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Abstract
Speech is an effective way for communicating and exchanging complex information between humans. Speech signal has

involved a great attention in human-computer interaction. Therefore, emotion recognition from speech has become a hot

research topic in the field of interacting machines with humans. In this paper, we proposed a novel speech emotion

recognition system by adopting multivariate time series handcrafted feature representation from speech signals. Bidirec-

tional echo state network with two parallel reservoir layers has been applied to capture additional independent information.

The parallel reservoirs produce multiple representations for each direction from the bidirectional data with two stages of

concatenation. The sparse random projection approach has been adopted to reduce the high-dimensional sparse output for

each direction separately from both reservoirs. Random over-sampling and random under-sampling methods are used to

overcome the imbalanced nature of the used speech emotion datasets. The performance of the proposed parallel ESN

model is evaluated from the speaker-independent experiments on EMO-DB, SAVEE, RAVDESS, and FAU Aibo datasets.

The results show that the proposed SER model is superior to the single reservoir and the state-of-the-art studies.

Keywords Speech emotion recognition � Reservoir computing � Random resampling � Recurrent neural network

1 Introduction

Emotion in speech is considered a basic principle of human

interaction and plays an important role in decision making,

learning, and daily communications. Additionally, speech

as a fast and effective method to communicate can be

measured as a valuable mechanism for human-computer

interaction (HCI). Identifying emotions from speech sig-

nals can have an effective role in several services, such as

call center services for checking the customer’s emotion

during the call to provide better assistance [1]. Addition-

ally, it can be useful for the in-car board system which can

detect the driver’s depressed status to provide more safety,

because the driver’s emotional state often affects the

driving performance [2]. The emotion recognition system

is also valuable for interactive educational systems, which

can be able to truthfully identify a child’s emotions that

helps for positive evaluations [3]. Moreover, it is used to

automatically classify the children’s personalities through

their speech when they are interacting with computers [4].

However, detecting emotions from speech is a big chal-

lenging task in the field of artificial intelligence and

human-machine interface application [5]. Speech as a

human physiological signal has several dependencies that

are affected for recognizing emotions such as gender,

culture, age, and health.

One of the most difficult problems in speech emotion

recognition (SER) systems for researchers is to explore,

catch and extract the most related and effective emotion

features from the raw speech signal. Therefore, the per-

formance of SER systems mainly depends on how the

relevant emotion features are extracted [6]. There are two
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main methods to extract features which are deep learned

emotion features and handcrafted features. Each sample

can be represented as one vector when global handcrafted

features are adopted. Features can also be extracted locally

from the speech signal frames when each sample will be

represented as several time steps each as a vector of

features.

Besides from choosing the most related emotional fea-

tures from speech signals, developing an efficient model is

another important step to have a better SER system. Hence,

researchers in the SER area examine many approaches for

better performance and an efficient system that recognizes

emotion from speech. In the first decade in the current

century, support vector machine (SVM) has been widely

used in many works and gains a good performance.

However, in the last decade, research works started

focusing on deep learning models which have become a

promising approach to gain better performance compared

to classic models [7, 8]. Additionally, frame-based features

and multivariate time series data have been adopted in

some models such as recurrent neural networks (RNNs)

and long short-term memory (LSTM) [9, 10].

The training nature of the parameters for the majority of

deep learning models, such as LSTM, increases the time

complexity and requires a large amount of data and hard-

ware resources. For example, authors in [11] reported that

the train time duration for their experiments on GPU with

deep neural network model was 2–14 days when they

applied it on the IEMOCAP dataset. Additionally, the

proposed deep learning model from [12] suffered from high

computational costs and high memory required for their

experiments. The computationally expensive, low conver-

gence speed, and high memory requirements were the

major drawbacks for using the deep learning model in [12].

To avoid the complexity problem of deep learning mod-

els, some researchers have used echo state network (ESN) as

a special type of reservoir computing and RNN for SER

systems. Researchers in [13] proposed the functional echo

state network (FESN) model to adopt temporal dependency

of time series data to reduce the time complexity. They

validated the FESN model on UCR Time Series Data [14] as

a common time series datasets and achieved a comparable or

outstanding performance compared with other proposed

models for temporal data. Additionally, [15] used multi-

variate time series emotion speech features with ESN for an

efficient SER system. The paper conducted some experi-

ments, which compared the time consuming of the LSTM

and ESN models that adopted for SER and showed that ESN

is much less time consuming than LSTM. The main reported

advantage of ESN is that it has a simple architecture as it

contains the input layer, a reservoir layer, and the output

layer [16].

The reservoir layer has sparsely connected neurons that

are randomly assigned without training. The input data

contain multivariate time series data which will be multi-

plied by the reservoir input weights, the output of the

reservoir will be processed inside the reservoir layer based

on the nodes and their consequent reservoir sparse weights.

Figure 1 shows the three main layers in ESN, which are

input layer, reservoir layer, and output layer.

The small size of current speech emotion benchmark

datasets makes roadblocks for some SER models. There-

fore, some techniques such as data augmentation [17]

including bidirectional signal are used to feed more infor-

mation to the classifiers [15]. The trainless weights of the

reservoir in the ESN, by assigning non-trainable random

weights, lead to avoiding the time complexity of deep

recurrent networks [18] and make ESN a candidate for

real-time applications [19] such as time series forecasting.

Instability in ESN has been addressed in some works

because in the reservoir layer, the weights are assigned

randomly only once and fixed [16]. To overcome this issue

some researchers used bidirectional input which feeds the

data to the reservoir layer in both forward and backward

directions to capture two distinct versions of information

from the input layer [20], which will improve the memo-

rization task [21]. Additionally, [22] proposed DeepESN to

overcome the ESN instability problem by adopting multi-

ple reservoir layers and obtained a valuable effect to

improve the ESN model. Most of the speech emotion

datasets such as EMO-DB, SAVEE, and FAU Aibo are

imbalanced (see Fig. 3); hence, the data balancing

approaches such as over-sampling or under-sampling are

necessary to reduce the impact of the class imbalance on

emotion recognition systems [3].

In this work, we proposed a novel bidirectional reservoir

computing model by adopting two parallel reservoirs, when

the same direction output from the different reservoirs is

fused together lately. The proposed model used parallel

Fig. 1 The basic structure of the ESN model
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reservoirs to create a more typical representation and

capture independent information of the input data. To

overcome the common imbalanced issue of the emotional

datasets, we adopted the use of random over-sampling and

random under-sampling approaches where samples are

duplicated randomly or removed randomly for over-sam-

pling and under-sampling approaches, respectively. More-

over, multivariate time series handcrafted features such as

Mel-frequency cepstral coefficients (MFCCs) and Gamma-

tone cepstral coefficients (GTCCs) are extracted to feed the

reservoir layers. This novel proposed model to recognize

emotion from speech with its trainless nature assists to

improve the classification accuracy.

The remainder of this paper is divided as follows:

Sect. 2 presents the literature review of the SER models,

and Sect. 3 shows the methodology of the proposed model.

Section 4 explains the involved datasets in this work, and

the experimental setup is presented in Sect. 5. The detailed

results for all four datasets and discussion of the perfor-

mance of the proposed model are present in Sect. 6, and

finally, the conclusion and future work come in Sect. 7.

2 Literature review

The speech signals have been widely used to recognize

emotions which are preferred as a better interaction in the

field of HCI. The SER design traditionally focuses on the

extraction of robust emotion features from a speech in

addition to the use of a proper classification model [23].

Feature extraction is a challenging task in SER models, for

instance, some researchers are preferring deep learned

features, while others are using handcrafted features.

One of the recent approaches for extracting features is

learning from the deep learning models, and thus, many

researchers have designed learned features using deep

learning models [24]. Authors in [25] adopted LSTM to

learn the extracted frame-based features, and the 3-D log

mel-spectrogram features are learned by using a convolu-

tional neural network (CNN). Researchers in [26] were

focusing on learned emotion features directly from mel-

spectrograms by adopting CNN deep learning model,

which helped their model performance to improve by over

3%.

The handcrafted features for a speech sample can be

globally represented in one vector, or it can also be rep-

resented locally when its extracted from frames. There are

many toolkits for extracting emotional features from

speech signals such as the openSMILE [27] toolkit which

is an open-source toolkit for extracting global features and

DeepSpectrum [28] toolkit for extracting global and local

deep features. The openSMILE toolkit has been used in

many studies for extracting non-temporal global features,

such as [29] who used it for extracting global features from

the raw signal, authors in [30] used openSMILE with SVM,

and [9] adopted the low-level descriptions (LLDs) features

that are extracted by openSMILE to feed it to bi-directional

long-short term memory (bi-LSTM) with Directional Self-

Attention deep learning model. The log-energy, pitch,

TEO, ZCR, and MFCC have been identified as important

emotion features with the RBF neural network model [31].

Authors in [32] extracted 113 acoustic handcrafted features

and combined with textual features to input the Bimodal

Deep Autoencoder (EBDA) model to recognize emotions

from the large data from the Internet. However, some

authors preferred time series frame-based features to rec-

ognize emotions from speech. Researchers in [19] used

frame-based spectral features and fed them to the ESN

model to detect emotions in real-time. Additionally, [33]

used various handcrafted features with 512 frames for each

speech sample with the use of CNN and bi-LSTM deep

model. Therefore, the multivariate time series data repre-

sentation requires a convenient and computationally

intensive classifier such as RNN.

Another important aspect to building SER systems

besides feature extraction from the speech is developing a

robust mathematical emotion classification model. The

strong classification has a vital role for better performance

to detect emotions from speech signals [34]. Authors in [8]

proposed a multi-learning trick deep learning model based

on 1D dilated CNN architecture to recognize emotion from

speech. [35] used a bidirectional long short-term memory

(BLSTM) model with high-level features and combined it

with maximum-likelihood-based learning process for

emotion recognition. The artificial neural network (ANN)

with one hidden layer and SVM classifiers have been used

in [3] and reported that the ANN classifier has a better

performance than SVM in a pairwise approach for SER.

Due to the necessity of having a large amount of data for

deep learning models, the data augmentation approach is

adopted in [36] on Acted Emotional Speech Dynamic

Database (AESDD) for continuous emotion recognition

from speech with the use of the CNN model.

However, there are few works that reported the use of

ESN in the field of detecting emotion from speech. Authors

in [19] proposed the ESN model for real-time SER,

although the work could not provide a successful real-time

system. [37] investigates a preliminary system for auto-

matic emotion recognition from a speech by inputting a

time series features to an ESN model which is trained on a

multi-classification task over different classes of emotion.

Additionally, authors in [38] are using only neutral and

anger emotional data with an ESN model by using the

memristive circuits for real-time SER. However, in [15],

the bidirectional multivariate time series features are used

to feed a single reservoir layer and the proposed model has
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come out with a high classification performance in the SER

system.

A single reservoir suffers from the assigned random

weights, which creates instability and yields high variance

since the weights are assigned randomly only once and

fixed in reservoir part [16]. The single reservoir captures a

representation that may not detect all of the relationships

between the information of various time steps, due to the

sparse connection of the reservoir in the hidden layer.

Therefore, some researchers have proposed an ESN model

with more than one reservoir layer. Authors in [39] used

multiple reservoir layers in a series configuration and

optimized the number of reservoirs with hyper-parameters.

Different experimental analysis architectures are proposed

in [40] such as deepESN, deepESN-IA, and groupedESN.

Additionally, researchers in [41] used more than one

reservoir layer and proposed a functional deep echo state

network (FDESN) for multivariate time series classification

to introduce temporal and spatial aggregation. The pro-

posed grouped multi-layer ESN model in [42] helped to

improve linear separability on the readout layer.

The current benchmark speech emotion datasets are

problematic due to the class imbalanced data which influ-

ences the classification techniques significantly. To over-

come this issue, [3] followed the Synthetic Minority Over-

sampling TEchnique (SMOTE) to increase the number of

samples in the minority class. Furthermore, authors in [43]

used under-sampling by reducing the size of the majority

emotion class to the same size of the minority class.

3 Methodology

In this section, the design of the ESN-based proposed

model is presented. The proposed model in [15] gained a

good performance by using late fusion of bidirectional

ESN with only one reservoir layer. However, due to the

instability of the ESN model, they adopted the use of

optimization of many parameters such as internal units R,

spectral radius (q), size of connectivity (b), input scaling

(x), and amount of leakage to control the timescale of its

neurons inside reservoirs. The reason of randomness is

basically due to the non-trained (fixed) random weights

inside the reservoir layer. Logically more random repre-

sentation of the data produces a more knowledgeable

characterization of the space. Consequently, increasing the

number of reservoirs that are parallelly fed by the input

data may increase the performance of the SER model.

Nevertheless, multiple reservoir layers may bias toward the

classes with a high number of samples. To overcome this

issue, one may apply a balancing technique on the involved

datasets.

In this work, we have adopted two parallel reservoir

layers and imbalanced data resampling using random over-

sampling and under-sampling in addition to the well-

known SMOTE technique. The bidirectional time series

data characterization has been reported to enhance the

memorization capability [44]. However, having parallel

reservoirs will produce multiple representations for each

direction from the bidirectional data. The sparse random

projection (SRP) [45] approach has been adopted to reduce

the high-dimensional sparse output for each direction

separately from both reservoirs. The outputs from dimen-

sion reduction stage are concatenated based on the same

direction, such that each direction is represented separately

from the other directions. Consequently, the outputs for the

two forward directions after dimension reduction from both

reservoirs will be concatenated separately from the con-

catenation of the backward direction outputs produced

from the same parallel reservoirs. In this model, two fusion

methods are applied; firstly, the fusion is applied after

dimension reduction which is based on each direction

separately, and secondly, the fusion of both forward and

backward directions is applied after reservoir model space

stage.

In the next stage, the reservoir model space method is

applied on each direction, and their outputs will be fused

lately to produce the final representation rX of the speech

signal. The ridge regression classifier takes the rX vectors

as an input to make the final decision on its emotion class

label.

The structure of the proposed model is shown in Fig. 2.

The next subsections present the details of the proposed

model steps.

3.1 Feature extraction

The feature extraction is a primary part of any SER system

that could mainly impact the model performance. There-

fore, the first challenge in any SER model is to determine

the most relevant emotion features that can be extracted

from the raw speech signal. Moreover, selecting the right

set of emotion features reflects the most available infor-

mation about emotion characteristics from the speech sig-

nal. In this research, we extracted handcrafted multivariate

time series features to feed the proposed model. Thirteen

MFCCs are among the features that have been extracted

and used in this work. MFCCs are the well-known features

from speech that has a strong link to the human perception

system. MFCCs are the most widely used features, most

popular, and robust method for extracting handcrafted

emotion features in SER systems and speech recognition in

general. It was first introduced by [46] and explored that

the outperformance of MFCC leads to providing a better

accuracy of the short-term speech spectrum.
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Nonetheless, MFC-based systems are deteriorated by

not having a good performance under noisy conditions

because the extracted MFCC features are biased by noise

which triggers mismatched likelihood calculation [47].

Accordingly, the thirteen GTCCs extracted features help to

overcome this issue which can have a better performance

under noisy conditions. GTCCs can be described as a

biologically inspired modulation of the MFCC by using the

linear filter called Gamma-tone filters instead of the mel

filter bank. Since MFCCs lack of robustness under noise

conditions, we have adopted the use of GTCC features with

MFCCs to produce more robust representation under noisy

conditions. A total of 26 handcrafted features are used as

an input to the proposed model.

For extracting both sets of features the MATLAB audio

feature extractor (audioFeatureExtractor) has been adopted

with windows of length 30 ms that are overlapped by 20

ms. Therefore, the length of the samples is different in all

of the four datasets, and we have settled the lengths by

pruning or padding with zeros at the start and the end of

each sample. Thus, 500, 600, 400, and 300 frame sizes

have been adopted for EMO-DB, SAVEE, RAVDESS, and

FAU Aibo, respectively, based on the almost high length

for each benchmark dataset.

3.2 Over-sampling and under-sampling

The class imbalanced dataset is a challenging problem in

both deep learning models and traditional models for

classification prediction. The unequal classes in the training

set produce a classification problem because the minority

classes, where they have a few samples, are hard to predict

and learn the characteristics compared to the majority

classes. Additionally, the imbalanced datasets may cause

the models to overfit the classes that have a few samples

and increase the generalization error [48]. This issue often

affects the testing set performance or real-world applica-

tion, however, the training set performance may have a

good result. Most of the real-world datasets have an

imbalanced nature, due to the challenges for collecting real

data. Consequently, the data balancing and resampling

approaches are necessary to reduce the impact of the class

imbalance on classification models. Many research works

have shown that in general, experiments on the balanced

datasets are performing better than the imbalanced datasets

[49]. There are two main strategies for data resampling to

overcome the data imbalance issue. Firstly, over-sampling

increases the minority samples, whereas the under-sam-

pling method removes the samples from the majority

classes. By increasing the minority class samples and

reducing the majority class samples, the train set data can

be balanced.

The adopted four datasets in this work are imbalanced in

terms of sample sizes per class as shown in Fig. 3. For

example, the EMO-DB dataset has 127 utterances of the

anger class, but only 46 samples for disgust class and the

rest of the samples per emotion class are: 81 boredom, 79

neutral, 69 fear, 71 happiness and 62 sadness utterances.

Moreover, the SAVEE and RAVDESS datasets are less

imbalanced, the neutral class in SAVEE participated by

120 samples and the rest are only 60 samples per class.

However, the neutral class in RAVDESS has 96 utterances,

but the rest are 192 samples for each class. The number of

chunks per class in the FAU Aibo Emotion corpus is

Fig. 2 The overview of the proposed model design, which presents the parallel ESN model with two reservoirs and direction concatenation with

the late fusion
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extremely unbalanced as shown in Fig. 3, wherein the

training set the 56.1% of the data are labeled as neutral,

21% are emphatic, 8.8% are angry, 6.8% are positive, and

7.2% are the rest of the other emotions.

To overcome this problem, the over-sampling approach

is applied on EMO-DB and RAVDESS datasets, while the

under-sampling is applied on SAVEE and FAU Aibo

datasets. The reason behind adopting under-sampling on

the SAVEE dataset is that all of the classes are balanced

(60 samples for each class) with the exception of the

neutral class which includes 120 samples. Consequently,

the only class that needs balancing is the neutral class.

After obtaining the extracted handcrafted features of

speech signal samples, for EMO-DB and RAVDESS

dataset, the random over-sampling method [50] has been

adopted by selecting samples from the training set at ran-

dom with replacement. Additionally, the random under-

sampling method [50] has been applied on the SAVEE and

FAU Aibo datasets to under sample the majority of emo-

tion classes by randomly selecting samples with or without

replacement. Overall, the random over-sampling technique

is the simplest form by duplicating samples of the minority

class; however, the random under-sampling method is

taking away some data from the frequent class. Figure 4

shows how the over-sampling technique affects EMO-DB

and RAVDESS dataset by adding more samples randomly,

for example, some of the sadness emotion samples in

EMO-DB dataset (as shown in A2), which is represented in

yellow color, have been duplicated and denoted by a black

dot inside it. On the other hand, the random under-sam-

pling method reduces the number of samples randomly in

the neutral class for SAVEE dataset from 120 samples to

60 samples. The random under-sampling reduced the

number of neutral samples in FAU Aibo dataset (see Fig. 4

D1 and D2). The figures are presenting two features among

26, which have been selected randomly, and each feature

represents the mean of the time steps values of that feature.

3.3 Bidirectional parallel echo state network

Echo state networks (ESNs) proposed by [51] as a powerful

form of reservoir computing and a recent type of RNN for

learning nonlinear systems. The reservoir computing (RC)

as a computational framework is a kind of RNN model

which does not have the training inside the layer and

weights are initiated randomly [52]. In general, ESN has

three main layers, the input layer, the hidden layer which is

called the reservoir layer, and the output layer. The input

data will be connected sparsely inside the reservoir layer,

where nonlinear neurons are connected randomly. The

main advantage of ESN is the untrained nature in the

hidden layer which helps to avoid the vanishing gradient

Fig. 3 The total number of emotion class samples for EMO-DB, SAVEE, RAVDESS, FAU Aibo datasets
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issue. ESN is a promising approach for multivariate time

series classification.

In our work, the multivariate time series data are applied

by feeding an input sequence into two reservoirs parallelly

in each forward and backward direction to catch further

information separately of the input data with different

random weights from both reservoir layers. These two

parallel reservoirs are initializing sparse high-dimensional

connected neurons without being trained. A fixed random

weights in each reservoir guarantee transforming the data

into two independent sub-spaces, since each set of random

weights represent an independent bases of an new sub-

space. We shall see that two reservoirs improve the SER

performance over a single reservoir as an indication of

having a complementary information in one of the reser-

voir to the other one.

Choosing the number of reservoirs is an open problem

and depends on the application task [53]. However,

researchers reported that adding more than two reservoirs

is mostly not improving the performance of the model

[54, 55]. Moreover, authors of [56] reported that adding

layers to a deep reservoir architecture, resulting in driving

toward (equally or) less stable behaviors. Consequently, in

this work, a twin of reservoirs is adopted, which also helps

in avoiding the time complexity resulting in adopting more

than two reservoirs.

The ESN model can effectively handle time series data,

since the temporal dependence data can be handled and

successfully adopted by chaotic time series data prediction

models. Our input data are a multivariate time series data

which has D-dimensional size feature for each time step t,

where t ¼ 1; 2; . . .; T , and T is considered as a number of

time steps, where time t is given as xðtÞ 2 RD and the X can

defined as X ¼ ½xð1Þ; xð2Þ; . . .; xðTÞ�T . By pruning and

padding samples, to prevent length differences, the number

of time steps is unified to T. The states in the reservoirs are

updated based on the following equations:

hi
!ðtÞ ¼ f ð x!ðtÞ; hi

!ðt � 1Þ; henci Þ

hi
 ðtÞ ¼ f ð x ðtÞ; hi

 ðt � 1Þ; henci Þ
ð1Þ

where i ¼ 1; . . .;N, N is a number of reservoirs (in our

study the N ¼ 2 where we have only two reservoirs) and

hið:Þ is the RNN states for reservoirs at time t which

compute as a function of their preceding values ðhi
!ðt �

1Þ; hi
 ðt � 1ÞÞ for reservoirs and the present input x(t).

Furthermore, the function f(.) is a nonlinear activation

function, in addition to henci is the adjustable parameters

from the reservoirs.

Equation (1) can be shown as the following:

hi
!ðtÞ ¼ tanhðWin

i � x!ðtÞ þW res
i � hi
!ðt � 1ÞÞ

hi
 ðtÞ ¼ tanhðWin

i � x ðtÞ þWres
i � hi
 ðt � 1ÞÞ

ð2Þ

where i ¼ 1; . . .;N, Win
i is the input weights, Wres

i is the

weights from reservoirs connections, and the reservoir

states (RSi
�!

and RSi
 �

) are produced by the ith reservoir over

time, where RSi
�! ¼ ½hi

!ð1Þ; hi
!ð2Þ; . . .; hi

!ðTÞ�T and

RSi
 � ¼ ½hi

 ð1Þ; hi
 ð2Þ; . . .; hi

 ðTÞ�T . The adjustable parame-

ters from the reservoirs can be represented as

henci ¼ fWin
i ;W

res
i g.

There are some hyperparameters that are affecting the

performance of the ESN model significantly, such as the

internal units size, the spectral radius, the nonzero con-

nections, scaling of the values in the input weights W in
i , the

leak as an amount of leakage to control the timescale in the

reservoir states update and apply dropout regularization,

particularly for recurrent architectures.

3.4 Dimension reduction and direction
concatenation

Each reservoir has its own two-directional outputs as a

result of the bidirectional input data. In this work, four

generated states which are two output weights from the first

reservoir in both forward and backward (RS1
��!

and RS1
 ��

) and

two output weights from the second reservoir in both for-

ward and backward (RS2
��!

and RS2
 ��

) are fed to the dimension

reduction stage. The output weights have high-dimensional

sparse feature representation which leads to high compu-

tational cost, over-fitting, and redundancy. The very sparse

random projections technique has been applied to trans-

form the high-dimensional sparse data into a more conve-

nient representation and reduce the dimensions. To reduce

the complexity, the SRP method minimizes the dimensions

of the reservoir output without training, which is able to

remove redundant data with minimal loss of information.

This dimension size of reduced data can be optimized or set

based on experience. This step has an important effect on

applying the reservoir model space in the next stage.

The forward dimension reduction outputs (SRP1
���!

and

SRP2
���!

) from the first reservoir and second reservoir are

concatenated separately from the concatenation of the

backward direction produced by both reservoirs in the

bFig. 4 Figures A1, B1, C1, and D1 show the four involved datasets

before resampling. Figures A2 and C2 present the over-sampling

applied to Emo-DB and RAVDESS datasets, respectively. The points

that have the dot inside refer to the duplicated samples. Figure B2 and

D2 show the effect of random under-sampling applied to the SAVEE

and FAU Aibo datasets. We may observe that the number of neutral

samples has been reduced by half in SAVEE dataset
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dimension reduction stage. We concatenate the forward

direction SRP1
���!

with SRP2
���!

and the backward direction

SRP1
 ���

with SRP2
 ���

from both reservoirs to generate the

SRP
��!

ð1;2Þ and SRP
 ��

ð1;2Þ. This sort of concatenation aims to

process the information regarding each direction using

multiple reservoirs independently from the other direction.

This approach will expectedly ease modeling each direc-

tion for any time series classification application. The

output from the dimensionality reduction concatenation in

both forward and backward directions produce new

sequences H
!

and H
 

which can be an input for the reservoir

model space.

The sparse projection matrix R is set with 1 and -1

which are equiprobable as shown in the following

equation:

PrðRi;j ¼ 1Þ ¼ PrðRi;j ¼ �1Þ ¼ 1

2
ffiffiffi

d
p ð3Þ

where Pr refers to the probability, and d is the original

feature dimensionality from the reservoir output state. This

dimension size of reduced data can be optimized or set

based on experience. This step has an important effect on

applying the reservoir model space in the next stage. The

output from the dimensionality reduction method produces

new sequences H
!

and H
 

which can be an input for the

reservoir model space.

3.5 Reservoir model space and the bidirectional
fusion

Researchers in [21] proposed a reservoir model space as a

self-supervised method based on reservoir computing. In

this stage, for each time series date from reservoirs, ESN is

trained to predict the next step in the time series. It helps to

characterize a generative model of the reservoir output data

and makes a metric relationship between the samples.

Reservoir model space is able to predict the next reservoir

states and provides the most definitive characterization of

the time series feature representations. Hence, in this work,

we used the reservoir model space to generate each rep-

resentation of SRP output sequence data into one-dimen-

sional feature vector, which then is processed by the

readout stage.

Finally, the output of both reservoir model spaces will

be fused to produce a characterization that highlights both

directions separately. Therefore, the formula of the reser-

voir model spaces that are applied on the outputs of the

unsupervised SRP dimensionality reduction method can be

presented as the equations below:

h
!ðt þ 1Þ ¼ Uh

�!
h
!ðtÞ þ uh

!

h
 ðt þ 1Þ ¼ Uh

 �

h
 ðtÞ þ uh

 
ð4Þ

where the columns of a frontal slice H
!

and H
 

are repre-

sented by h
!ð:Þ and h

 ð:Þ, respectively, Uh
�!

; Uh
 � 2 RD�D

and uh
!; uh
 2 RD, where the size of dimension after the

reduction process is represented as D. The data represen-

tation is synchronizing with the parameters as follows:

rX
!¼ hh

!¼ ½vecðUh
�!Þ; uh!�

rX
 ¼ hh

 ¼ ½vecðUh
 �Þ; uh �

ð5Þ

The produced data output from rX
! and rX

 is concatenated

as shown in the following equation:

rX ¼ ½rX!; rX
 � ð6Þ

where the rX feeds to the ridge regression and Eq. 7 shows

that how the hh
!

and hh
 

can be learned by minimizing a

ridge regression loss function:

h�h
!
¼ arg min

fUh
�!

;uh
!g

1

2
k h!ðtÞUh

�!þ uh
!� h

!ðt þ 1Þk2 þ akUh
�!k2

h�h
 
¼ arg min

fUh
 �

;uh
 g

1

2
k h ðtÞUh

 � þ uh
 � h

 ðt þ 1Þk2 þ akUh
 �k2

ð7Þ

where a is the reservoir model space regularization strength

parameter to set the number of the coefficient shrinkage.

The readout stage (which is a classification level in ESN) is

a linear model for decoding that can be formed by the

following equation:

y ¼ gðrXÞ ¼ VorX þ vo ð8Þ

The hdec ¼ fVo; vog. hdec is a set of parameters in this

model, and it can be admitted a closed form solution when

the ridge regression can be learned by minimizing the loss

function:

h�dec ¼ arg min
fVo;vog

1

2
krXVo þ vo � yk2 þ lkVok2 ð9Þ

where l is the regularization penalty parameter in ridge

regression to minimize overfitting of the training set. The

linear readout step is to perform the classification based on

the reservoir model space output features which maps the

rX data representation into the emotion class labels y.

In order to use the ridge regression to classify the final

rX representations, the training process sets the dimension

of y to be equal to the number of emotions k. The target of

y has the same dimension as y, where the value of its

components is all equal to zero except the dimension that
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refers to the correct target of the sample, which is set to be

one. In other words, when the problem is a multi-class

classification, the model will have multi-output regression,

and the output with the maximum value will be considered

as the predicted class.

3.6 Hyperparameter optimization

Identifying hyperparameters in ESN has been reported as

an issue and its effects on the performance of the ESN

model. Additionally, some researchers prefer to assign

parameters manually or based on experience, however,

authors of [15] optimized the whole ESN parameters. In

this study, we have used Bayesian optimization [57] to

optimize the size of internal units R and dropouts from

ESN, while fixing the value of spectral radius (q), size of

connectivity (b), input scaling (x), and the amount of

leakage to control the timescale of its neurons inside

reservoirs. The reason for fixing some of the ESN param-

eters is to reduce the complexity since multiple reservoirs

are adopted in this work which doubles the number of

parameters that need optimization. Moreover, we opti-

mized the number of dimensions resulted from the SRP, in

addition to the regularization strength parameters a in the

reservoir model space and l in the ridge regression readout

stage. Optimized parameters have an important effect to

improve the model performance.

3.7 Normalization

Speaker Normalization (SN) is a widely-known unsuper-

vised approach to improve speech recognition performance

tasks [58]. As performed in [59], we applied SN on each

specific speaker sample in our experiments for all the four

datasets which analyze emotion of the speaker indepen-

dently. The SN is comprehended by a normalization of

utterances by its mean and standard deviation which belong

to one of the speakers. The aim behind adopting SN in our

experiments is to compensate for speaker variations and

prevent all samples from specific speaker influences, which

help to improve emotion recognition performance.

4 Datasets

The performance of our proposed model has been evalu-

ated and validated for detecting emotions from speech

signals using three acted-speech emotion datasets, EMO-

DB [60], SAVEE [61], and RAVDESS [62]. These three

datasets are widely used to evaluate SER systems and are

recorded by professionals where they acted to express

different emotions in addition to FAU Aibo [63] as a non-

acted dataset.

Berlin Database of Emotional Speech (EMO-DB) [60] is

a German speech emotion dataset, which contains seven

emotions: anger, boredom, neutral, disgust, fear, happiness,

and sadness. EMO-DB is a widely used dataset for SER

models with a total number of 535 utterances. Additionally,

five males and five females participated to record their

emotional states over the memories of their real-life

experiences.

The second to validate our model is Surrey Audio-

Visual Expressed Emotion (SAVEE) [61]. It is an English

audio and visual expression acted dataset used for SER and

facial expression systems, although in this work, only the

audio channel has been used. The utterances are recorded

by four native English speakers with seven emotional

states, which are anger, disgust, fear, happiness, sadness,

surprise, and neutral. There are 480 video files where each

male participated by recording 120 videos.

The Ryerson Audio-Visual Database of Emotional

Speech and Song (RAVDESS) [62] dataset is used to

validate the proposed model. RAVDESS is a multimodal

emotion dataset that includes voice files for song and

speech with facial expressions. It was recorded by 24

professional actors of equal genders. It has eight emotional

states: calm, happy, sad, angry, fearful, surprise, neutral,

and disgust expressions. In this work, 1440 speech files

have been used from the sum of 7356 files.

The FAU Aibo Emotion Corpus as a non-acted dataset

has been used to validate the proposed model, which

contains spontaneous and emotional German speech sam-

ples [63]. Through their interactions with Sony’s pet robot

Aibo, the 51 children between the ages of 10–13 years in

‘Ohm’ and ‘Mont’ schools were participated to record

18216 emotional speech samples. In the beginning, the

dataset had 10 emotion labels, and later, they mapped into

five emotion classes such as anger, emphatic, neutral,

positive, and rest. In this work, we followed the adopted

protocol of the interspeech09 challenge [64], which the

training set contains 9959 samples from Ohm and the

testing set contains 8257 samples from Mont school.

5 Experimental setup

The proposed model has adopted Leave One Speaker Out

(LOSO) as a speaker-independent approach for EMO-DB,

SAVEE, and RAVDESS datasets. To conduct a fair com-

parison with the state-of-the-art studies of the FAU Aibo

dataset, this study followed the adopted protocol of the

interspeech09 challenge [64]. In this work, we have

adopted the use of handcrafted multivariate time series data

which contains 26 features from MFCCs and GTCCs for

each window of length 30 milliseconds overlapped by 20

milliseconds. The random over-sampling method was
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applied on EMO-DB and RAVDESS, while random under-

sampling was applied on SAVEE and FAU Aibo.

Regarding the parameters that have not been optimized in

the proposed model, it has been fixed as follows: spectral

radius (q) = 0.6, non-zero connections (b) = 0.25, input

scaling (x) = 0.1, the leakage percentage = 0.6, and the

level of noise = 0.01.

The proposed model used CPU to carry out all experi-

ments on a PC with 64GB RAM and Google Colab with

12GB RAM. Since ESN has a simple architecture without

any training in the reservoir layer, it does not need GPU or

high PC resources.

6 Results and discussion

This section showcases the results of the evaluation pro-

posed model for EMO-DB, SAVEE, RAVDESS, and FAU

Aibo speech emotion datasets. The speaker-independent

cross-validation technique is adopted as a more applicable

method in emotion recognition from speech which is more

challenging than the speaker-dependent approach. The

results of this study have been shown in terms of precision,

recall, and F1 score, in addition to the model weighted and

unweighted accuracy.

The weighted accuracy computes the correctly classified

samples in the test set for all the emotion classes divided by

the whole number of classes in the testing set, and it can be

used properly for the balanced dataset. The weighted

accuracy is presented by the following mathematical form

[65]:

Weighted Average ¼
PjCj

i¼1 TPi
PjCj

i¼1 TPi þ FNi

ð10Þ

where i ¼ 1; 2; . . .;C introduces the number of emotion

classes used, TP (True Positive) refers to the number of

positive samples that were recognized correctly as positive

samples from the classification model.

However, the unweighted accuracy (UA) refers to the

average of per-class accuracies. In this work, all results

have been shown as unweighted accuracy which is more

realistic for accuracy measurement especially when the test

set of datasets is imbalanced. The unweighted accuracy is

presented by the following mathematical form:

Unweighted Accuracy ¼ 1

jCj
X

jCj

i¼1

TPi

TPi þ FNi

ð11Þ

Additionally, we presented the confusion matrix for all

experiments to show the match and mismatch between

predicted and actual labels.

6.1 Experimental evaluations

In this study, we have evaluated the impact of the two

adopted reservoirs instead of the single reservoir in addi-

tion to the impact of using and without using over-sam-

pling and under-sampling. We have handled different

experiments to evaluate our proposed model as shown in

Table 1. Following are the models that have been investi-

gated using all the involved datasets:

• Model-1, single ESN with sampling: The model has

been evaluated based on having one reservoir with a

sampling technique to overcome the imbalanced issue.

The conducted experiments show that sampling meth-

ods (random over-sampling and random under-sam-

pling) are able to increase the performance of a single

reservoir compared to the use of a single reservoir

without sampling [15] by 1.35% UA for EMO-DB,

0.36% UA for SAVEE, and 1.56% UA for RAVDESS

(see Table 1). However, our proposed model, where

parallel reservoirs are adopted, outperformed this model

(Model-1) in all datasets except FAU Aibo, which is an

indication that both reservoirs in the proposed ESN

model can have a better SER performance than the

single reservoir.

• Model-2, Parallel ESN without sampling: To show

the impact of the use of sampling data to resolve the

imbalanced issue using parallel ESN, we conducted an

experiment applied to all the datasets as shown in

Table 1. Feeding two reservoirs with the bidirectional

data without solving the unbalancing issue leads to a

decrease in the performance using all of the involved

datasets. We notice that in both EMO-DB and SAVEE

datasets, the proposed model is able to improve the

performance significantly over the current Model-2.

However, the proposed model improvement when

applied to RAVDESS dataset is not more than 1.11%

of accuracy.

• Model-3, Parallel ESN with SMOTE: In order to

investigate the impact of the random over-sampling and

random under-sampling approach over the well-known

SMOTE method, we have adopted the parallel ESN

with SMOTE. In the SMOTE method, new samples are

created between two randomly chosen samples with a

random distance. On the other side, random over-

sampling duplicates samples in the minority classes

randomly. The results showed that adopting random

over-sampling and random under-sampling outper-

formed the same model when using SMOTE. As shown

in Table 1, the result of the use of SMOTE for

RAVDESS is very close to the random over-sampling

model where the difference is only 0.13%. However,

the proposed model outperformed by 3.56%, 1.9%, and
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6.86% for Emo-DB, SAVEE, and FAU Aibo,

respectively.

• Model-4, Parallel ESN with reservoir fusion: To

conduct how the fusion based on directions in both

reservoirs has an impact on the model performance, we

adopted the reservoir fusion method. Here, we deal with

the output of each reservoir independently from the

other one. Both directions that output from a single

reservoir fused together to produce a representation to

feed to the classifier as shown in Fig. 5. The result

shows that mixing both directions and feeding them to

the reservoir model space will affect the performance

negatively as shown in Table 1, while fusion of forward

and backward directions from both reservoirs separately

will contribute to enhancing the SER accuracy. The

fusion based on directions achieved considerably higher

performance in Emo-DB, SAVEE, and RAVDESS

datasets compared to the fusion based on reservoirs.

However, the differences between this model and the

proposed model in FAU Aibo accuracy are only 0.48%.

The overall results show that the parallel ESN with random

over-sampling for EMO-DB and RAVDESS and random

under-sampling for SAVEE has a significant improvement

on the proposed model.

Although the improvement of the proposed model over the

Model-1 is not as much as the improvement over the other

models, however, this improvement is statistically significant.

Additionally, the time consuming cost of the proposed model

is linearly increased, i.e., in this case, it is doubled.

6.2 Proposed model results

Table 2 shows the detailed speaker-independent results

measured by precision, recall, and F1 score for each

emotion, in addition to the model weighted and unweighted

percentage accuracy in the EMO-DB dataset. We pursued

the cross-validation method for EMO-DB using LOSO,

where 9 speakers are chosen as a training set and one

speaker as a testing set, then the procedure is repeated 10

times to give the chance for all the other 9 speakers to be

chosen for testing the model.

Table 2 presents the performance per class of the pro-

posed model for the EMO-DB dataset. The sadness class

has the best accuracy where all samples were recognized

correctly, and the anger class has 99.21%. However, hap-

piness has a very weak performance (64.79% accuracy).

Moreover, Fig. 6 illustrates the confusion matrix for

EMO-DB dataset results between the true label and the

predicted label for all of the seven emotion classes. Since

the happiness emotion has recorded the lowest accuracy,

one can observe from the confusion matrix that 28% of

happiness emotion samples are recognized as anger class.

Table 1 Evaluating and

comparing the proposed model

to other methods with different

techniques

Method EMO-DB SAVEE RAVDESS FAU Aibo

Model-1 (SingleESN?Sampling) 88.15 68.81 74.61 45.90

Model-2 (Parallel ESN?Without sampling) 82.19 63.45 74.28 34.11

Model-3 (Parallel ESN?SMOTE) 85.34 67.62 75.26 38.65

Model-4 (Parallel ESN?Reservoir Fusion) 82.45 65.83 69.53 45.03

Proposed model 88.9 69.52 75.39 45.51

The results are shown as unweighted percentage accuracy for Emo-DB, SAVEE, RAVDESS, and FAU

Aibo datasets

The highest accuracies are marked in bold

Fig. 5 The parallel ESN with reservoir fusion (Model-4)
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This may be an indication that the happiness emotion

expressed in a high arousal which is shared with the anger

emotion.

The classification result per each emotion class of the

SAVEE dataset is shown in Table 3. Table 3 presents the

details of the speaker-independent approach performance

measured by precision, recall, and F1 score for each class,

in addition to the model weighted and unweighted per-

centage accuracy in the SAVEE dataset. The neutral class

recorded the highest performance by recognizing 91.67%

of its samples, while sadness, fear, and disgust emotions

have a lower performance by 43.33%, 50%, and 56.67%,

respectively. The rest of the emotion classes which include

anger, surprise, and happiness showed 88.33%, 80%, and

76.67%, respectively.

From Fig. 7, the performance of the proposed model for

the SAVEE dataset has been shown by the confusion

matrix. The sadness class was mostly recognized as neutral

and disgust by 37% and 15%, respectively. In addition,

20% of disgust emotion was recognized as neutral, and

Table 2 The proposed model performance for EMO-DB dataset in

terms of the model weighted and unweighted accuracy, in addition to

precision, recall and F1 score for each emotion class

Emotion Precision Recall F1 score

Anger 82.89 99.21 90.32

Boredom 92.86 96.30 94.55

Disgust 95.24 86.96 90.91

Fear 93.44 82.61 87.69

Happiness 90.20 64.79 75.41

Sadness 95.38 100 97.64

Neutral 91.25 92.41 91.82

Weighted 90.47 90.09 89.76

Unweighted 91.61 88.90 89.76

Fig. 6 The confusion matrix of

the proposed model for the

EMO-DB dataset

Table 3 The proposed model performance for SAVEE dataset in

terms of the model weighted and unweighted accuracy, in addition to

precision, recall and F1 score for each emotion class

Emotion Precision Recall F1 score

Anger 72.60 88.33 79.70

Disgust 58.62 56.67 57.63

Fear 78.95 50.00 61.22

Happiness 82.14 76.67 79.31

Neutral 71.90 91.67 80.59

Sadness 74.29 43.33 54.74

Surprise 71.64 80.00 75.59

Weighted 72.75 72.29 71.17

Unweighted 72.88 69.52 69.82
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50% of fear emotion was mainly recognized as surprise and

anger classes.

Table 4 shows the detailed results in terms of precision,

recall, F1 score, weighted, and unweighted accuracy for

each individual emotion class for the RAVDESS dataset.

We followed the LOSO approach where 23 speakers are

chosen for the training set, while a single speaker is used as

a testing set. This process is repeated 24 times such that

each speaker can represent the testing set separately from

the remaining speakers. The neutral and sad emotions

recorded the lowest performance (57.29% and 58.33%,

respectively). However, calm and disgust have the highest

performance by gaining 88.54% of accuracy for each of

them.

The confusion matrix in Fig. 8 shows the accuracy of the

eight emotion classes individually of the RAVDESS

dataset. The neutral emotion recorded the lowest perfor-

mance, where 17% and 16% are recognized as calm and

sad, respectively. Additionally, 12% of the sad emotion

samples in the test set are recognized as calm emotion,

where both emotions have low arousal characteristics.

To conduct a fair comparison with the state-of-the-art

studies, we have followed the same interspeech09 chal-

lenge [64] protocol adopted in the previous chapter.

Table 5 lists the detailed classification results of the pre-

cision, recall, F1 score, unweighted, and weighted per-

centage accuracy for each emotion class for FAU Aibo

dataset. It can be observed that there is a big gap between

the weighted and unweighted accuracy due to the high

imbalance of data. The low accuracy of this dataset com-

pared to the others reflects the challenge of emotion

recognition in a spontaneous dataset.

The confusion matrix in Fig. 9 shows the accuracy of

each five involved emotion classes of FAU Aibo dataset.

The anger class recorded 66% as the highest accuracy and

the rest emotion class with 17% is the lowest accuracy that

Fig. 7 The confusion matrix of

the proposed model for SAVEE

dataset

Table 4 The proposed model performance for RAVDESS dataset in

terms of the model weighted and unweighted accuracy, in addition to

precision, recall and F1 score for each emotion class

Emotion Precision Recall F1 score

Neutral 70.51 57.29 63.22

Calm 74.89 88.54 81.15

Happy 80.92 72.92 76.71

Sad 65.50 58.33 61.71

Angry 86.56 83.85 85.19

Fearful 74.41 81.77 77.92

Disgust 77.98 88.54 82.93

Surprised 78.41 71.88 75.00

Weighted 76.52 76.60 76.29

Unweighted 76.15 75.39 75.48
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we have got from the proposed model. The low accuracy of

rest class may be due to its samples nature where they have

different labels but are gathered under the same class.

6.3 Comparison with the state-of-the-art

The proposed model used two reservoirs to create a more

typical representation of the input data and capture inde-

pendent information of the input data. Due to the unbal-

ancing of the used speech emotion datasets, we applied

over-sampling and under-sampling techniques to reduce

the negative effect of data unbalancing at the sample level

by removing or duplicating the majority and minority

samples, respectively. Moreover, SRP has been adopted to

decrease the dimensionality of the output feature repre-

sentation from the reservoir layer. This novel proposed

model to recognize emotion from speech with its simple

structure and the trainless nature assists to improve the

classification accuracy.

Due to the imbalanced nature of the SER datasets, we

present the overall unweighted accuracy (UA) for our

experiments, since its more realistic than weighted accu-

racy. Our proposed model for EMO-DB achieved 88.9%

UA, for SAVEE dataset obtained 69.52% UA, and for

RAVDESS, the achieved performance is 75.39%. Among

all the state-of-the-art methods that are adopting the LOSO

approach, our proposed model was able to outperform

them, in the exception of the result for the proposed single

reservoir for FAU Aibo, which outperform the proposed

model. The comparison between our work with various

new studies that have been conducted lately for classifi-

cation UA LOSO experiments is shown in Table 6.

For the EMO-DB dataset, we can observe in Table 6 that

the proposed model outperformed the remaining studies

significantly including the LSTM models [25, 67, 68]. We

can notice that the performance of the model with two

reservoirs and resampling data for EMO-DB has improved

the ESN model by 2.1% compared to the ESN model with

a single reservoir. Our model for the SAVEE dataset

Fig. 8 The confusion matrix of

the proposed model for the

RAVDESS dataset

Table 5 The proposed model performance (%) for FAU Aibo dataset

in terms of the model weighted and unweighted accuracy, in addition

to precision, recall and F1 score for each emotion class

Emotion Precision Recall F1 score

Anger 21.31 65.96 32.21

Emphatic 35.29 57.69 43.80

Neutral 83.12 30.31 44.43

Positive 09.56 56.74 16.36

Rest 13.86 16.85 15.21

Unweighted 32.63 45.51 30.40

Weighted 63.32 37.75 40.74
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achieved 69.52% which is 14.52% and 15.92% higher than

the GEBF model [12] and RDBN deep learning model

[66], respectively. Additionally, the proposed model out-

performs the use of a single reservoir by 1.07%. Regarding

the RAVDESS dataset, there are few works conducted

using the LOSO approach [15]. Our model recorded a new

high accuracy of the LOSO method in RAVDESS by

obtaining 75.39%. The deep learning and ESN models in

Table 6 have achieved distinguished results. Besides the

work of [15] who are using a single reservoir in bidirec-

tional late fusion ESN model, researchers in [68] and [67]

have used 3-D Log-Mel spectrums from speech signals and

fed them to the deep learning model with a classification

UA of 84.99% and 82.82%, respectively, for EMO-DB

dataset. Moreover, authors in [25] adopted deep learning

parallelized convolutional recurrent neural network

(PCRN) model with 3-D log Mel-spectrograms features

from EMO-DB and they achieved 84.53% UA. However,

our model outperformed the single reservoir ESN model

and the deep learning model by obtaining 88.90% UA.

Regarding the FAU Aibo dataset, one can notice that the

highest achieved result in the our previous works is the

single reservoir model proposed in [15]. The proposed

model is able to outperform the previous works by the use

of spectrogram-based features with deep learning models

[71–73] by achieving UA of 45.51%, however, this

achieved result is slightly lower than the proposed single

reservoir model in [15].

7 Conclusion and future work

The novel recurrent-based architecture for multivariate

time series SER classification by having two reservoirs and

resampling data to overcome the imbalanced datasets has

been proposed. The proposed model adopted bidirectional

data with two different stages of fusion and dimension

reduction by using SRP. We can conclude from the

obtained experimental results that the fusion of the same

direction produced from multi-reservoirs to be fused lately

with the other direction can have a more informative rep-

resentation for SER application. Additionally, the random

over-sampling and random under-sampling that adopt

duplicating the samples or removing them randomly show

distinguished ability over SMOTE method. The proposed

model achieved the highest classification unweighted

accuracy compared to the recent studies on speech emotion

recognition using speaker-independent by applying LOSO

on EMO-DB, SAVEE, and RAVDESS datasets and

speaker-independent on FAU Aibo dataset.

For future work, we can improve the current model by

using different approaches of sampling data and optimizing

hyperparameters that may have a significant influence for

Fig. 9 The confusion matrix of

the proposed model for the FAU

Aibo dataset
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improving the SER system. Additionally, different archi-

tectures of having parallel and sequential multi-reservoirs

can be put under investigation, since the result in this work

indicates a promising performance for such models.
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