Quantitative trait locus (QTL) results from HC1 and HC2. The QTL were mapped using
the maps for the 94 HC1 and 136 HC2 F2 individuals. LOD—log-of-odds. The A and B alleles
denote L. cerasina and L. eukolea alleles, respectively. All of the QTL effects (in pulses per second) are
significantly different from zero. ESD—environmental standard deviation.

Phenotypic
Value

Linkage
Group

Location
(cM) LOD Nearest

Scaffold
Marker
Location AA AB BB Effect

(pps)
% Parental
Difference #ESDs % F2

Variance

HC1
1 119 17.81 S004794 119.4 2.88 3.14 3.31 0.220 13.23 1.75 50.60
3 72.0 7.04 S001552 71.3 2.95 3.13 3.16 0.116 6.95 0.92 14.96

HC2
1 56.9 23.27 S002490 56.9 2.90 3.18 3.31 0.217 13.04 1.72 38.67
3 65.0 13.92 S000355 67.1 3.03 3.17 3.28 0.148 8.90 1.08 19.42
5 38.4 5.55 S002808 38.4 3.04 3.17 3.25 0.074 4.45 0.60 6.67
X 32.0 3.42 S000108 29.7 3.13 - a 3.19 0.049 2.95 0.39 3.96

a Cricket males are hemizygous.

Table 3. QTL results from the combined map. The QTL were mapped using the consensus map for
the 230 F2 individuals. LOD—log-of-odds. The A and B alleles denote the L. cerasina and L. eukolea
alleles, respectively. All of the QTL effects are significantly different from zero. ESD—environmental
standard deviation.

Phenotypic
Value

Linkage
Group

Location
(cM) LOD Nearest

Scaffold
Marker
Location AA AB BB Effect

(pps)
% Parental
Difference #ESDs % F2

Variance

1 59.0 40.73 S001131 58.8 2.89 3.17 3.31 0.203 12.22 1.61 36.39
2 71.0 4.78 S001921 69.1 3.05 3.15 3.18 0.055 3.30 0.44 2.90
3 79.9 21.28 S000385 79.9 3.02 3.14 3.23 0.123 7.40 0.98 15.34
4 59.8 3.97 S016452 59.0 3.10 3.12 3.23 0.053 3.19 0.42 2.39
5 36.9 8.32 S002445 36.9 3.05 3.16 3.19 0.068 4.08 0.54 5.23
7 5.0 3.51 S007011 9.8 3.08 3.14 3.20 0.045 2.68 0.35 2.10
X 38.0 5.46 S003132 37.2 3.10 - 3.17 0.041 2.46 0.32 3.34

cross - 2.24 - - - - - 0.092 5.53 0.44 1.33

3.3. Transcriptome Assembly and Annotation

We used the genome-guided assembly from the Trinity pipeline [80] to assemble the transcriptome.
Of the 50,148, and 157 reads after filtering (52,980, and 661 prior to filtering) that were used to assemble
the transcriptome, 90.58% mapped to the L. kohalensis reference genome. The assembly had a total
length of 53,928, and 392 bp, the median contig length was 397 bp, and the contig N50 was 1805 bp.
The mean coverage was 49.9× and 40.8× for the female and male reads, respectively. The male and
female reads mapped back to the transcriptome with high confidence, at mapping rates of 92.05%
and 92.26%, respectively. The BUSCO analysis indicated that we captured a large proportion of
conserved eukaryote and arthropod genes with 97.4% and 95.2% complete BUSCO hits, respectively.
Using the D. melanogaster proteome, the arthropod specific Uniprot/Swissprot database and NCBI’s
non-redundant database of animal proteins, we successfully annotated 19,713 transcripts (32.2% of all
of the transcripts) at a combined length of 32,039, and 513 bp (59% of the full assembly). A total of
17,577 transcripts have a gene ontology (GO) annotation.

3.4. Gene Set Enrichment Analysis

There were 179 scaffolds within one LOD of the seven QTL peaks combined. After collapsing
the putative alternative splice forms of the genes (transcripts on the same scaffold with identical
predicted protein products or annotated with different isoforms of the same gene), we mapped a
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total of 1298 annotated transcripts to 171 of the 179 scaffolds (Table S3). We tested whether the QTL
regions were significantly enriched for the biological processes that are relevant to cricket mating
behavior, that is, sexual (acoustic) communication, muscle contraction and pacemaker genes, and
various neuromuscular properties and neuromodulators of rhythmic behaviors. We found a significant
false discovery rate (<10%) enrichment of 37 biological processes, many of which are related to
neurobiological and muscular development, that is, peripheral nervous system development, dendrite
guidance, brain morphogenesis, and neuromuscular junction development in the combined set of all of
the seven QTL regions (Figure 3 and Table S4). Similarly, for each of the seven QTL regions separately,
we find a significant enrichment of central complex and motor neuron development (LG1), hormonal
and pheromonal biosynthetic pathways (LG2), neurotransmitter transport and mating behavior (LG3),
peripheral nervous system development (LG4), flight and locomotor behavior (LG5), neuromuscular
junction development (LG7), and calcium ion transport (LG X), among others (Table S5). Using the
1-LOD interval for the QTL on LG3 prior to the 10 cM shift in the QLT peak, gave identical results
for the enrichment of that QTL region. Excluding the QTL on the LG7, which had a large confidence
interval (and only weak phenotypic effect), also gave similar results; although, the locomotory behavior
is no longer significantly enriched (data not shown).
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Figure 3. Treemap of enriched genetic oncology (GO) categories. The GO terms were subset, removing
all of the redundant GO terms in REVIGO [98] at the medium-similarity criterion (0.7). The GO terms
are grouped based on the taxonomic relations among them. The colors connect the GO terms belonging
to the same cluster. The size of the panels scales with the negative 10-logarithm of the p-value for the
enrichment test.

When putative alternative splice forms are not collapsed into a single annotated gene product
(i.e., the original annotation of the transcriptome assembly), 1724 annotated transcripts map to the
scaffolds within the seven QTL intervals (Table S6). We find substantially more enriched GO terms
(227 biological processes). However, many of the same terms are enriched compared to the analysis
above, both for the overall enrichment (Table S7), as well as for the linkage groups separately (Table S8):
for example, terms related to neuromuscular development (LG1, LG4), development, maintenance, and
transmission at synapses (LG1, LG3, LG5, and LGX), rhythmic and locomotor behaviors (LG4, LG7),
mating behavior (LG3), hormone and pheromone production (LG2), and nervous system development
(LG4, LGX; Table S8).
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4. Discussion

Behavioral isolation is an important barrier to gene flow in the earliest stages of animal
speciation [4], but we know little about the number and distribution of the underlying genetic
loci and their relationship with the tempo and mode of evolution. Particularly, it has remained
understudied whether the divergence in the same phenotype in replicate species pairs diverging
in different biogeographic contexts is associated with similar genetic architectures. For example, in
island systems where founder effects have been hypothesized in the history of species radiations,
shifts in the phenotypic and genetic environments may catalyze speciation through the interactions of
genetic drift and the genetic architecture of traits [11,17], in particular, for the traits involved in sexual
isolation [17,99,100]. The presence of epistatic, major effect loci (a Type II genetic architecture) may
further amplify the effects of genetic drift on phenotypic evolution when the genetic system becomes
reorganized during the genetic upheaval following a founder event, and thus acts as a lynch pin for
speciation [17].

Here, we show that the genetic architecture of a major premating barrier in Laupala speciation
following island colonization has a polygenic (Type I) genetic architecture, as is common for sexual
signals [3], rather than a Type II genetic architecture that can promote founder effect speciation.
This finding, compared to the previous study of an intra-island divergence event, indicates that similar
genetic architectures underlie repeated episodes of mating song divergence in Laupala, independent of
the biogeographic history. However, further study is required to determine whether divergence in the
sexual signaling phenotypes in the replicate species pairs of Laupala involve the same QTL, because we
are currently limited to making comparisons between QTL experiments using different marker types
(GBS markers versus Amplified Fragment Length Polymorphism (AFLP) markers) constraining the
resolution of the comparison to the linkage group level. We also find that the QTL regions co-localize
with groups of genes that are enriched for several interesting biological processes. This provides a
tentative explanation for the similar genetic architectures in replicate species pairs (if the same QTL
regions are involved). These putative gene clusters in the QTL regions also suggest that a large pool
of genes and numerous functional sites could potentially contribute to the song evolution in Laupala,
thus restricting the spatial genomic regions of phenotypic change, but not the number of quantitative
trait nucleotides. Lastly, we identify many putative Laupala homologs of several genes implicated
in D. melanogaster courtship behavior, and in various neurophysiological processes that might be
important for song rhythm divergence in Laupala.

4.1. The Genetic Architecture of Interspecific Pulse Rate Divergence

Our data support the hypothesis that the song divergence between L. eukolea and L. cerasina is
associated with a Type I genetic architecture. We detected seven small-to-moderate effect QTL for
pulse rate divergence, six QTL each on different autosomes and an additional small effect X-linked
QTL. There were no detectable interaction effects among these identified QTL. The position and effect
size of the two largest QTL between the replicate families were largely the same (shared scaffolds
on peak or flanking [or both] markers on LG1 and LG3; Table S2). The effects of the sample size
being well-known [101], we merged the families to leverage the power of the increased sample size.
We found that the two QTL detected in HC2 but not in HC1 (on LG5 and LGX) shared common
positions and effect sizes with this combined analysis (Table S2). In the combined analysis, we further
detected three small effect QTL on LG2, LG4, and LG7. Adding all of the QTL terms to the MQM
model resulted in a refined estimate of the peak QTL location on LG3 in the combined map. Further
exploration revealed that this position refinement was not specific to the map used in the analysis, as
simulated QTL experiments as well as adding the additional QTL (that are borderline significant or
only ‘suggestive’) to the HC1 and HC2 models yield similar effects (not shown). Drawing on all of
the QTL identified, and the method of Otto and Jones [75], we estimate that the true number of loci is
likely more than ten.



Genes 2018, 9, 346 13 of 21

4.2. Inter versus Intra-Island Speciation

Contrasting the results for L. cerasina and L. eukolea with those for the intra-island species pair
L. kohalensis and L. paranigra [58] suggests that the differentiation of song has occurred by similar
genetic architectures in these independent divergence events; we detect similar numbers of loci on
the same linkage groups, with comparable effect size distributions (Table 4). Morphological [36] and
molecular evidence [35] place the replicate species pairs considered above in independent species
groups. Based on the young age of the Big Island [102], to which L. kohalensis, L. paranigra, and
L. cerasina are endemic, both of these species pairs have likely diverged in the last 500,000 years [35],
but differ in the biogeographic context of speciation. We estimate that the two major QTL, on LG1
and LG3, explain around 12% and 8% of the average phenotypic difference between L. eukolea and
L. cerasina. The homologous linkage groups in the genetic map of L. kohalensis and L. paranigra (linkage
group numbers are the same) have QTL that explain around 9% and 10% of the parental difference,
respectively. Likewise, both the present study and the L. kohalensis and L. paranigra cross study
found additional QTL on LG4, LG5, and the X-chromosome, with no detected interactions among
the loci. Previously, biometric studies had also revealed multiple independent genetic factors and
an X-effect [39,43]. Moreover, the phenotype associations on LG6 and LG7 were weak or absent in
both of the studies, and, further estimates of the true number of loci are >10 in both of the studies,
suggesting a polygenic architecture for both the inter-island and intra-island speciation. Finally, all
of the QTL effects that were estimated in this study and in Shaw et al. (2007) [58] are of the same
sign, consistent with a hypothesis of directional selection [103]; that is, the alleles from the fast species
increase the pulse rate, whereas the alleles from the slow species decrease the pulse rate of the F2

hybrids. Thus, overall, these results support similar genetic architectures for pulse rate divergence,
regardless of the biogeographic context. We caution, however, that other phenotypes may or may not
follow this pattern (e.g., cuticular hydrocarbon variation [104]), and merit further investigation.

Table 4. Comparison of the QTL effects for intra-island versus inter-island divergence. The QTL effects
(in pulses per second and as a percentage of the parental difference) are shown for the Shaw et al.
(2007) [58] study (the intra-island comparison, results from Table 2b in that study) and for the results of
the present study (the inter-island comparison).

LG
Intra-Island (Shaw et al. 2007 [58]) Inter-Island (This Study)

pps % Parental Difference pps % Parental Difference

1 0.281 * 9.3 * 0.203 12.2
2 0.098 3.3 0.055 3.3
3 0.152 * 5.1 * 0.123 7.4
4 0.143 4.8 0.053 3.2
5 0.297 9.9 0.068 4.1
7 . . . . . . 0.045 2.7
X 0.231 7.7 0.041 2.5

* On LG1 and LG3, two peaks were detected in the intra-island comparison. Here, only the major peak is shown.

There are also some important differences between the analyses of the two species pairs. The pulse
rate difference between L. cerasina and L. eukolea is roughly half of that between L. paranigra and
L. kohalensis [58], which could explain some of the differences in the effect sizes between the two studies
(Table 4, see below). We detected just seven QTL in the present study as opposed to eight QTL in the
L. paranigra and L. kohalensis cross, despite similar sample sizes and a much denser genotype sampling
in the present work. We also find smaller average effect sizes for the L. cerasina and L. eukolea QTL.
For example, while the QTL effects on LG4 and LG5 are present in both of the species pairs, they are
smaller (both in absolute and relative terms) in the L. cerasina and L. eukolea cross than the L. kohalensis
and L. paranigra cross (0.05 and 0.07 pps versus ~0.14 and ~0.29 pps, respectively). Additionally, we did
not find evidence for minor QTL on LG1 and LG3 in the present study, although both linkage groups
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were found to harbor minor peaks in the 2007 study. It must be noted that the resolution at which we
resolve the QTL regions is in the order of several centimorgans. Additionally, Shaw et al. (2007) [58]
used AFLP markers while we use GBS markers. Therefore, comparisons of the genetic architectures
between these two independent species pairs can only be made at the chromosomal (linkage groups)
level, because we lack sequenced-based markers and precise genomic locations of QTL in L. paranigra
and L. kohalensis. More detailed information is needed to test whether independent divergence in pulse
rates is associated with convergent genetic mechanisms.

However, the overall similarity in the genetic architecture is significant in that it shows for Laupala,
which has one of the fastest rates of speciation known, that the genetic architecture of divergence
in an important speciation phenotype is independent of the biogeographic context. Moreover, our
findings suggest that differences in the extent of phenotypic differentiation are due to the larger effect
sizes of the substitutions in the same QTL regions, rather than that additional QTL are involved
in the more diverged species pair. Further comparative work is needed to probe the generality of
these findings and to better illuminate the relationship between the biogeography, magnitude of
phenotypic divergence, and genetic architecture of speciation. Additionally, potential mechanisms that
constrain the number of possible locations in the genome where the genetic changes that contribute to
song rhythm variation can occur, need to be examined. One potential mechanism could be that the
causal loci are not randomly distributed across the genome, but instead, that they cluster in specific
genomic regions.

4.3. Behavioral Gene Clusters

Clustering of the causal loci that are important to reproductive isolation is expected on both
theoretical [23,105] and empirical [29–32] grounds, and can have dramatic consequences for the mode
and rate of evolution. We find evidence for putative gene clusters in the QTL regions associated with
the pulse rate divergence in L. cerasina and L. eukolea. Although currently the causal genes driving
pulse rate variation in this system are unknown, we observe a strong enrichment of the gene sets that
might contribute to the cricket mating behavior variation. This enrichment thus provides preliminary
evidence that the QTL regions co-localize with multiple (rather than single or very few) genes that may
contribute to sexual signal evolution in this system. Enrichment is evident for all of the QTL combined,
with or without the QTL on LG7 (which has an exceptionally broad confidence interval). Moreover, the
pattern is not driven by a single region, but rather, significant enrichment contributions derive from
every QTL region separately. Interestingly, some of these QTL fall in regions of low recombination
(e.g., QTL on LG1, LG3, and LG5), in the central parts of the chromosomes [81], where we observed
high marker densities (Figure S1). Reduced (interspecific) recombination rates can reinforce linkage
disequilibrium between the co-adapted loci over larger genomic distances. Together, these findings
suggest that acoustic mating behavior divergence in crickets is potentially associated with clusters of
causal loci rather than randomly distributed loci.

Overall, the finding that the QTL regions are strongly enriched for homologs of genes involved in
neuromodulation and nervous system development is an exciting novelty in the attempt to unravel the
genetic architecture of premating isolation in a model system for speciation research. We acknowledge,
however, that the evidence for the presence of functional genetic clusters is preliminary. It is not known
whether any of the gene products contributing to the enrichment are also involved in controlling the
(variation in) cricket song nor whether the effects from multiple or a single substitution(s) amount to the
observed phenotypic divergence. Furthermore, the inference of genetic clusters is limited by a number
of methodological constraints. Firstly, our annotations are mostly based on D. melanogaster proteins,
which are rather divergent from crickets, and hence depend on the presence of conserved regions.
We therefore have an incomplete identification of the homologs and GO annotations. In addition, we
can only annotate scaffolds that are in the linkage map, which are, in each case, inherently a subset of
the scaffolds that make up a given genomic region. However, it is not apparent to us that the sampling
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that we are able to do, while incomplete, would bias our results in favor of the GO enrichment and
gene clustering we observed.

The genomic clustering of the causal loci controlling species differences in the pulse rate
would have profound consequences on the evolution of Laupala mating behavior during speciation.
The genomic clustering of genes has been associated with several traits that are important in
reproductive isolation [32,106], speciation [107], and mating behavior variation [29–31]. Gene clusters
would offer a potential adaptation to overcome the constraints associated with behavioral evolution,
which surely requires coordinated changes in many of the loci controlling complex neurophysiological
traits. A close linkage would reduce interspecific and, potentially, intraspecific recombination, and
facilitate co-adaptation [24]. However, it is unlikely that genetic clusters in the system studied here
are the result of selection against interspecific recombination or of the interaction between divergent
selection and gene flow as L. cerasina and L. eukolea diverged in allopatry. The linkage of multiple song
genes, but also of the song and preference genes, could speed up divergence and speciation [108,109].
In Laupala, there is evidence for the co-localization of male song and female preference QTL [110,111].
The linkage and orchestrated evolution of the different song genes and of the song and preference
genes might be facilitated by the reduced recombination, and the co-adaptive gene clusters might
contribute to the rapid divergence of mating behavior in the young but diverse radiation of Laupala.

4.4. Candidate Genes

Our results also suggest potential candidate genes that control the mating behavior variation in
Laupala. The main enriched biological processes among the predicted gene products in the QTL regions
can be tied to potential modulators of the central pattern generators (driving rhythmic behaviors) and
to the sex-specific expression of the nervous system development pathways in fruit flies. These findings
were, in part, driven by the potential homologs of the motor neuron development gene roundabout
(1.5 cM away from the peak at LG1), of a Leucin-rich repeat kinase involved in the neurodegenerative
disease and locomotion located 0.5 cM from the peak on LG3, of lola (transcription factor regulating
neuromuscular development 6 cM away from the peak at LG4), and of semaphorin (directly flanking
the peak at LG7). All but the Leucin-rich repeat kinase are affected by the sex-specific transcription of
fruitless in D. melanogaster (located on LG2 in Laupala) and contribute to the sexual dimorphism in the
nervous system [112–114].

In addition to these sex specific receptor proteins, we find receptors for serotonin, GABA,
dopamine, and acetylcholine, all known neuromodulators of central pattern generators in
insects [47,115,116]. We also identify several ion channel genes, such as cadherin (flanking the QTL peak
marker on LG3), KCNQ potassium channel (1.5 cM from the peak marker on LG3), cacophony (16 cM from
the peak on LG4, which has a functional role in the inter-pulse interval in D. melanogaster [117]), and
sandman (1.9 cM from the peak at LG5). Without functional evidence, however, we can only consider
these genes as candidate loci and cannot speculate further about the genetic and neurobiological
pathways involved in song generation and song differentiation in Laupala.

5. Conclusions

Together, this study presents rare comparative insights into the polygenic genetic architecture
associated with sexual trait divergence during speciation in different biogeographic contexts.
Clearly, the rapid quantitative trait differentiation associated with speciation can occur under a
polygenic genetic architecture, where many genes diverge in concert to produce a conspicuous species
difference. We show that the genetic architecture of male song rhythm divergence in closely related
Laupala species is remarkably similar among the two independently originated species pairs, with
comparable QTL numbers, effect sizes, and an overall absence of interaction among the loci, despite
their different geographic histories. These similarities may, in part, result from constraints on the
spatial distribution of genetic variation controlling pulse rate divergence, as a result of the clustering
of causal loci. We show that the identified QTL regions underlying the song divergence are enriched
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for a variety of neuromuscular processes, potentially contributing to modulating the central pattern
generators that control the song rhythm. This enrichment pattern suggests a compelling genetic
potential, deriving from the clustering of multiple, physically linked loci, for rapid divergence in
Laupala mating behavior. We further identify several potential candidate genes controlling a highly
divergent behavioral phenotype that forms a major barrier between the recently diverged species.
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