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Abstract: Antimicrobial resistance is a major public health issue. The pharmacokinetic/pharmacodynamic
(PK/PD) model is an essential tool to optimize dosage regimens and alleviate the emergence of re-
sistance. The semi-mechanistic PK/PD model is a mathematical quantitative tool to capture the
relationship between dose, exposure, and response, in terms of the mechanism. Understanding the
different resistant mechanisms of bacteria to various antibacterials and presenting this as mathemati-
cal equations, the semi-mechanistic PK/PD model can capture and simulate the progress of bacterial
growth and the variation in susceptibility. In this review, we outline the bacterial growth model and
antibacterial effect model, including different resistant mechanisms, such as persisting resistance,
adaptive resistance, and pre-existing resistance, of antibacterials against bacteria. The application of
the semi-mechanistic PK/PD model, such as the determination of PK/PD breakpoints, combination
therapy, and dosage optimization, are also summarized. Additionally, it is important to integrate
the PD effect, such as the inoculum effect and host response, in order to develop a comprehensive
mechanism model. In conclusion, with the semi-mechanistic PK/PD model, the dosage regimen can
be reasonably determined, which can suppress bacterial growth and resistance development.

Keywords: semi-mechanistic PK/PD model; antimicrobial resistance; mathematical equation;
dosage regimen

1. Introduction

The emerging antimicrobial resistance (AMR) of bacteria threatens clinical therapeu-
tics. The selective pressure exercised by the misuse and abuse of antimicrobials is an
important consideration for the antimicrobial industry. In addition, the use of antimicro-
bials in animals has been linked to a rise in AMR infections in both animals and humans.
AMR significantly increases morbidity, mortality, hospital length of stay, direct healthcare-
related costs, and the indirect societal costs of infections [1]. There is also a higher excess
expenditure of $20 billion in annual health care costs and $35 billion in societal costs due to
AMR [2]. Without the effective prevention and control of AMR, it is assumed that AMR-
related deaths will increase from 700,000 to 10 million by the 2050s; thus, it is essential to
limit the emergence and spread of AMR.

The pharmacokinetic/pharmacodynamic (PK/PD) model is a recognized tool for
determining the dosage regimen and guiding clinical medication. The PK/PD model
of antimicrobial agents can describe the triangular relationship between the potency of
a drug against a micro-organism, subject exposure to a drug, and drug effects [3] and
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contributes to the adjustment and optimization of dosage regimens, aiming to provide
enough antibacterial effect for an infection caused by drug-resistant bacteria [4]. The
PK/PD model of antimicrobials has been categorized by three PK/PD indices, which
are comprised of a summary endpoint of drug exposure correlated with the minimum
inhibitory concentration (MIC). The standardized notations for the PK/PD indices are
AUC0–24h/MIC, Cmax/MIC, and T > MIC, where AUC0–24h/MIC is the ratio of the area
under concentration related to the MIC within a 24 h period, Cmax/MIC is the maximum
concentration related to the MIC, and T > MIC is the cumulative percentage of the 24 h
that the concentration is above the MIC. Over recent decades, the PK/PD indices have
been applied as a cornerstone of dose selection for antibiotics; however, this approach is
associated with several drawbacks:

(1) The limitation of the MIC. The MIC is determined at only one time point (over
a 16–18 h period), with a low initial inoculum (i.e., usually in the absence of resistant
populations), and utilizing a constant inoculum antimicrobial concentration, which is op-
posed to the dynamic changes in the in vivo condition [5]. The MIC-based method ignores
the time-course of bacterial killing and is unable to predict the emergence of resistance.
Additionally, with the two-fold dilution technique and visual inspection, measured and sub-
jective errors may exist in the MIC results, inducing substantial uncertainty and variability.
Thus, MIC is not an appropriate quantitative PD index to characterize concentration–effect
relationships [6].

(2) PK/PD indices is established by correlating the reduction in bacterial count 24 h
after an initial inoculum count [7]. It is an empirical method to select the best PK/PD
index to predict the in vivo clinical efficacy and determine the optimal dosage regimen (as
shown in Figure 1). The endpoints lack detailed information about the time course of the
individual PK and PD processes, and the PK/PD indices are highly reliant on the MIC;
thus, the drawbacks of the MIC (static concentration and uncertainty) are propagated in
the indices. The PK/PD indices also vary between different patients, diseased conditions,
and MIC uncertainty. For example, the most correlated PK/PD index of cefuroxime, a
time-dependent antimicrobial, changes between T > MIC and AUC/MIC at different
conditions [8]. Additionally, the dosage regimen, determined by the PK/PD index, cannot
provide information about resistance. Thus, applying PK/PD indices to design the dosage
regimen seems questionable [9].

Pharmaceutics 2022, 14, x  3 of 20 
 

 

In this review, we introduce several semi-mechanistic models and analyzed different 
factors that would influence the assessment of antibacterial effect, such as the inoculum 
effect and host response. Additionally, we summarize the application of various semi-
mechanistic PK/PD models in alleviating the emergence of AMR. 

 
Figure 1. Method to derive the PK/PD index using the empirical PK/PD model. 

2. Components of Semi-Mechanism PK/PD Model 
Typically, a semi-mechanistic PK/PD model is composed of three basic components: 

(i) a component describing the PK of the drug, (ii) a component describing the bacterial 
kinetics, and (iii) a component describing the antibacterial effect.  

The PK model is applied to describe the adsorption, distribution, metabolism, and 
excretion progress in the body. The compartmental model represents the body as a system 
of one or more compartments, which does not correspond to the physiological and ana-
tomical mechanism [12]. For the mechanistic model, the physiological-based PK (PBPK) 
model describes the processes of chemical absorption, distribution, metabolism, and ex-
cretion (ADME) based on physiological and biochemical mechanisms [13]. Population PK 
modelling aims to use the techniques of model development to describe the population of 
interest. The process of modelling seeks to identify covariates that may be associated with 
potential sources of variability, particularly between individuals of relevance [14]. The 
ability to extrapolate dose and simulate the concentration–time curves using the mecha-
nistic model is a great advantage.  

In this review, we overview the components of bacterial growth and antibacterial 
effect, focusing on the AMR mechanisms.  

2.1. Bacterial Growth Model 
The simplest model, which describes the bacterial kinetics by a first-order rate con-

stant for bacterial growth (kgrowth) and a first-order rate constant for bacterial death (kdeath), 
is shown in the equation 1 [15]. B is the number of bacteria count by agar determination. 
The first-order rate constant for observed growth (knet) is calculated as knet = kgrowth – kdeath, 
since it is difficult to separate micro-organisms for growth or death using the PD experi-
ment. 𝑑𝐵𝑑𝑡 = 𝑘௡௘௧ × 𝐵 (1) 

Figure 1. Method to derive the PK/PD index using the empirical PK/PD model.



Pharmaceutics 2022, 14, 246 3 of 20

Mathematical models are important decision-supporting tools in medicine and public
health [7]. An in silico trial based on the PK/PD model can serve as primary evidence
for the approval of a labelled dosage regimen for one patient. In addition, the US Food
and Drug Administration (FDA), European Medicines Agency (EMA) and Centre for Drug
Evaluation of China encourage the adaptation of mathematical models for drug research
and development [10].

A semi-mechanistic PK/PD model was applied to alleviate the shortcomings of the
empirical model. The semi-mechanistic PD model can parameterize the processes of
bacterial growth and antibacterial effect and can be integrated with the PK model to
simulate the growth, death, and resistance emergence of the bacterial population under
different antibacterial exposures. Compared with the mechanistic PK/PD model, the
semi-mechanistic PK/PD model focuses on the macroscopic description of the microbial
system. As an example, for AMR, the mechanistic PD model is expert in describing the
process of protein function, which can influence the antimicrobial effect, and the semi-
mechanistic PK/PD model can simply the process and only describe the antimicrobial
resistance phenomenon. A semi-mechanistic PK/PD model, where prior mechanistic
understanding of the system is coupled with experimental data, may offer additional
information in the model extrapolations compared to an empirical model, while requiring
less prior knowledge [11]. The semi-mechanistic PK/PD model is devoted to improving
our understanding of the emergence, development, and spread of AMR and is a valuable
tool for optimizing the dosage regimen of antimicrobial agents.

In this review, we introduce several semi-mechanistic models and analyzed different
factors that would influence the assessment of antibacterial effect, such as the inoculum
effect and host response. Additionally, we summarize the application of various semi-
mechanistic PK/PD models in alleviating the emergence of AMR.

2. Components of Semi-Mechanism PK/PD Model

Typically, a semi-mechanistic PK/PD model is composed of three basic components:
(i) a component describing the PK of the drug, (ii) a component describing the bacterial
kinetics, and (iii) a component describing the antibacterial effect.

The PK model is applied to describe the adsorption, distribution, metabolism, and
excretion progress in the body. The compartmental model represents the body as a sys-
tem of one or more compartments, which does not correspond to the physiological and
anatomical mechanism [12]. For the mechanistic model, the physiological-based PK (PBPK)
model describes the processes of chemical absorption, distribution, metabolism, and ex-
cretion (ADME) based on physiological and biochemical mechanisms [13]. Population PK
modelling aims to use the techniques of model development to describe the population of
interest. The process of modelling seeks to identify covariates that may be associated with
potential sources of variability, particularly between individuals of relevance [14]. The abil-
ity to extrapolate dose and simulate the concentration–time curves using the mechanistic
model is a great advantage.

In this review, we overview the components of bacterial growth and antibacterial
effect, focusing on the AMR mechanisms.

2.1. Bacterial Growth Model

The simplest model, which describes the bacterial kinetics by a first-order rate constant
for bacterial growth (kgrowth) and a first-order rate constant for bacterial death (kdeath), is
shown in the Equation (1) [15]. B is the number of bacteria count by agar determination. The
first-order rate constant for observed growth (knet) is calculated as knet = kgrowth – kdeath, since
it is difficult to separate micro-organisms for growth or death using the PD experiment.

dB
dt

= knet × B (1)
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A saturable non-linear model is also used to describe bacterial growth, as Equation (2)
shown as Equation (2), where VGmax is the bacterial maximum growth per time and B50 is
B at which the bacterial growth is half-maximal [16].

dB
dt

=

(
VGmax

B50 + B

)
× B (2)

In the absence of an antimicrobial, bacteria grow exponentially until they reach a
stationary bacterial level. It has always been thought that a limitation of nutrients leads to
the stationary level. A logistic function can be used to describe capacity-limited growth
curves, where Bmax is the maximum number of bacteria in the system, as Equation (3)
shown [17]. However, the application of capacity-limited micro-organism growth to capture
the time course of bacteria using the in vitro static and dynamic model indicated that
nutrients are not the main reason [8].

dB
dt

= knet ×
Bmax − B

Bmax
× B (3)

Another approach to model capacity-limited growth is the division of micro-organisms
into two subpopulations, one being a growing subpopulation and the other being a resting
subpopulation. Bacteria in the growing stage are transformed into the resting stage when
the system is approaching stationary (Equation (4)). The transformation could be well
described by a constant rate [18].

dS
dt = kgrowth × S − kdeath × S − kSR × S + kRS × R

dR
dt = kSR × S − kRS × R − kdeath × R

(4)

where S and R are the bacterial number for the growing subpopulation and resting subpop-
ulation, respectively, and kSR is a constant parameter that simulates the transfer from the
growing stage into the resting stage.

2.2. Antibacterial Effect Model

The antibacterial effect can be modelled for either increasing the death rate or decreas-
ing the growth rate, as shown in Figure 2. The antibacterial effect can be assumed to be
non-linearly dependent on the antimicrobial concentration and is modelled by a sigmoid
Emax model (Equation (5)):

E f f ect =
Emax × Cγ

ECγ
50 + Cγ

(5)

where Emax is the maximum effect on death rate, EC50 represents the concentration of drug
that produces half of Emax, γ is the coefficient, and C is the antibacterial concentration.
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However, if there is insufficient information to estimate Emax, the following power
equation can be used to describe the antibacterial effect according to Equation (6):

E f f ect = Slope × Cγ (6)

Drug-resistant bacteria may occur during therapy and influence clinical perspective,
with unrationed antibacterial use for many decades being the main reason leading to the
selection for resistance [19]. The semi-mechanistic PK/PD model can describe the rela-
tionship between drug exposure and the emergence of resistance. In theory, by increasing
EC50 or decreasing Emax, the resistance can be captured in the PK/PD model. If high drug
concentrations can suppress the resistance, the increase in EC50 is used in the model. By
contrast, the decrease in Emax is more suitable when the increasing dose cannot eliminate
resistance [20].

2.2.1. Persistent Resistance

Bacteria can exhibit phenotype tolerance, whereby they can survive under antibac-
terial treatment without acquiring new mutations. Generally, a proliferating susceptible
subpopulation always has a small fraction of non-proliferating subpopulations (persisters).
In the absence of antimicrobial drugs, persisters can switch to the proliferating state, which
can cause post-treatment relapses and enable the development of genetic resistance. Un-
like genetic resistance, persistent resistance is non-inheritable, although the frequency of
persisters in a population can be genetically determined [21].

The persisters were modelled according to the idea of a phenotypic switching between
a normal growth subpopulation and a persistent subpopulation. Nilsen described two
states of bacteria growing under antibiotics: one growing as a susceptible subpopulation
and the other as a resting resistant subpopulation (Model 1, Figure 3) [18]. Different states
are assumed to have the same death rate (kdeath). The antimicrobial drugs only influence the
growing state. With a first-order constant (kSR), bacteria can transform from the growing
state to the resting state. This model can explain the biphasic bacterial concentration-time
curves, with a rapid killing rate followed by a decline in the killing rate over time.
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For Model 1, the susceptible subpopulation is inhibited by antimicrobials in the
growing state. The resting state, which is unsusceptible to antibacterial, is employed for
the model describing the biphasic kill, which can always be found in time-killing curves.
Nielsen successfully described the time-course of Streptococcus pyogenes exposed to five
different antimicrobial drugs. In addition, the fine-tuning of this model structure allows
further study in the application of the semi-mechanistic model.

Khan et al. further developed Model 2 (Figure 4) to describe the killing kinetics for
Escherichia coli (E. coli) exposed to ciprofloxacin [22], with each subpopulation including
three states for drug-susceptible growing bacteria (S), resting non-growing bacteria (R), and
non-colony-forming drug-susceptible bacteria (Nc). The Nc subpopulation is rendered non-
growing under the influence of the drug and is unable to grow on agar plates. This Nc state
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is most likely due to the formation of filaments, which is well known when E. coli is exposed
to ciprofloxacin. The adaption of the Nc state has significantly improved the description of
the time-killing experiment [22]. If there is insufficient drug to kill the filament bacteria,
they may revert to susceptible growing bacteria at constant rates (kNcS or kSNc). The bacteria
in the S and Nc states are both affected by the drug. The resting subpopulation is assumed
to have a different EC50 compared with the susceptible subpopulation. The kinetics of the
bacteria with time for different compartments is described in Figure 4.
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The mathematical equation describing the bacterial count for the different subpopula-
tions of Model 2 is shown in Equations (7)–(9).

dS
dt

= kgrowth × S − kdeath × S − E f f ect × S − kSR × S − kSNc × S + kNcS × Nc (7)

dR
dt

= kSR × S − kdeath × R (8)

dNc
dt

= kSNc × S − kNcS × Nc − kdeath × Nc − E f f ect × Nc (9)

where the Nc subpopulation is assumed to be non-growing under the influence of drug and
unable to grow on agar plates. The transformation rates between the susceptible growing
subpopulation and the Nc subpopulation are kSNc and kNcS.

Biofilms are sessile communities of bacterial cells, enclosed in an exopolymer matrix
and adherent abiotic surfaces. In developed countries, 65% of all infections are caused by
biofilms [23]. Biofilm plays an important role in immune evasion and tolerance toward
antimicrobial agents, leading to persistent and chronic infections. Sou et al. proposed a
model incorporating a semi-mechanistic description of biofilm development to evaluate
drug action on bacteria (Model 3, Figure 5), with bacteria in the planktonic state (P), the
biofilm state (B), and the latent state (L). The planktonic state represents the fast-growing
bacteria. The planktonic state can transit into a biofilm state, in which the bacteria can
readily transform into a non-growing latent state, which is tolerant to antibacterial. The
planktonic and biofilm states are both susceptible to antibiotics [24].
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Sou et al. assessed different equations that are suitable for use in the semi-mechanistic
model describing the drug effect of Pseudomonas aeruginosa chronic lung infections. For
example, different growth equations were outlined as exponential, capacity-limited, Gom-
pertz, and logistic growth, as equation 9 shown. Using the Akachi information criterion
(AIC) and goodness-of-fit between prediction and observation, the best equation (capacity-
limited growth function) was selected to describe planktonic cell growth. In addition, they
also evaluated the equation relating to the transport rate from the planktonic state to the
biofilm state (kPB, as shown in the Equation (10)) and the antibacterial effect (Effect).

kPB = kPB0 × P+B+L
Bmax

kPB = kPB0 × t
kPB = kPB0 × [1 − exp(−t)]

(10)

where P, B, and L represent the bacterial count in the planktonic state, biofilm state, and
latent state, respectively. The transition rate (kPB) is assumed to have different functions: a
first-order transition dependent on the amount of bacterial in the system or increasing with
time in a linear or a non-linear manner.

Multistate tuberculosis (M. tuberculosis) exists in growing and dormant forms in a
stationary-phase. In addition, both in vitro and in vivo, M. tuberculosis exists in a stage that
is not able to form colonies on solid media, while being able to multiply in liquid media [25].
The PD model has been described as consisting of fast- (F), slow- (S), and non-multiplying
(N) bacterial states (Model 4, Figure 6) [26]. The mathematical equation was according to
Equations (11)–(13). Except for the transformation from fast- to slow-multiplying states,
bacteria can interconvert into each state with a first-order rate. The transfer rate from fast- to
slow-multiplying bacteria (kFS) is estimated using a linear or non-linear manner dependent
on time. The time courses of the bacterial count change are described in the following
equations. They separate the drug effect on the inhibition of the growth of fast-multiplying
states and the simulation of the death of slow-multiplying states. The Emax and EC50 are
assumed to be different values for fast- and slow-multiplying states, and no death rate is
described in the mechanistic PD model of M. tuberculosis.

dF
dt

= kgrowth × (1 − E f f ectF)× F + kSF × S + kNF × N − kFS × F − kFN × F (11)

dS
dt

= kFS × F + kNS × N − kSF × S − kSN × S − E f f ectS × S (12)

dN
dt

= kFN × F + kSN × S − kNS × N − kNF × N (13)

where kFS, kSF, kFN, kNF, kSN, and kNS are the transport rates among different subpopulations.
F, S, and N are the bacterial numbers in the fast-, slow-, and non-multiplying subpopula-
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tions. EffectF and Effects are the antibacterial effects on the fast-multiplying bacteria and
slow-multiplying bacteria, respectively.
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2.2.2. Pre-Existing Resistance

Considering the mutant rate and initial inoculum, the bacterial system more likely
presents a pre-existing subpopulation for high initial inoculum [27]. A longitudinal model
consists of a susceptible subpopulation and a pre-existing resistant subpopulation (Model
5). In each subpopulation, the bacteria exist in two states: proliferating antibiotic suscep-
tible bacteria and resting non-proliferating bacteria. Both are assumed to have the same
growth rate, death rate, and maximum killing rate (Emax), but the two subpopulations
differ in the values of EC50. The drug concentration that produces 50% of Emax for the
susceptible subpopulation is much smaller than for the resistant subpopulation. The bac-
terial count change for the susceptible and resistant subpopulations can be defined by
the Equations (14) and (15). This model is also used to describe the dynamic kinetics of
intestinal flora in vivo [28].

dS
dt

= kgrowth × S − Emax × Cγ

EC50,S + Cγ
× S − kdeath × S (14)

dR
dt

= kgrowth × R − Emax × Cγ

EC50,R + Cγ
× R − kdeath × R (15)

where EC50,s and EC50,R represent the concentration of drug that produces half of Emax for
the susceptible subpopulation and the resistant subpopulation, respectively.

There is a model that contains a susceptible subpopulation (S), an intermediate sub-
population (I), and a resistant subpopulation (R), which is also considered to evaluate the
time-courses of bacteria counts (Model 6, Figure 7).
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A life cycle growth model is used to describe the underlying biology of bacterial
replication. The bacterial replication for each subpopulation is defined as two states:
preparing for replication (state 1) and immediately before the replication step (state 2). The
replication rate constant (k21) is assumed to evaluate different susceptibility subpopulations.
The total concentration of viable bacteria (CFUall) is calculated as Equation (16):

CFUall = S1 + S2 + I1 + I2 + R1 + R2 (16)

The concentration of bacteria counts for the susceptibility subpopulation at state 1 is
described as Equation (17):

dS1

dt
= REP × (1 − Drug)× k21 × S2 − k12,S × S1 (17)

where k21 is the replication rate constant, k12 is the growth rate constant, and REP is the
replication factor, which is calculated as Equation (18):

REP = 2 ×
(

1 − CFUall
CFUall + CFUmax

)
(18)

In the initial cultivation, REP represents a 100% probability of successful replication. As
CFUall approaches the maximum bacterial size (CFUmax), REP approaches a 50% successful
replication, with the total viable count remaining constant. The antibacterial effect is
described by the Emax model. The concentration of bacteria counts for the susceptibility
subpopulation at state 2 is described as Equation (19):

dS2

dt
= −k21 × S2 + k12,S × S1 (19)

Similar equations are used for states 1 and 2 of the intermediate (I1 and I2) and
resistant subpopulations (R1 and R2), but using different subpopulation parameters, such
as Emax, EC50, and k12. To better characterize E. coli when exposed to ertapenem (a broad-
spectrum carbapenem), the model consists of the susceptible growing state (S), intermediate
non-growing state (I), and resistant non-growing state (R) for two co-existing bacterial
subpopulations (a susceptible subpopulation and a resistant population). Bacteria in S and I
are drug susceptible, and bacteria can transform between states. This model well describes
the results of an in vitro PD study of three E. coli strains, a native strain, an ESBL-producing
strain, and an ESBL-producing strain with reduced expression of porins OmpF and OmpC.

2.2.3. Adaptive Resistance

Adaptive resistance is a specific class of non-mutational resistance that is characterized
by its transient nature [29]. This resistant type is unstable and can be a repetitive and
reversible occurrence, leading to a moderate broad-spectrum drug resistance. Adaptive
resistance might explain the phenomenon of “baseline creep”, whereby the average MIC of
a given medically important bacterial species increases steadily but inexorably over time.
Tam et al. introduced an adaption factor (α) dependent on time and drug concentration by
a saturable function of antimicrobial selective pressure, as shown in Equation (20) [30]:

α = 1 + β
[
1 − e−e(t)×t×τ

]
(20)

where β is the maximal adaption and τ is a rate constant of the adaption factor. An increase
in adaptive factor can be implemented to result in a gradual increase in EC50, which can be
considered as an evolution of the initial bacteria toward a resistant subpopulation.

Jacobs et al. proposed a new adaption function based on an indirect model according
to Equations (21) and (22) (Model 7) [5]. The time to adaptation is determined by the mean
turnover time of adaptive resistance and is thus independent of drug concentrations. This



Pharmaceutics 2022, 14, 246 10 of 20

adaptive function can reflect the situation that bacteria need to synthesize a protein to
express a resistance mechanism, such as the expression of an efflux pump.

d(Adaption)
dt

=

(
Smax − C
SC50 + C

− Adaption
)
× kout (21)

EC50 = EC50,base × (1 + Adaption) (22)

where EC50,base is the antibacterial concentration causing 50% of Emax in the absence of
adaption, Smax is the maximum fold-increase in EC50 due to adaptive resistance, SC50 is
the concentration causing 50% of Smax, and kout is the first-order rate constant for adaption.
The adaption changes the extent of EC50 in response to the alteration of susceptibility for
each subpopulation.

The adaptive resistance of aminoglycosides is a PD reversible process, which indicates
that bacteria can revert to the initial state (susceptible to the antimicrobial drug) when
drug exposure diminishes. Mechanistically, the expression of MexXY, an efflux pump
related to the export of aminoglycosides, is turned down as drug exposure gradually
diminishes, leading to susceptibility. Mohammad [31] introduced the development of
adaptive resistance as a binding function, as Equations (23)–(25) shown, where the degree
of binding resulted in a reduction of Emax from the initial value (Model 8, Figure 8).

dAROFF
dt

= ko f f × ARON − kon × AROFF × C (23)

dARON
dt

= kon × AROFF ∗ C − ko f f × ARON (24)

Emax = Emax,base ×
[

1 − ARon

ARON + AR50

]
(25)

where ARON describes the degree of adaptive resistance in the “on” state, AROFF represents
the adaptive resistance in the “off” state, AR50 is the value of ARON when Emax is reduced
by 50%, and kon and koff are the constants of the reversal rate of adaptive resistance. Initially,
ARON is empty, and the whole fraction of a hypothetical amount is in AROFF; upon drug
exposure, the amount transfers into ARON, with a rate constant kon. With a reduction of the
antimicrobial, the bacteria gradually revert into the initial state (AROFF) with koff.
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3. Methods for the Development of Semi-Mechanism PK/PD Model

To develop an efficient semi-mechanistic PK/PD model, strain selection, in vitro time-
killing experiments, and the establishment of a model need to be performed. Some details
are listed below.

Strain selection: One reference strain, and one susceptible and one less-susceptible clin-
ical isolate are required. The selection of a reference strain can demonstrate reproducibility.
It is better to choose virulent clinical isolates that can support translation to animals. Prior



Pharmaceutics 2022, 14, 246 11 of 20

to establishing the model, the MIC needs to be determined, following the guidance, and the
mutant frequency needs to be evaluated, which can assist with model establishment [27].

In vitro time-killing curves: Bacterial counts should be monitored repeatedly under
multiple drug concentrations at different timepoints, including the susceptible subpopula-
tion and the resistant subpopulation, in the in vitro time-killing experiment.

Establishing a model: Combined with the results of the in vitro experiment, a model,
introduced as above, is selected. It is better to evaluate parameters and mathematical form,
applying a non-linear mixed effects (NLME) model to run the semi-mechanistic PD model.
Model performance is assessed by the evaluation of diagnostic plots, model fit, and the
plausibility of estimated parameter values. In addition, the difference in objective function
value (OFV) is employed: when the reduction in OFV is at least 10.84, the alteration is
positive. AIC and Bayesian information criterion (BIC) can provide a reference to select an
optimum model. In addition, some diagnostic graphs, such as goodness-of-fit and visual
predictive curves (VPC), can assist in determining the model [32].

4. The Factors Affecting Model Establishment

In the PD experiment, some factors affect the establishment of the model, such as
the inoculum effect, host response, and different types of PD data. Integrating with these
factors, a dosage regimen can be derived comprehensively. This section discusses how the
semi-mechanistic PD model integrates with these factors to capture the kinetics of bacterial
count under drug exposure.

4.1. Inoculum Effect

The inoculum effect is the phenomenon involving the attenuation of an antibacterial at
a higher bacterial density of initial inoculum [17]. Numerous mechanisms have explained
this PD phenomenon, which decreases the antibacterial effect: (1) due to the number of
bacteria increasing, the concentration of antimicrobials is relatively decreased [17]; (2)
during a high-density inoculum, a biofilm is established to hamper the antibacterial ef-
fect [18]; (3) in some cases, a high bacterial inoculum can mediate the expression of proteins
that decrease antibiotic susceptibility, such as resistance enzymes or efflux pumps [19]; (4)
higher concentrations of bacteria can increase the subpopulation of the pre-existing resistant
subpopulation, while also enhancing the chances of a population spontaneously acquiring
a mutation decreasing antibiotic susceptibility. A PK/PD model that can well capture this
phenomenon would have an active effect on the selection of the dosage regimens.

Colistin is increasingly utilized to treat infections due to multidrug-resistance gram-
negative pathogens, including P. aeruginosa, which greatly threatens human health. After
displacing Mg2+ and Ca2+ from lipopolysaccharide binding sites, colistin disrupts the
outer and cytoplasmic membranes. A model assessing the effect of Mg2+ and Ca2+ on the
killing of P. aeruginosa by colistin was introduced by Bulitta et al. [33]. This model has also
been successful in describing the inoculum effect. There are three different susceptibility
subpopulations to colistin. To characterize the inoculum effect, all viable bacteria are
assumed to synthesize and release freely diffusible signal molecules that can inhibit the
killing effect.

To evaluate the inoculum effect and the lag time of the killing, a mathematical model
of Ceftazidime against P. aeruginosa was developed, involving two different subpopulations
integrated with different growth states, as shown in Model 7. Compared with different
PD models, a model that captures the life cycle of bacterial replication and autolysin
activity can well describe the in vitro time-killing curves. Ceftazidime is assumed to
bind with penicillin-binding proteins (PBPs) (StimDrug,S), which stimulate the autolysin
effect (ALyss), and the turnover of the autolysin effect causes the lag time of the killing.
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Autolysin activity is assumed to decrease the probability of successful replication, as shown
in Equations (26) and (27):

dALyss

dt
=

[
StimDrug,s −

(
1 +

Smax,loss × Csig1

C50,Sig + Csig1

)
× ALyss

]
× kout (26)

StimDrug,S =
Smax,S × CB

SC50 + CB
(27)

where Smax,S is the maximum value of ALyss (when Smax,S = 1, it indicates that the inoculum
effect can completely inhibit replication at high drug concentrations), SC50 is the drug
concentration at which the input of autolysin effect is half of the maximally stimulated,
Smax,loss describes the maximum extent of the inoculum effect at high signal molecule
concentrations, and C50,sig is the signal molecule that can perform half of the maximum
extent of the inoculum effect.

4.2. Host Response

For Gram-negative bacteria, the release of inflammatory products, such as LPS/endotoxin,
may increase due to the administration of antimicrobial drugs. This can be characterized
as a simulator of the innate immune response. Beta-lactams bind with PBP-1 or PBP-3
(penicillin-binding proteins), which may lead to the release of a large amount of endotoxin
upon final bacterial lysis. With the description of the mathematical method, Thorste et al.
explored the endotoxin release in the context of drug administration or bacterial growth,
by the quantitative link of two processes of bacterial growth [34]. Quantifying the release
of endotoxin would assist in the design of a valuable dosage regimen. The bacterial growth
model is described as Model 2, and the modelling of endotoxin release consists of (i) binary
fission (growth [G]), (ii) antibiotic-induced killing (K), and (iii) natural bacterial death (D)
as Equations (28)–(30) shown.

dG
dt

= kG,ETX × kgrowth × S − kel × G (28)

dK
dt

= kK,ETX ×
(

Emax × Cγ
AB

ECγ
50 + Cγ

AB

)
× S − kel × K (29)

dD
dt

= kD,ETX × kdeath × (S + R)− kel × D (30)

where kG,ETX, kK,ETX, and kD,ETX are assumed to be constant for different bacterial sub-
population release endotoxin, and kel represents the elimination rate, which is set to zero
in the static model. For the in vitro dynamic model, a Gaussian function is employed to
describe the transition from a susceptible state to a filamentous state (kfilament) according to
Equation (31).

k f ilament = e−
(CAB−θMIC,F×MIC)2

2 (31)

where θMIC,F represents being centered around an antibiotic concentration given by the
pathogen MIC times an estimated parameter.

dF
dt

= −
(

Emax × Cγ
AB

ECγ
50 + Cγ

AB

)
× F − kdeath × F + k f ilament × S + kgrowth × F (32)

dFK
dt

= kF,ETX ×
(

Emax × Cγ
AB

ECγ
50 + Cγ

AB

)
× F − kel,ETX × FK (33)

where Equation (32) describes the formation of filaments. kgrowth, differentiated from the
above, represents an increase in biomass, which leads to increased endotoxin release upon
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the antibiotic-induced killing of the filaments. Equation (33) described the antibiotic-
induced killing of filaments.

It is difficult to directly describe the host response impact on enhancing the antibacte-
rial effect or death rates of the bacteria. A biomarker is defined as a quantifiable biological
parameter to guide diagnosis, the initiation, monitoring and cessation of therapy, and
for prediction of clinical outcomes [35]. Different biomarkers were incorporated into the
PK/PD model to quantify the immune system effect. Neutrophils and cytokines (TNF-
α) [36] were selected as the biomarker to illustrate the effect of an immune cell on bacteria.
An alternative method is to quantify the number of immune cells, with the host response
assumed to be dependent on both the cell counts and bacterial counts, as shown in the
Equation (34), which describes the time course of bacteria without drug exposure.

dB
dt

= knet ×
Bmax − B

Bmax
× B −

(
kir × ANC

ANC50 + ANC

)
× B (34)

where ANC is the absolute neutrophil count, ANC50 is the ANC required to achieve 50% of
the maximal kill rate, and kir describes the maximum rate at which neutrophils can kill the
pathogens.

The short- and long-term infection dynamics of TB are believed to be strongly influ-
enced by the immune system response of an affected patient. A model designed with the
mechanism of the immune system response to infection with M. tuberculosis was introduced
by John et al. [37], which can be assumed in terms of the interaction between bacteria,
immune cells in the alveoli of the lung, and the lymph nodes.

Comprehending the mechanism and mathematically quantifying the time-course of
the host, it is helpful to determine an optimal dosage for the patient [38].

4.3. The Types of Pharmacodynamic Data for the Model

Initially, a semi-mechanistic PK/PD model was developed by the static time-killing
curves, which only possess two variables: concentration and time. It is more suitably
characterized by the mechanistic model than by MIC, with only one variable, concentration.
Nielsen adapted Model 1 to successfully describe the kinetics of Streptococcus pyogenes
exposure to five antibiotics [18]. However, due to the limitation of nutrients, the static
time-killing curves are only represented within a 24 h period, and it lacks the ability to
capture the resistance. To simulate in vivo conditions, where the drug is disposed and
gradually changed, the dynamic model that can simulate the time-course of antibacterial
concentrations observed in patients is used to establish the mechanistic PK/PD model.
By adjusting pumps, the nutrients and toxic metabolites can be updated in the model,
and a long-term culture can then be performed. The hollow fiber infectious model and
the in vivo murine infection model were used to validated the predicted results by the
semi-mechanistic PK/PD model, respectively, and revealed that the model can correctly
predict the similar bacterial response (bacterial count change after 24 h exposure) in both
in vitro and in vivo conditions [39].

It is a question of which types of data, static or dynamic time-killing curves, should
be adapted to develop the semi-mechanistic PK/PD model. Comparing static or dynamic
time-killing curves to support the precise parameter estimations of a PK/PD model, a
study revealed that different settings between static and dynamic experiments did not
significantly affect the growth kinetics of the bacteria [40]. Jacobs et al. distinguished six
models with different mechanisms by static or dynamic time-killing curves. Dynamic
conditions provided an accurate estimation for some parameters, and static conditions
yielded more precise estimations.

Furthermore, more studies employ static data to establish the mechanistic model and
use dynamic data to validate the model [5]. To optimize the combined dosage regimens
of meropenem-tobramycin against P. aeruginosa, a mechanistic model consisting of three
different subpopulations is used to derive the dosage regimens [41]. Static time-killing
curves are performed to characterize the effect of different meropenem and tobramycin
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doses, respectively, and an accurate hollow fiber infectious model is used to evaluate
and validate the dosage regimen. According to the results, the in silico simulation of the
antibacterial effect against P. aeruginosa and the suppression of resistance are similar to the
results of the hollow fiber infectious model.

5. Application of Model in Dosing Regimen, Combination Therapy, and
Determination of Breakpoint

With mathematical equations, the semi-mechanistic model can capture the time course
of bacterial growth to evaluate the efficacy of the dose. The semi-mechanistic PK/PD
model is widely applied for drug research and development. As shown in Table 1, we
investigated the recent articles that adapt the semi-mechanistic PK/PD model. This model
is an essential part of evaluating the efficacy of a preclinical drug and raising the rational of
“old medicine”. Due to the complexity of drug resistance, more models employ various
resistance mechanisms to describe the PD data. The semi-mechanistic PK/PD model
was applied in the determination of dosage regimens, guidance of combination therapy,
determination of the MIC-related breakpoint, and prediction of the kinetics of bacteria in
the gut. This section introduces the application.

Table 1. The semi-mechanistic PK/PD of antibacterial against different bacterial populations.

Antimicrobial Class Drug Bacteria Resistant Species References

Aminoglycosides Gentamicin Staphylococcus aureus Adaptive resistance [42]
Pseudomonas aeruginosa
Acinetobacter baumannii Adaptive resistance [43]

Escherichia coli Adaptive resistance
Persistent resistance [31]

Pseudomonas aeruginosa Pre-existing resistance [44]
Tobramycin Pseudomonas aeruginosa Persistent resistance [24]

Pre-existing resistance [45]

Beta-lactams Benzylpenicillin
Cefuroxime Streptococcus pyogenes Persistent resistance [18]

Meropenem Pseudomonas aeruginosa
Adaptive resistance [30]

Pre-existing resistance
Persistent resistance [46]

Pre-existing resistance
Persistent resistance
Adaptive resistance

[47]

Ertapenem Escherichia coli Pre-existing resistance
Persistent resistance [48]

Ceftobiprole Staphylococcus aureus Persistent resistance [49]
Cefuroxime Escherichia coli Persistent resistance [34]

Fluoroquinolones Moxifloxacin Streptococcus pyogenes Persistent resistance [18]

Staphylococcus aureus Pre-existing resistance
Adaptive resistance [50]

Ciprofloxacin Staphylococcus aureus Pre-existing resistance [51]
Pseudomonas aerugeinosa Adaptive resistance [52]

Escherichia coli Pre-existing resistance
Persistent resistance [22]

Enrofloxacin Escherichia coli Pre-existing resistance [28]
Macrolides Erythromycin Streptococcus pyogenes Persistent resistance [18]

Polymyxin Colistin Pseudomonas aeruginosa Adaptive resistance
Persistent resistance [53]

Pre-existing resistance [54]

Chloramphenicols Florfenicol Pasteurella multocida
Mannheimia haemolytica Persistent resistance [55]

Tetracyclines Eravacycline Escherichia coli
Acinetobacter baumannii Adaptive resistance [56]
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5.1. Dosage Regimen

Muhammad et al. adapted a whole-PBPK model combined with Model 2 to establish
a PBPK/PD model of ciprofloxacin against E. coli [57]. This model can predict different
time courses of bacterial killing in the extracellular fluid of different tissues. The results
indicated the most antibacterial efficiency in the lung and kidney, which corresponds
well to ciprofloxacin’s indications of pneumonia and urinary tract infections [57]. Sy et al.
established a PK/PD model by the PBPK model and PD model (Model 2) to derive the
best PD index (f T > CT) of avibactam against P. aeruginosa in combination with ceftazidime.
Setting a threshold avibactam concentration of 1 mg/L, for the most ceftazidime-resistant
strain, at least 500 mg q 8 h avibactam as a 2 h infusion can achieve at least a 2-log kill [58].
Kuepfer et al. described developing a PBPK/PD model for ciprofloxacin against E. coli
in which the PD model allows the microbial growth to be quantified in the absence, as
well as in the presence of ciprofloxacin-mediated inhibition. By comparing the PK profiles
of concentrations in the lung and serum, 500 mg b.i.d. dosage regimen was already high
enough to promote bacterial killing [59].

Lin et al. established a population PK model of a two-compartment model with
linear elimination, assumed as plasma compartments and ELF (epithelial lining fluid)
compartments. Model 5, established with the in vivo time-killing curves of the mouse
lung infection model, was integrated with a population PK model to assess the efficacy
of different dosage regimens of aerosolized colistin against P. aeruginosa. Deterministic
simulations suggested that an inhalational dose of 60 mg colistin base activity every 12 h
may be required to achieve ≥ 2 log 10 killings at 24 h after the commencement of inhaled
therapy [54].

5.2. Combination Therapy

Semi-mechanistic PK/PD models that are developed based on in vitro single and
combination experiments can be valuable for proposing a dosage regimen for drug com-
binations. Typically, antibiotic combinations are assessed to overcome or suppress the
emergence of resistance and/or to increase efficacy.

Zhao et al. [60] established a PK/PD model to quantify the interaction between
polymyxin B (PMB) and minocycline (MIN) against multidrug-resistant Klebsiella pneumoniae.
The description of the resistant state is an adapted Model 8. In addition, a basic additive
interaction model was used in the selection of combination time-kill experiments of interest
as Equation (35) described:

kdrug.COMB = kdrug.MIN × InhAR.MIN + kdrug.PMB × InhAR.PMB (35)

where kdrug,COMB is the combined drug effect; kdrug,MIN and kdrug,PMB are the kdrug of MIN
and PMB, respectively; and InhAR,MIN and InhAR,PMB are the InhAR of MIN and PMB,
respectively.

Aranzana-Climent et al. [61] also employed Model 8 as the PD sub-model to describe
the resistant mechanism. The drug interaction sub-model is described as Equation (36), as
PD parameters are influenced by the presence of the other drug:

EC50,MIN = EC50,MIN alone ×
(

1 +
INTPPMB × [PMB]

EC50,INT−PMB + [PMB]

)
(36)

where EC50,MIN is the final EC50, which was influenced by polymyxin B;
EC50,MIN alone (mg/L) is the EC50 of minocycline, INTPMB (no unit) is an interaction factor,
and EC50,INT-PMB (mg/L) is the polymyxin B concentration needed to reach 50% of the
interaction effect.

In addition, Brill et al. [62] overviewed the semi-mechanistic models to characterize
the combined effect and outlined steps to establish models. Thirteen publications were
reported about the combination mechanisms such as subpopulation synergy, different effect
sites, and interaction functions. Subpopulation synergy was applied in several models, and
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independent kill rates of each drug were typically added using various types of interaction
functions [62]. As the semi-mechanistic PK/PD model established, the evaluation of recom-
mended dosing regimens and determination of an optimized dosage were performed. To
expedite the application of semi-mechanistic PK/PD model, they uploaded the information
for public availability of these models on DDMORE repository [63].

5.3. PK/PD Breakpoint and Cutoffs

The breakpoint or PK/PD cutoff can be determined by the semi-mechanistic PK/PD
model. The MIC can be computed as a secondary parameter according to Equation (37).

MIC = EC50 ×

 kgrowth − 0.29

Emax −
(

kgrowth − 0.29
)
 1

Gama

(37)

Pelligand et al. applied Model 1 to derive the PK/PD breakpoint of florfenicol against
Pasteurella multocida and Mannheimia haemolytica with in vitro time-killing curves of different
inoculum sizes. For both bacteria, the f AUC/MIC is selected as the PK/PD index in
predicting bacterial killing with different MIC values. In silico simulation showed that
average free plasma concentrations equal 1.2–1.4 times the respective MIC can perform
with the maximum efficacy [55].

Iqbal determined MIC-developed breakpoints for the killing and suppression of resis-
tance development in plasma and tissue sites, skin, and muscle. The clinical microdialysis
data and in vitro time-killing curves of moxifloxacin against S. aureus and E. coli were used
to establish the PK/PD model, and the different MIC-breakpoints of different antibacterial
effects in different tissues were established for both bacterial species [50].

5.4. Prediction the Kinetic of Bacterial in Guts

The semi-mechanistic PK/PD model can present the dynamics of bacterial ecology
and resistance in the gut intestine tract. The transmission dynamics of the resistance genes
are commonly categorized into vertical vs. horizontal. In addition, many models were
established to predict the susceptibility change of bacteria under antibiotic exposure in the
gut. Erwin et al. used Model 5 to describe the growth of different bacterial subpopulations
and investigated the susceptibility change of E. coli above and below the epidemiological
cutoff in steers. They concluded that E. coli susceptibility is a strong indicator of how steers
respond to antimicrobial drug treatment [28]. The semi-mechanistic PK/PD model can
assist in predicting the number of resistant enterobacteria excreted. Nguyen et al. also used
Model 5 to capture the complex relationships between dosage regimen, antibiotic fecal
concentrations, loss of susceptible enterobacteria, and growth of resistant strains in the feces
of piglets receiving different doses of ciprofloxacin for 5 days. For the clinically relevant
dose of 15 mg/kg/day for 5 days, the total amount of resistant enterobacteria excreted
was predicted to be reduced by 75% and 98% when reducing the treatment duration to
3 days and 1 day, respectively [64]. The modelling of the growth dynamics of multiple
E. coli strains after ampicillin treatment have also been established by Ahamad et al., who
revealed that the short period and dosing frequency do not influence the growth of resistant
E. coli [65].

6. Overlook

The PK/PD model of antibacterial is an accepted method for optimizing the dosage
regimen and provide some assistance in drug development and research. Accumulating
studies focus on the semi-mechanistic model to design regimens and explore the resistant
mechanisms. In addition, the semi-mechanistic PK/PD model can provide foresight in
the pharmacological field, and a more rational and safer dose can be derived by the semi-
mechanistic model for use in clinical phase I and II experiments.
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However, from a broader view in terms of future direction in this field, some thoughts
need to be focused

1. Regulation. The official regulations need to be published, which will play the role of
encouragement and guidance.

2. Education. It is very important to tell the modelers how to establish a model and
judge the model. It is an efficient way to acquire the relevant knowledge from the
tutorial. Rowland et al. summarized the inception, maturation, and future vision
about Pharmacometrics and Systems Pharmacology. Twenty representative particles
over the past 10 years were outlined [66]. Besides the tutorials, the software company
and the public training courses also can offer some guidance. For example, many
detailed courses can be found on the Metrum research group (www.metrumrg.com
(accessed on 6 January 2022)).

3. Share. It is critical and necessary to publish the model code for the subsequent model
applications. This will help modelers to learn the programming languages. Of course,
the excellent forms of programming languages are also important. Mathematical
models are widely used in various fields that would require more competent modelers.

In conclusion, we summarized the establishment of semi-mechanistic PK/PD models
that can describe different antibacterial resistant mechanisms. The mathematical equation
can describe the bacterial count change under drug exposure. With the development of
computer technology, in silico simulation and prediction can extensively apply in the
pharmacological field. Presumably, it offers another aspect to alleviate and avoid the
emergence of drug resistance.
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