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Abstract: Improved insight into the molecular mechanisms of triple negative breast cancer (TNBC) is
required to predict prognosis and develop a new therapeutic strategy for targeted genes. The aim of
this study is to identify key genes which may affect the prognosis of TNBC patients by bioinformatic
analysis. In our study, the RNA sequencing (RNA-seq) expression data of 116 breast cancer lacking
ER, PR, and HER2 expression and 113 normal tissues were downloaded from The Cancer Genome
Atlas (TCGA). We screened out 147 differentially co-expressed genes in TNBC compared to non-
cancerous tissue samples by using weighted gene co-expression network analysis (WGCNA) and
differential gene expression analysis. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were constructed, revealing that 147 genes were
mainly enriched in nuclear division, chromosomal region, ATPase activity, and cell cycle signaling.
After using Cytoscape software for protein-protein interaction (PPI) network analysis and LASSO
feature selection, a total of fifteen key genes were identified. Among them, BUB1 and CENPF were
significantly correlated with the overall survival rate (OS) difference of TNBC patients (p value < 0.05).
In addition, BUB1, CCNA2, and PACC1 showed significant poor disease-free survival (DFS) in TNBC
patients (p value < 0.05), and may serve as candidate biomarkers in TNBC diagnosis. Thus, our
results collectively suggest that BUB1, CCNA2, and PACC1 genes could play important roles in the
progression of TNBC and provide attractive therapeutic targets.

Keywords: triple negative breast cancer; differentially co-expressed genes; bioinformatics analysis;
biomarkers

1. Introduction

Triple negative breast cancer (TNBC) is a subtype of breast cancer that lacks expression
of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) following immunohistochemical analysis [1]. It is estimated
that approximately 200,000 cases are diagnosed with TNBC among women worldwide,
accounting for 15% of all breast cancers each year [2]. Although there are many types of
cancer treatments, including surgeries, chemotherapies, and radiation therapies, approved
for patients with TNBC, it remains a significantly poorer prognosis with lower survival
rates than other types of breast cancer. Early detection and treatments are crucial for
improving cancer outcomes [3,4].

The rapid development of microarray and next-generation sequencing technologies
provides researchers with the ability to detect changes in gene expression data of various
cancer types [5]. Weighted gene co-expression network analysis (WGCNA), also known as
weighted correlation network analysis, is a systematic biology approach to describe the
correlation of gene expression between different samples. This approach has been widely
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used to find highly relevant gene clusters (modules) and identify candidate hub genes
based on the interconnectivity of gene modules and the association between gene modules
and clinical traits [6]. LASSO is one of the common machine learning methods. It can
effectively select important feature values with non-zero coefficients through regularization.
Therefore, it is widely used in the classification or feature selection of high-dimensional
data [7,8].

In our study, WGCNA integrated with differential gene expression analysis was
applied to analyze high-throughput sequencing data from the TCGA database to identify
differentially co-expressed genes between TNBC and normal tissues samples, followed by
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses. Moreover, a protein–protein interaction network was established by
STRING, and candidate key genes were identified by the CytoHubba plug-in in Cytoscape
and a LASSO regression model. Finally, we verified the prognostic value of key genes based
on data from Kaplan–Meier (KM) Plotter databases [9]. These findings may be important
in evaluating the malignant potential and clinical outcomes of patients with TNBC.

2. Materials and Methods
2.1. Data Collection from TCGA

The workflow of this study is shown in Figure 1. The whole transcriptome sequencing
data set of raw read counts and fragments per kilobase per million (FPKM) values, and
corresponding clinical data (Supplementary Table S1) of all breast cancer patients were
downloaded from TCGA-BRCA dataset using R package TCGAbiolinks (V2.14.1) [10]. The
raw read counts are used for the analysis of differentially expressed genes, while FPKM data
were used for WGCNA and subsequent downstream analyses. We collected 1222 breast
cancer samples, including 1109 tumor and 113 normal tissue samples, from the TCGA
database. Based on the clinical information of the samples, 116 TNBC samples with the lack
of expression in ER, PR, and HER2 and 113 normal breast tissue samples were retained in
this study for further analysis. The demographic information of the 229 samples is shown
in Supplementary Table S1.
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2.2. Screening for Differentially Expressed Genes

Differential gene expression analysis provides a method to identify the changes of
gene expression between experimental and control groups. In the present study, the R
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package DESeq2 (V1.26.0) [11] was applied to screen the differentially expressed genes
(DEGs) in selected TNBC compared with normal samples. The gene names corresponding
to the Ensemble ids were converted into a gene symbol via the Ensembl database. For
the repetitive gene symbols, only the one with the highest sum of expression levels is
kept. Before analyzing DEGs, DESeq2 will use the median of ratios method to perform
normalization preprocessing on the input raw read counts data. Subsequently, genes
whose total expression level is less than 1 in all samples are deleted. The p-values of
DEGs were corrected to false discovery rate (FDR) following the Benjamini–Hochberg
method [12]. DEGs with FDR < 0.05 and | log2 fold change (FC)| > 1 were considered
a statistically significant difference. Finally, 9226 DEGs were visualized as a volcano plot
using R package ggplot2 (V3.3.0) [13], and used further as candidate genes for co-expression
network construction.

2.3. Construction of Co-Expression Network and Identificaion of Key Modules

WGCNA is used to explore gene modules highly related to the external traits of
the samples. The weighted gene co-expression network of 9226 DEGs in our study was
constructed through the R package WGCNA (V1.69) [6]. The correlation coefficients between
genes were calculated using the following formula: aij = |Sij|β (aij: Adjacency between
gene i and gene j, Sij: Pearson’s correlation between gene i and gene j, β: Soft threshold).
Then, the adjacency matrix was converted into a topological overlap matrix (TOM). In
WGCNA, the linkage hierarchical clustering was carried out for the genes dendrogram
based on dissimilarity measure (1-TOM), and the minimum size (gene group) was set as 150
in order to classify the genes with similar expression profiles into the same gene module.

To further determine the key modules in the co-expression network, the relevance of
module eigengene (ME) to clinical traits was calculated, and the association of each gene
with clinical significance was measured by gene significance (GS). Module significance (MS)
is considered as the average GS for all genes in a module. The modules that typically have
the highest absolute MS ranking among all modules were selected for further analysis.

2.4. Candidate Module Hub Genes Identification

After identifying significant interest of modules, GS and module membership (MM)
were calculated for each gene. In WGCNA, MM refers to the correlation between genes
and gene expression profiles. Hub genes are a subset of highly interconnected genes
(nodes) within key modules of co-expression network, and are significantly associated with
biological functions. In our study, to further identify genes related to TNBC, we selected
genes with |GS| > 0.2 and |MM| > 0.8 as module hub genes.

2.5. Functional and Pathway Enrichment Analyses

To understand the function of hub genes in the key modules, GO and KEGG pathways
were implemented using R package clusterProfiler (V3.14.3) [14]. The clusterProfiler uses
Bioconductor GO.db (V3.14) and KEGG.db (V3.2.4) to annotate genes with GO and KEGG
terms. In GO analysis, GO terms contain biological process (BP), cellular component (CC),
and molecular function (MF) [15]. In addition to the function annotation of the genes,
KEGG is helpful to clarify the signaling transduction pathway involved in hub genes [16].
A p-value < 0.05 was set as the cut-off standard.

2.6. PPI Network Construction and Modules Selection

The online STRING database (https://string-db.org/, V11.0) (accessed on 18 Decem-
ber 2021) is used to predict and analyze the functional association network between proteins
in the organism [17]. In this study, the STRING database was applied for constructing the
PPI network of hub genes, and the PPI network with functional association score ≥ 0.7 was
visualized based on Cytoscape (https://cytoscape.org/, V3.8.0) (accessed on 18 December
2021) [18].

https://string-db.org/
https://cytoscape.org/
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Subsequently, the hub genes of the PPI network were screened by using the CytoHubba
(V0.1) plug-in in Cytoscape according to the maximum clique centrality (MCC) score of
each node. The MCC algorithm formula is as follows: MCC(v) = ∑C∈S(v)(| C | − 1)!
(S(v): The collection of Maximal Clique containing node v, (| C | − 1)!: is the product of all
positive integers less than | C |). The 10 genes with the highest MCC score are selected as
the hub genes. As previously reported, MCC algorithm can effectively find the important
nodes in the network, and the nodes with the top 10 MCC scores have been proven to be
effective [19].

2.7. Feature Selection by LASSO Regression

LASSO regression analysis was performed using the R package glmnet (V4.1) [20],
and LASSO regression analysis methods are often used for feature selection or as a binary
classifier. In this study, a combination of candidate genes associated with TNBC was
selected using the features of LASSO feature selection. Cross-validation can effectively
improve the performance of the model, so we use 10-fold cross-validation to train the
model. Lambda 1 standard error (lambda.1se) usually optimizes regularization, which
keeps the error and the minimum error within one standard deviation error [21].

2.8. Verification of Prognostic Value of Hub Genes

To verify the prognostic value of hub genes and significant genes, OS and DFS prog-
nostic analyses were performed based on the expression and clinical data from KM Plotter
(http://www.kmplot.com) (accessed on 18 December 2021) databases. KM Plotter used
Cox proportional hazards regression were used to perform prognostic analysis for each
gene, and the Benjamini–Hochberg method was used to correct for multiple hypothesis
testing [9,22]. We divided the patients into high and low expression groups according
to their average expression value of hub genes, and the p-value of the prognostic anal-
ysis results was corrected by FDR. The log-rank p-values < 0.05 were considered to be
statistically significant.

3. Results
3.1. Identification of DEGs in TNBC from TCGA

The DEGs analysis was performed on the RNA-seq data of 116 TNBC and 113 normal
tissue samples from TCGA database. In this study, we screened out a total of 9226 DEGs,
including 5626 up-regulated and 3600 down-regulated genes, based on the screening criteria
of FDR < 0.05 and |log2 FC| > 1. The volcano plot of 9226 DEGs is shown in Figure 2.
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3.2. Weighted Co-Expression Network Construction and Gene Modules Identification

We utilized the WGCNA package to construct a co-expression network for 9226 DEGs,
and those with similar expression patterns were grouped into the same gene module
through average linkage clustering. In choosing the best thresholds, the network topology
for soft-thresholding powers from 1 to 20 was calculated by scale independence and mean
connectivity analysis of modules (Figure 3a,b). As shown in Figure 3c,d, when the soft
threshold β was selected as 5, the power for the scale-free topology fit index reached 0.95.
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Figure 3. Determination of soft thresholding power in WGCNA. (a) Analysis of the scale-free fit
index for various soft thresholding powers β. (b) Analysis of the mean connectivity for various soft
thresholding powers. (c) Histogram of connectivity distribution when β = 5. (d) Checking the scale
free topology when β = 5.

To ensure compliance with low correlation, the dissimilarity between each module was
evaluated. The modules with the dissimilarity < 0.2 were subsequently merged (Figure 4a),
resulting in a total of 14 modules in this study (Figure 4b). The genes that could not
ne classified into any modules were collected in the gray module and were not used in
following analysis. Then, the correlations between modules and clinical phenotypes (cancer
and normal) were calculated and plotted as shown in Figure 5. The result shows that the
blue module was highly related to cancer (r = 0.87, p = 4 × 10−71). Based on the cut-off
criteria (|MM| > 0.8 and |GS| > 0.2), 147 module hub genes were selected in the blue
module for further analysis.
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Figure 4. Module clustering results by WGCNA. (a) Dendrogram of dissimilarity between modules.
(b) Gene dendrogram based on dissimilar (1-TOM) clustering. Each branch of the tree diagram
represents a gene.

3.3. Module Genes Identification and Functional Enrichment Analysis

In order to investigate the biological function of 147 candidate module genes, we
performed GO and KEGG pathway enrichment analysis by using R package clusterProfiler
(Figure 6a,b). Specifically, the BP group genes were focused on nuclear division, organelle
fission, cell cycle checkpoint, and nuclear chromosome segregation. In addition, the CC
group genes were mainly related to midbody, spindle, chromosomal region, and micro-
tubule. Moreover, the MF group genes were mainly enriched in protein serine/threonine
kinase activity, histone kinase activity, and cyclin-dependent protein kinase activity. Under
the threshold of p < 1 × 10−4, the KEGG pathway analysis of 147 candidate module genes
showed that cell cycle, progesterone-mediated oocyte maturation, and DNA replication
were most significantly enriched.
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3.4. PPI Network Construction and Hub Genes Identification

Among 147 candidate module genes, the PPI network was constructed with 145 nodes
and 2205 edges using the STRING database, and visualized using Cytoscape software
(Figure 7). Using the MCC algorithm of CtyoHubba plugin in Cytoscape, the co-expression
network of the top ten highest-scored genes, including PDZ Binding Kinase (PBK), DNA
Topoisomerase II Alpha (TOP2A), Cell Division Cycle Associated 8 (CDCA8), Abnormal
Spindle Microtubule Assembly (ASPM), Cyclin A2 (CCNA2), Kinesin Family Member
20A (KIF20A), BUB1 Mitotic Checkpoint Serine/Threonine Kinase (BUB1), Aurora Kinase
B (AURKB), Cyclin Dependent Kinase 1 (CDK1), and Cyclin B2 (CCNB2), is shown in
Figure 8 and selected as hub genes.
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3.5. Select Significant TNBC Genes Using LASSO Regression Model

This study adjusts for starting a variable selection with a large number of features
by validation followed by training. Therefore, 147 candidate model genes were used to
fit the LASSO regression model, and 10-fold cross-validation was used to train the model.
According to lambda 1se, 0.03422616 was determined as an appropriate λ value (Figure 9A).
Finally, six non-zero coefficient TNBC genes (CDK1, CENPF, MCM7, PACC1, TUBB, and
UBE2C) were obtained (Figure 9B), which were then used in survival analysis to verify the
prognostic value.
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3.6. Survival Analysis and Prognostic Value Verification of Key Genes

In order to verify the prognostic value of 10 hub genes and six significant genes, KM
Plotter was applied to 201 TNBC patients for OS analysis, and 576 TNBC patients for DFS
analysis. Among the 10 pivot genes, the survival rate of BUB1 (FDR = 0.041) in the OS
analysis was significantly different between the high and low expression groups (p < 0.05,
Figure 10c). In the DFS analysis of BUB1 (FDR = 0.043), CCNA2 (FDR = 0.043), and CDCA8
(FDR = 0.043), there was a significant difference in survival rate between the high and
low expression groups (p < 0.05, Figure 11). On the other hand, in the OS analysis of six
important genes, the low expression of CENPF (FDR = 0.041) was significantly correlated
with the poor survival rate of TNBC patients (p < 0.05, Figure 12). The DFS analysis showed
that the high expression of PACC1 (FDR = 0.0152) was significantly correlated with the
poor prognosis of TNBC patients (p < 0.05, Figure 13).
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(a) ASPM (b) AURKB (c) BUB1 (d) CCNA2 (e) CCNB2 (f) CDCA8 (g) CDK1 (h) KIF20A (i) PBK
(j) TOP2A.
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Genes 2022, 13, 902 12 of 16
Genes 2022, 13, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 12. Disease free survival (DFS) analysis of 10 hub genes in TNBC patients by KM Plotter. (n 

= 534) (a) ASPM (b) AURKB (c) BUB1 (d) CCNA2 (e) CCNB2 (f) CDCA8 (g) CDK1 (h) KIF20A (i) 

PBK (j) TOP2A. 

Figure 12. Disease free survival (DFS) analysis of 10 hub genes in TNBC patients by KM Plotter.
(n = 534) (a) ASPM (b) AURKB (c) BUB1 (d) CCNA2 (e) CCNB2 (f) CDCA8 (g) CDK1 (h) KIF20A
(i) PBK (j) TOP2A.



Genes 2022, 13, 902 13 of 16Genes 2022, 13, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 13. Disease free survival (DFS) analysis of 6 Significant genes in TNBC patients by KM Plot-

ter. (n = 534) (a) CDK1 (b) CENPF (c) MCM7 (d) PACC1 (e) TUBB (f) UBE2C. 

4. Discussion 

In this study, we used a comprehensive bioinformatics analysis to identify 147 co-

expressed genes that were differentially expressed between TNBC and normal tissue sam-

ples in the TCGA-BRCA dataset. As shown by the GO analysis results, 147 differentially 

co-expressed genes are mainly enriched in nuclear division, chromosomal region, and 

ATPase activity, while the KEGG pathway analysis is mainly enriched in the cell cycle 

signaling. Moreover, according to the MCC scores using CytoHubba plugin in Cytoscape, 

the top ten hub genes (PBK, TOP2A, CDCA8, ASPM, CCNA2, KIF20A, BUB1, AURKB, 

CDK1, and CCNB2) related to TNBC were screened out, and using LASSO regression fea-

ture selection screened six significant TNBC genes (CDK1, CENPF, MCM7, PACC1, 

TUBB, and UBE2C). We further evaluated the prognostic values of the ten highest-scored 

genes and six significant genes in KM Plotter databases. The OS analyses show that BUB1 

and CENPF had a significantly poor prognosis in TNBC patients, while BUB1, CCNA2, 

CDCA8, and PACC1 show a significantly poor prognosis in TNBC patients in DFS anal-

yses. 

CENPF is reported to be a protein that interacts with microtubules and participates 

in the development of the cell cycle [23,24]. High expression of CENPF has been observed 

in various cancers, such as prostate cancer and breast cancer. In addition, the high expres-

sion of CENPF may eventually induce bone metastasis of breast cancer cells [25]. Several 

evidences suggest that enhanced CENPF is a reliable prognostic indicator of poor survival 

for breast cancer [25], prostate cancer [26], and hepatocellular carcinoma [27]. However, 

our research results show that lower expression of CENPF can cause poor OS prognosis 

in TNBC. It would be necessary to perform experiments to explore the mechanisms where 

CENPF is involved in patients with poor survival outcomes. 

BUB1, a mitotic checkpoint serine/threonine kinase, serves an important role in the 

establishment of mitotic spindle checkpoint in breast cancer cells [28–30]. BUB1 expres-

Figure 13. Disease free survival (DFS) analysis of 6 Significant genes in TNBC patients by KM Plotter.
(n = 534) (a) CDK1 (b) CENPF (c) MCM7 (d) PACC1 (e) TUBB (f) UBE2C.

4. Discussion

In this study, we used a comprehensive bioinformatics analysis to identify 147 co-
expressed genes that were differentially expressed between TNBC and normal tissue
samples in the TCGA-BRCA dataset. As shown by the GO analysis results, 147 differentially
co-expressed genes are mainly enriched in nuclear division, chromosomal region, and
ATPase activity, while the KEGG pathway analysis is mainly enriched in the cell cycle
signaling. Moreover, according to the MCC scores using CytoHubba plugin in Cytoscape,
the top ten hub genes (PBK, TOP2A, CDCA8, ASPM, CCNA2, KIF20A, BUB1, AURKB,
CDK1, and CCNB2) related to TNBC were screened out, and using LASSO regression
feature selection screened six significant TNBC genes (CDK1, CENPF, MCM7, PACC1,
TUBB, and UBE2C). We further evaluated the prognostic values of the ten highest-scored
genes and six significant genes in KM Plotter databases. The OS analyses show that BUB1
and CENPF had a significantly poor prognosis in TNBC patients, while BUB1, CCNA2,
CDCA8, and PACC1 show a significantly poor prognosis in TNBC patients in DFS analyses.

CENPF is reported to be a protein that interacts with microtubules and participates in
the development of the cell cycle [23,24]. High expression of CENPF has been observed in
various cancers, such as prostate cancer and breast cancer. In addition, the high expression
of CENPF may eventually induce bone metastasis of breast cancer cells [25]. Several
evidences suggest that enhanced CENPF is a reliable prognostic indicator of poor survival
for breast cancer [25], prostate cancer [26], and hepatocellular carcinoma [27]. However,
our research results show that lower expression of CENPF can cause poor OS prognosis in
TNBC. It would be necessary to perform experiments to explore the mechanisms where
CENPF is involved in patients with poor survival outcomes.

BUB1, a mitotic checkpoint serine/threonine kinase, serves an important role in the
establishment of mitotic spindle checkpoint in breast cancer cells [28–30]. BUB1 expression
is correlated with unfavorable prognosis in patients with malignant tumors, including
breast [31,32] and liver cancers [33]. Our study suggested that a low level of BUB1 expres-
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sion had reduced OS rates in TNBC patients. Nevertheless, in the DFS prognosis analysis,
higher BUB1 expression had a poor survival rate compared with it expressing a low level.
This would be worth investigating further.

Cell cycle regulator cyclin A2, also known as CCNA2, is a member of the highly
conserved cyclin family. It has been confirmed to be up-regulated in a variety of cancers
and participate in the progression of various cancers [34–36]. According to previous reports
that the high expression of CCNA2 can lead to the production of TNBC cells, it has been
identified as a potential candidate for the treatment of TNBC [37,38]. As we found in our
study, the high expression of CCNA2 will promote better survival rates of DFS in patients
with TNBC, which is worthy of in-depth study.

CDCA8 is known as Borealin/Dasra B, which is a component of the chromosomal
passenger complex essential for transmission of the genome in mitosis [39]. CDCA8
plays an important role in several types of cancer, and its overexpression may act as an
oncogene [40–42]. Overexpression of CDCA8 in breast cancer was reported to be associated
with triple-negative phenotype and a shorter overall survival [43]. However, our study has
shown that low CDCA8 expression results in shorter DFS survival. Further studied are
required to investigate whether CDCA8 is an indicator of good prognosis.

The alias of PACC1 is called TMEM206, which is a member of the transmembrane
(TMEM) protein family. The TMEM protein family is a potential player in the metastasis of
cancer cells [44]. It is currently known that TMEM206 activates the AKT and ERK signaling
pathways to worsen the progression of colorectal cancer and promote the proliferation,
spread, and metastasis of colon cancer cells [45]. TMEM206 cells are also up-regulated in
liver cancer cells [46], but the mechanism of action between TMEM206 and cancer is still
poorly understood, and it has not been reported to be related to TNBC cells. The results of
this study show that in the DFS analysis of PACC1 in TNBC patients, the high expression of
PACC1 will lead to significant adverse prognostic effects, which may be related to the high
expression of PACC1 inducing the proliferation and metastasis of cancer cells. Therefore,
PACC1 may be a novel potential therapeutic target for TNBC.

This study still has its limitations, the unavoidable issue of batch effects, and the
results may not apply to all TNBC patients. In summary, this study found BUB1, CCNA2,
and PACC1 genes as three poor prognostic genes related to TNBC cells. These key genes
may serve as potential biomarkers for the treatment or early diagnosis of TNBC.

5. Conclusions

The combination of WGCNA and differential gene expression analysis was used to
construct a gene co-expression network, and the modular hub genes essential to TNBC were
determined. Our results show that these genes are related to angiogenesis, cell proliferation,
and cell cycle progression. In addition, we also used survival analysis to verify the results
of MCC score ranking and LASSO feature selection, and found that the most important
central gene in OS is BUB1, and the most important central genes in DFS are BUB1, CCNA2,
and PACC1. However, the molecular mechanisms of these three key genes in TNBC need
to be further studied through experiments, which will bring new insights to the research
of TNBC.
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22. Győrffy, B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast
cancer. Comput. Struct. Biotechnol. J. 2021, 19, 4101–4109. [CrossRef] [PubMed]

23. Volkov, V.A.; Grissom, P.M.; Arzhanik, V.K.; Zaytsev, A.V.; Renganathan, K.; McClure-Begley, T.; Old, W.M.; Ahn, N.; McIntosh,
J.R. Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules. J. Cell Biol. 2015, 209, 813–828.
[CrossRef] [PubMed]

24. Manalo, A.; Schroer, A.K.; Fenix, A.M.; Shancer, Z.; Coogan, J.; Brolsma, T.; Burnette, D.T.; Merryman, W.D.; Bader, D.M. Loss
of CENP-F results in dilated cardiomyopathy with severe disruption of cardiac myocyte architecture. Sci. Rep. 2018, 8, 7546.
[CrossRef] [PubMed]

25. Sun, J.; Huang, J.; Lan, J.; Zhou, K.; Gao, Y.; Song, Z.; Deng, Y.; Liu, L.; Dong, Y.; Liu, X. Overexpression of CENPF correlates with
poor prognosis and tumor bone metastasis in breast cancer. Cancer Cell Int. 2019, 19, 264. [CrossRef]

https://portal.gdc.cancer.gov/
http://doi.org/10.1634/theoncologist.2011-S1-61
http://www.ncbi.nlm.nih.gov/pubmed/21278442
http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.1177/0897190012442062
http://www.ncbi.nlm.nih.gov/pubmed/22551559
http://doi.org/10.1016/j.breast.2010.03.026
http://www.ncbi.nlm.nih.gov/pubmed/20382530
http://doi.org/10.1038/nrd961
http://doi.org/10.1186/1471-2105-9-559
http://doi.org/10.7717/peerj.8301
http://doi.org/10.1038/s41598-021-84787-5
http://doi.org/10.1093/nar/gkv1507
http://doi.org/10.1186/s13059-014-0550-8
http://doi.org/10.1093/bioinformatics/btf877
http://www.ncbi.nlm.nih.gov/pubmed/12584122
http://doi.org/10.1002/wics.147
http://doi.org/10.1089/omi.2011.0118
http://www.ncbi.nlm.nih.gov/pubmed/22455463
http://doi.org/10.1093/nar/gkh036
http://doi.org/10.1016/S0303-2647(98)00017-3
http://doi.org/10.1093/nar/gkw937
http://doi.org/10.1101/gr.1239303
http://doi.org/10.1186/1752-0509-8-S4-S11
http://doi.org/10.18637/jss.v033.i01
http://doi.org/10.1016/j.proeng.2017.09.615
http://doi.org/10.1016/j.csbj.2021.07.014
http://www.ncbi.nlm.nih.gov/pubmed/34527184
http://doi.org/10.1083/jcb.201408083
http://www.ncbi.nlm.nih.gov/pubmed/26101217
http://doi.org/10.1038/s41598-018-25774-1
http://www.ncbi.nlm.nih.gov/pubmed/29765066
http://doi.org/10.1186/s12935-019-0986-8


Genes 2022, 13, 902 16 of 16

26. Zhuo, Y.-J.; Xi, M.; Wan, Y.-P.; Hua, W.; Liu, Y.-L.; Wan, S.; Zhou, Y.-L.; Luo, H.-W.; Wu, S.-L.; Zhong, W.-D. Enhanced expression
of centromere protein F predicts clinical progression and prognosis in patients with prostate cancer. Int. J. Mol. Med. 2015, 35,
966–972. [CrossRef]

27. Chen, H.; Wu, F.; Xu, H.; Wei, G.; Ding, M.; Xu, F.; Deivasigamani, A.; Zhou, G.; Hui, K.M.; Xia, H. Centromere protein F promotes
progression of hepatocellular carcinoma through ERK and cell cycle-associated pathways. Cancer Gene Ther. 2021. Online ahead of
print. [CrossRef]

28. Yuan, B.; Xu, Y.; Woo, J.-H.; Wang, Y.; Bae, Y.K.; Yoon, D.-S.; Wersto, R.P.; Tully, E.; Wilsbach, K.; Gabrielson, E. Increased
expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin. Cancer Res. 2006, 12, 405–410.
[CrossRef]

29. Myrie, K.A.; Percy, M.J.; Azim, J.N.; Neeley, C.K.; Petty, E.M. Mutation and expression analysis of human BUB1 and BUB1B in
aneuploid breast cancer cell lines. Cancer Lett. 2000, 152, 193–199. [CrossRef]

30. Takagi, K.; Miki, Y.; Shibahara, Y.; Nakamura, Y.; Ebata, A.; Watanabe, M.; Ishida, T.; Sasano, H.; Suzuki, T. BUB1 immunolocal-
ization in breast carcinoma: Its nuclear localization as a potent prognostic factor of the patients. Horm. Cancer 2013, 4, 92–102.
[CrossRef]

31. Han, J.Y.; Han, Y.K.; Park, G.-Y.; Kim, S.D.; Geun Lee, C. Bub1 is required for maintaining cancer stem cells in breast cancer cell
lines. Sci. Rep. 2015, 5, 15993. [CrossRef]

32. Wang, Z.; Katsaros, D.; Shen, Y.; Fu, Y.; Canuto, E.M.; Benedetto, C.; Lu, L.; Chu, W.M.; Risch, H.A.; Yu, H. Biological and Clinical
Significance of MAD2L1 and BUB1, Genes Frequently Appearing in Expression Signatures for Breast Cancer Prognosis. PLoS
ONE 2015, 10, e0136246. [CrossRef] [PubMed]

33. Zhu, L.J.; Pan, Y.; Chen, X.Y.; Hou, P.F. BUB1 promotes proliferation of liver cancer cells by activating SMAD2 phosphorylation.
Oncol. Lett. 2020, 19, 3506–3512. [CrossRef] [PubMed]

34. Dong, S.; Huang, F.; Zhang, H.; Chen, Q. Overexpression of BUB1B, CCNA2, CDC20, and CDK1 in tumor tissues predicts poor
survival in pancreatic ductal adenocarcinoma. Biosci. Rep. 2019, 39, BSR20182306. [CrossRef] [PubMed]

35. Gan, Y.; Li, Y.; Li, T.; Shu, G.; Yin, G. CCNA2 acts as a novel biomarker in regulating the growth and apoptosis of colorectal cancer.
Cancer Manag. Res. 2018, 10, 5113. [CrossRef]

36. Wang, Y.; Zhong, Q.; Li, Z.; Lin, Z.; Chen, H.; Wang, P. Integrated Profiling Identifies CCNA2 as a Potential Biomarker of
Immunotherapy in Breast Cancer. OncoTargets Ther. 2021, 14, 2433. [CrossRef]

37. Lu, Y.; Yang, G.; Xiao, Y.; Zhang, T.; Su, F.; Chang, R.; Ling, X.; Bai, Y. Upregulated cyclins may be novel genes for triple-negative
breast cancer based on bioinformatic analysis. Breast Cancer 2020, 27, 903–911. [CrossRef]

38. Lu, Y.; Su, F.; Yang, H.; Xiao, Y.; Zhang, X.; Su, H.; Zhang, T.; Bai, Y.; Ling, X. E2F1 transcriptionally regulates CCNA2 expression
to promote triple negative breast cancer tumorigenicity. Cancer Biomark. 2022, 33, 57–70. [CrossRef]

39. Hanley, M.L.; Yoo, T.Y.; Sonnett, M.; Needleman, D.J.; Mitchison, T.J. Chromosomal passenger complex hydrodynamics suggests
chaperoning of the inactive state by nucleoplasmin/nucleophosmin. Mol. Biol. Cell 2017, 28, 1444–1456. [CrossRef]

40. Bi, Y.; Chen, S.; Jiang, J.; Yao, J.; Wang, G.; Zhou, Q.; Li, S. CDCA8 expression and its clinical relevance in patients with bladder
cancer. Medicine 2018, 97, e11899. [CrossRef]

41. Wang, X.; Wang, H.; Xu, J.; Hou, X.; Zhan, H.; Zhen, Y. Double-targeting CDCA8 and E2F1 inhibits the growth and migration of
malignant glioma. Cell Death Dis. 2021, 12, 146. [CrossRef]

42. Dai, C.; Miao, C.-X.; Xu, X.-M.; Liu, L.-J.; Gu, Y.-F.; Zhou, D.; Chen, L.-S.; Lin, G.; Lu, G.-X. Transcriptional activation of human
CDCA8 gene regulated by transcription factor NF-Y in embryonic stem cells and cancer cells. J. Biol. Chem. 2015, 290, 22423–22434.
[CrossRef] [PubMed]

43. Jiao, D.; Lu, Z.; Qiao, J.; Yan, M.; Cui, S.; Liu, Z. Expression of CDCA8 correlates closely with FOXM1 in breast cancer: Public
microarray data analysis and immunohistochemical study. Neoplasma 2015, 62, 464–469. [CrossRef] [PubMed]

44. Marx, S.; Dal Maso, T.; Chen, J.-W.; Bury, M.; Wouters, J.; Michiels, C.; Le Calvé, B. Transmembrane (TMEM) protein family
members: Poorly characterized even if essential for the metastatic process. In Seminars in Cancer Biology; Elsevier: Amsterdam,
The Netherlands, 2020.

45. Zhao, J.; Zhu, D.; Zhang, X.; Zhang, Y.; Zhou, J.; Dong, M. TMEM206 promotes the malignancy of colorectal cancer cells by
interacting with AKT and extracellular signal-regulated kinase signaling pathways. J. Cell. Physiol. 2019, 234, 10888–10898.
[CrossRef] [PubMed]

46. Zhang, L.; Liu, S.-Y.; Yang, X.; Wang, Y.-Q.; Cheng, Y.-X. TMEM206 is a potential prognostic marker of hepatocellular carcinoma.
Oncol. Lett. 2020, 20, 174. [CrossRef] [PubMed]

http://doi.org/10.3892/ijmm.2015.2086
http://doi.org/10.1038/s41417-021-00404-7
http://doi.org/10.1158/1078-0432.CCR-05-0903
http://doi.org/10.1016/S0304-3835(00)00340-2
http://doi.org/10.1007/s12672-012-0130-x
http://doi.org/10.1038/srep15993
http://doi.org/10.1371/journal.pone.0136246
http://www.ncbi.nlm.nih.gov/pubmed/26287798
http://doi.org/10.3892/ol.2020.11445
http://www.ncbi.nlm.nih.gov/pubmed/32269624
http://doi.org/10.1042/BSR20182306
http://www.ncbi.nlm.nih.gov/pubmed/30765611
http://doi.org/10.2147/CMAR.S176833
http://doi.org/10.2147/OTT.S296373
http://doi.org/10.1007/s12282-020-01086-z
http://doi.org/10.3233/CBM-210149
http://doi.org/10.1091/mbc.e16-12-0860
http://doi.org/10.1097/MD.0000000000011899
http://doi.org/10.1038/s41419-021-03405-4
http://doi.org/10.1074/jbc.M115.642710
http://www.ncbi.nlm.nih.gov/pubmed/26170459
http://doi.org/10.4149/neo_2015_055
http://www.ncbi.nlm.nih.gov/pubmed/25866227
http://doi.org/10.1002/jcp.27751
http://www.ncbi.nlm.nih.gov/pubmed/30417481
http://doi.org/10.3892/ol.2020.12035
http://www.ncbi.nlm.nih.gov/pubmed/32934741

	Introduction 
	Materials and Methods 
	Data Collection from TCGA 
	Screening for Differentially Expressed Genes 
	Construction of Co-Expression Network and Identificaion of Key Modules 
	Candidate Module Hub Genes Identification 
	Functional and Pathway Enrichment Analyses 
	PPI Network Construction and Modules Selection 
	Feature Selection by LASSO Regression 
	Verification of Prognostic Value of Hub Genes 

	Results 
	Identification of DEGs in TNBC from TCGA 
	Weighted Co-Expression Network Construction and Gene Modules Identification 
	Module Genes Identification and Functional Enrichment Analysis 
	PPI Network Construction and Hub Genes Identification 
	Select Significant TNBC Genes Using LASSO Regression Model 
	Survival Analysis and Prognostic Value Verification of Key Genes 

	Discussion 
	Conclusions 
	References

