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Abstract

Motivation: Long intergenic noncoding RNAs (lincRNAs) have risen to prominence in cancer biol-

ogy as new biomarkers of disease. Those lincRNAs transcribed from active cis-regulatory elements

(enhancers) have provided mechanistic insight into cis-acting regulation; however, in the absence

of an enhancer hallmark, computational prediction of cis-acting transcription of lincRNAs remains

challenging. Here, we introduce a novel transcriptomic method: a cis-regulatory lincRNA–gene

associating metric, termed ‘CisPi’. CisPi quantifies the mutual information between lincRNAs and

local gene expression regarding their response to perturbation, such as disease risk-dependence.

To predict risk-dependent lincRNAs in neuroblastoma, an aggressive pediatric cancer, we advance

this scoring scheme to measure lincRNAs that represent the minority of reads in RNA-Seq libraries

by a novel side-by-side analytical pipeline.

Results: Altered expression of lincRNAs that stratifies tumor risk is an informative readout of onco-

genic enhancer activity. Our CisPi metric therefore provides a powerful computational model to

identify enhancer-templated RNAs (eRNAs), eRNA-like lincRNAs, or active enhancers that regulate

the expression of local genes. First, risk-dependent lincRNAs revealed active enhancers, over-

represented neuroblastoma susceptibility loci, and uncovered novel clinical biomarkers. Second,

the prioritized lincRNAs were significantly prognostic. Third, the predicted target genes further

inherited the prognostic significance of these lincRNAs. In sum, RNA-Seq alone is sufficient to iden-

tify disease-associated lincRNAs using our methodologies, allowing broader applications to con-

texts in which enhancer hallmarks are not available or show limited sensitivity.

Availability and implementation: The source code is available on request. The prioritized lincRNAs

and their target genes are in the Supplementary Material.

Contact: xyang2@uchicago.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Long intervening noncoding RNAs that do not overlap with

protein-coding loci (lincRNAs) are found in evolutionarily con-

served intergenic regions (GENCODE definition), and are expressed

in a context-dependent manner, suggesting that they have functional

relevance. While several lincRNAs have been shown to modulate

gene expression and cell growth in cancers (Fernando et al., 2017;

Russell et al., 2015), discerning and characterizing the cis-acting loci

from thousands of transcribed lincRNAs is challenging. The major-

ity of known functional lincRNAs emanate from active enhancers

(Vance and Ponting, 2014); however, in the absence of an associated

enhancer hallmark, computational prediction of cis-acting loci is a

difficult task.

Owing to the growth in high-throughput sequencing data, add-

ing the global contribution of lincRNA expression to the

information flow from genotype to phenotype in silico is possible

(Signal et al., 2016). Currently, computational predictors of cis-

acting activity of lincRNA are based on their association with either

upstream DNAs or downstream genes. Upstream DNA-based identi-

fication methods assume that lincRNA expression level is a readout

of enhancer activity. These methods focus on lincRNAs localizing to

either disease variations (Signal et al., 2016) or enhancer hallmarks.

Although they are being widely applied, the essential limitation of

these methods is their reliance on a high-affinity ChIP antibody to

measure enhancer activity in a specific condition and cell type. On

the other hand, downstream gene-based models follow the ‘guilt-by-

association’ rule by which stimulus-dependent lincRNA abundance

(Orom et al., 2010) or positive correlations of expression levels be-

tween lincRNAs and their target genes (Iyer et al., 2015) are priori-

tized. However, in highly epigenetically altered diseases, such as
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cancer, pervasive transcription may occur as a byproduct (Signal

et al., 2016); thus, correlated expression levels with downstream

genes may not imply cis-acting disease-association of the lincRNA

loci.

In addition to the two types of lincRNA identification described

above, layering information with seemingly independent statistical

evidence increases the predictive power. For example, analyzing

context-dependent expression of the long noncoding RNA (lncRNA)

transcriptome, the mRNA transcriptome, and accessible chromatin,

our ‘mutually informative’ method previously discovered cis-regula-

tory DNA elements from dysregulated lincRNAs (Yang et al., 2017a).

While successful, all of these approaches overlook lincRNAs that

display mRNA-like features such as capped and polyadenylated post-

transcriptional procession (Li et al., 2016; Ulitsky and Bartel, 2013).

Additionally for genome-wide prediction, researchers have iden-

tified lincRNAs together with mRNAs from the same analytical

pipeline (Iyer et al., 2015). However, as the median lincRNA level is

typically a tenth that of the median mRNA level (Ulitsky and Bartel,

2013), more sensitive prediction can arise from a pipeline that is spe-

cifically designed for identifying and measuring these lincRNAs.

Using the pipeline to predict transcription-regulating cis-acting and

disease-associated lincRNAs, we designed a quantitative scoring sys-

tem called ‘CisPi’. Given our familiarity with neuroblastoma (NB) that

has both published RNA-Seq profiling of a large cohort and enhancer

landscapes (Yang et al., 2017a,c), we tested this scoring system on the

segregation of NB risk groups. Neuroblastoma is by far the most com-

mon cancer in infants (less than 1 year old), with about 800 new cases

each year in the United States. While a child with non-high-risk

(NHR) neuroblastoma can often be cured, the 5-year survival rate in

children in the high-risk (HR) group is less than 50%. We therefore

expect the lincRNAs expressed in a risk-dependent manner, and their

target genes, to provide cis-regulatory insights into NB biology.

In this study, we introduce a novel cis-regulatory association scoring

scheme to predict regulatory lincRNAs by assessing mutual biological

relevance between lincRNAs and their target genes. Using an early ver-

sion of this scoring system, we have previously discovered a cis-acting

lincRNA relevant to cardiology (Yang et al., 2017a). Here, we enhanced

this methodology in three ways. First, we developed a novel side-by-side

analytical pipeline for RNA-Seq data to measure lincRNAs with rela-

tively low expression levels, since protein-coding transcripts are predom-

inant in polyadenylated RNA libraries (Supplementary Fig. S1). Second,

a dynamic cis-regulatory distance was estimated from the topologically

associating domains (TADs) derived from Hi-C experiments rather than

an arbitrarily fixed window around every lincRNA (Wang et al., 2015).

This rationale is derived from observations of spatial interactions be-

tween distant chromatin regions encoding lincRNA and their putative

target genes (Cai et al., 2016). Third, all risk-dependent genes, positively

or negatively coherent with a risk-dependent lincRNA, were modeled to

quantify the cis-regulatory activity of the lincRNA. Then, employing a

robust individualized prognostic approach, we demonstrated the clinical

application of prioritized lincRNAs and target genes using these three

enhancements to our CisPi scoring system. These approaches are inde-

pendent of experimental context thus can be applied broadly to the

enormous amount of previously generated RNA-Seq, allowing new dis-

covery in functional genomics.

2 Materials and methods

2.1 Multi-layer sequencing data collection
To identify risk-dependent polyadenylated noncoding transcripts,

we obtained publicly-available RNA-Seq profiling of 68 selected

primary tumors from TARGET (tumor>60%, pair-end sequencing

reads>50M per sample) (Pugh et al., 2013) (Supplementary Table

S2). As a control, we also collected total RNA-Seq profiling of inde-

pendent 498 primary NB patients which we termed as the

‘Germany’ dataset (tumor>60%, sequencing depth around 100 M,

Supplementary Table S1). A landscape of TADs in neuroblastoma

cells was obtained from the 3 D Genome Browser (Wang et al.,

2017).

2.2 CisPi-score to quantify coherent biological-

relevance of lincRNAs and mRNAs
We hypothesized that there is a direct relationship between

lincRNAs and their target genes leading to an expression difference

between distinct clinical phenotypes: the HR and NHR groups.

Therefore, we postulated that a risk-dependent regulatory linkage

between a lincRNA and its target genes is measurable from the co-

herence of their expression levels. To address this two-feature ques-

tion, we took advantage of a single-layer Pi-score that prioritizes

gene-features by conjoining two-dimensional measurements (the

fold change and statistical significance, ie, the P-value) into a one-

dimensional estimation of biological relevance (Xiao et al., 2014).

To model associated risk-dependence between lincRNAs and

genes, we designed a cis-regulatory lincRNA–gene-association met-

ric, termed ‘CisPi’. We first calculated a p.lincRNA-score to priori-

tize each risk-dependent lincRNA i for its biological relevance to the

disease risk (Eq. 1), where ui is the side effect (log fold-change of ex-

pression levels between HR and NHR patients) and Pi is the signifi-

cance. We then calculated another p.gene-score to estimate the

biological relevance of each of the two possibly risk-dependent gene

x that sit adjacent to the lincRNA (Eq. 2). Following the ‘guilt-by-

association’ rule, in case both adjacent genes were risk-dependent,

the one with the absolute highest p value was chosen to represent

the target of this lincRNA (Eq. 3). To further associate p.lincRNA

to p.gene, we build a CisPi-score to incorporate mutual risk-

dependence of a lincRNA i and its putative target genes (Eq. 4),

where the j.j is an absolute value operator and the sign() function

extracts the directionality of risk-dependence:

pi
lincRNA ¼ ½ui � ð�log10PiÞ� (1)

px
gene ¼ ½ux � ð�log10PxÞ� (2)

pi
target ¼ ½argmax

x2i targets

fjpx
genejg� (3)

cispi ¼ ½pi
lincRNA þ signðpi

targetÞ � pi
target �=2 (4)

The max function further allowed us to compare the CisPi-

metric assuming adjacent gene targeting of the lincRNA with an-

other CisPi-metric that assumes distal targeting within a TAD. With

the ‘distal targeting’ assumption, all genes residing in the same TAD

(Won et al., 2016) of a lincRNA were putative target genes to esti-

mate the p.target value (Eq. 3) for a CisPi-score (in Eq. 4). These

two types of CisPi calculations will be equal when an adjacent gene

has the highest p.target value.

2.3 Relative expression analysis with lincRNA-set pairs
To bridge lincRNA expression levels with the clinic, we designed an

individualized prognostic predictor: a Relative eXpression Analysis

with LincRNA-Set Pairs (RXA-LSP) indicator. Given two sets of

risk-dependent lincRNAs (upregulated and down-regulated), the

RXA-LSP calculated the divergence of risk-dependence between the
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two sets for each tumor. Thus, a higher indicator indicates a more

unfavorable outcome. We have shown the robustness of this model

on Gene-set pairs, which we previously termed RXA-GSP (Yang

et al., 2013; Yang et al., 2017a,c). Importantly, this model of relative

expression is technique-independent and population-independent.

2.4 RNA-Seq data analyses
Our overall analytic efforts were focused on the identification of

noncoding RNAs that represent the minority of reads in polyadeny-

lated RNA-Seq libraries. Using the publicly available RNA-Seq pro-

files (TARGET, n¼68, Supplementary Table S1), we assembled and

defined 96.2k expressed transcripts (CPM>0 in at least 10% of

patients). For these transcripts, we then defined seven biotypes of

lncRNAs, three types of coding transcripts and microRNAs

(Supplementary Fig. S2a). Among those 60.9k expressed lncRNA

transcripts, the vast majority (48.5k) were de novo transcripts,

and the 2nd largest group (3.8k) were lincRNA transcripts of

which at least 50% overlapped GENCODE-annotated lincRNAs

(Supplementary Fig. S2b). Both de novo and lincRNA transcripts

demonstrated low protein-coding potential (Supplementary Fig. S2c,

the yellow and orange line, respectively), further suggesting that

these represent polyadenylated lncRNAs.

Between-group differential expression was considered as signifi-

cant at fold-change>2 and false discovery rate (FDR)<0.05

(Supplementary Methods).

2.5 Active enhancer candidates
We collected active enhancer candidates from three independent

resources: 65k predicted human enhancers based on CAGE (Cap

Analysis of Gene Expression)-Seq (FANTOM5) (de Hoon et al.,

2015), 785 validated active enhancers in neural tissues (VISTA) (Visel

et al., 2007), and 27k aggregate enhancers in NB identified using

ChIP-Seq data of three canonical hallmarks of active enhancers

(H3K27ac, H3K4me1 and P300, Supplementary Fig. S3a).

3 Results

3.1 Olig(dT)-primed RNA-Seq can capture polyadeny-

lated lincRNAs with transcriptional regulatory potential
3.1.1 Expressed lincRNAs were significantly enriched for hallmarks

of active enhancers in NB tumors

We first demonstrated that the Olig(dT)-primed polyadenylated

RNA libraries, which were originally designed to measure mRNAs,

can also be used to measure lincRNAs, a specific biotype of

lncRNAs (Supplementary Fig. S2).

We then asked whether these polyadenylated lncRNAs are

enriched for canonical functional noncoding loci involved in tran-

scriptional regulation. Two out of seven biotypes of lncRNAs,

lincRNAs and the ‘PC_antisense’ transcripts, were enriched for ag-

gregate enhancers (Fig. 1a, Supplementary Fig. S3a–b). These obser-

vations extend the hypothesis that the production of lncRNAs could

be indicative of enhancer function, from solely non-polyadenylated

RNAs (Yang et al., 2017a) to include polyadenylated RNAs as well.

3.1.2 Risk-dependent lincRNAs recaptured non-coding functional

candidates identified by canonical hallmarks of active enhancers

As many cis-regulatory lincRNAs are transcribed from active

enhancers and are highly tissue-specific and perturbation-dependent

(Azofeifa et al., 2018), we sought to determine whether lincRNAs

that show risk-dependent expression could identify NB-associated

enhancers. Applying our side-by-side analytical pipeline (Fig. 1b),

we identified 592 significantly risk-dependent lincRNAs (Fig. 1c).

These lincRNAs co-localized with 1404 enhancer candidates, and

over half of these lincRNA-captured enhancer candidates (847)

were independently evaluated (Fig. 1d). Given a global evaluation

ratio of 6% (144 out of 2278 loci) among the four methods, risk-

dependent lincRNAs indicate high cis-regulatory potential.

We observed an equally good predictive performance for active

enhancer loci from two established methods, CAGE-seq and histone

ChIP-seq, in comparison with NB risk-dependent lincRNA expres-

sion, with a performance score (AUC) ranging between 0.83 and 0.85

(Fig. 1e, Supplementary Method). The 785 validated active enhancers

in neural tissues showed relatively lower performance (AUC¼0.64),

which might arise from the restriction to elements with extreme se-

quence conservation, which was required for in vivo experiments but

is not necessarily a required feature of functional cis-regulatory loci.

We conclude that although most enhancer-templated noncoding

RNAs are non-polyadenylated, polyadenylated RNA-Seq data is still

capable of discovering enhancer-templated lincRNAs.

3.1.3 Risk-dependent lincRNAs tend to be bi-directional, long non-

coding transcripts distal to coding genes

We then asked about the genomic features of risk-dependent

lincRNAs. They tended to be long transcripts with a relative
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Fig. 1. Olig(dT)-primed RNA-Seq can capture functional noncoding loci. (a) Venn-

diagram showing an enrichment between enhancer-marked transcripts and

lincRNAs among all expressed lncRNAs. (b) Schematic illustrating a side-by-side

RNA-Seq analytical pipeline designed for lincRNA signatures. (c) Volcano plot of

altered expression of the risk-dependent lincRNAs [Fold change (FC)>2,

FDR<0.05]; dot-color codes their coherence with adjacent genes and noted iden-

tifications were residing at NB susceptibility loci. (d) Venn-diagram displaying 144

enhancer candidates, being marked by at least 3 out of 4 methods, which were

used as a ‘proxy gold standard.’ (e) ROC plots and AUC values comparing each

enhancer-predicting method with the gold standard. (f) Empirical cumulative dis-

tribution plot of all 3.8k lincRNAs for their bi-directional indexes
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enriched peak width of �10kbp, and locate at a larger distance

away from any coding-gene-TSS than other lincRNA transcripts

(Supplementary Fig. S3c). These risk-dependent lincRNAs showed a sig-

nificant preference for bi-directional transcription (Kolmogorov-

Smirnov test P<2e�4, Fig. 1f, Supplementary Method). Bi-directional

expression at distal enhancers has been widely described (Kim et al.,

2010), in support of the hypothesis that risk-dependent lincRNAs repre-

sent regulatory enhancers affecting transcription.

3.2 Risk-dependent lincRNAs mark tumor-associated

and tissue-specific enhancers
3.2.1 Risk-dependent lincRNAs reveal known and novel tumor sus-

ceptibility loci

We examined whether disease-specific or tissue-specific enhancers

could be identified by risk-dependent alteration of lincRNA tran-

scription. There exist 163 strong linkage-disequilibrium (LD) blocks

at suggestive neuroblastoma-susceptibility loci (P<5e�5, the

GRASP repository) (Eicher et al., 2015), using PLINK 1.9

(MAF>¼�0.05) (Chang et al., 2015). 592 risk-dependent

lincRNAs significantly captured seven of these NB susceptibility

loci (Fig. 2a, FET P¼0.004, OR¼4.7; empirical P<0.001,

Supplementary Method). Note that lincRNA was the only biotype

of lncRNAs that showed low coding potential, but over-represented

NB susceptibility loci, confirming that disease risk-dependent alter-

ation of lincRNAs are biologically relevant.

The risk-dependent lincRNAs revealed seven NB susceptibility

loci, of which two were known tumor-suppressive lincRNAs at

6p22 and others were new functional lincRNA candidates

(Supplementary Table S3). The NB suppressive roles of HR-

downregulated lincRNAs (NBAT1 or CASC14, CASC15) have been

extensively reported (Maris et al., 2008; Mondal et al., 2018;

Russell et al., 2015; Yao et al., 2017), due to their significant NB-

association derived from GWAS studies and aggregate hallmarks for

enhancer activity (Fig. 2b1). Although identified with only a suggest-

ive P-value (<5e�5) from GWAS (Fig. 2a3), we now identify a new

oncogenic HR-upregulated lincRNA LINC01264 that is character-

ized by similar aggregate hallmarks for enhancer activity and is adja-

cent to the proto-oncogene RET (Fig. 2b2), which we previously

defined as one of 2858 gene biomarkers up-regulated in HR NB

(Yang et al., 2017b). Another HR-downregulated lincRNA, pro-

duced from the same promoter as AQP4 but in the antisense direc-

tion, could also play a regulatory role in NB cell proliferation, as

decreased AQP4 mRNA levels lead to an increase in both caspase

activation and cell death within SHSY5Y neuroblastoma cells

(Esposito et al., 2008).

Collectively, these observations and the existing literature sup-

port two intriguing arguments: polyadenylated lincRNAs with risk-

dependent expression may mark tumor-associated enhancers, and

polyadenylated lincRNAs provide additional evidence to support

suggestive GWAS findings in noncoding regions.

3.2.2 Risk-dependent lincRNAs are over-represented in validated

neural enhancers

We next investigated the tissue-specificity of the lincRNA-captured

enhancer candidates, using the 785 enhancers whose activity were

positively evaluated in any of 22 tissues within the VISTA Enhancer

Browser database (Visel et al., 2007). Risk-dependent lincRNAs at the

VISTA enhancers in four neural tissues showed preference for risk-

dependence (empirical P-values from 0.1 to 0.001), with the mid-

brain being the highest (Fig. 2c, Supplementary Fig. S4). In contrast,

the empirical P-values of the all other tissues were insignificant

(>0.04). We concluded that risk-dependent lincRNA transcripts are a

powerful metric to indicate tissue-specific transcriptional regulators.

3.3 CisPi score not only prioritizes the NB

phenotype-associated lincRNAs but predicts

target genes
To better explore the cis-regulatory potential of risk-dependent

lincRNAs, we hypothesized that there existed a direct relationship

between lincRNAs and their target genes regarding the expression

level difference between distinct clinical phenotypes: the HR and

NHR groups.

3.3.1 Quantitative and directional coherence existed between

risk-dependent lincRNAs and local dysregulated mRNAs

We first asked if cisPi scoring systems is appropriate in the context

of risk-dependent neuroblastoma transcriptome, ie, whether tran-

scriptional association exists between lincRNAs and local genes that

are risk-dependent. While lincRNAs globally co-expressed with

local genes (both colored dot-lines shifted right off of a random

control, the grey dot-line in Fig. 3a1), we further observed a quanti-

tative and directional coherence of risk-dependent transcription

between lincRNAs and neighboring genes: When co-localized within

a TAD, risk-dependent and not risk-irrelevant lincRNA–gene pairs

exhibited significantly positive correlation (Spearman r>0.6,

n¼68), especially for the directly adjacent pairs (the solid
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purple line in Fig. 3a1, Supplementary Method). Additionally, the

fold-changes of risk-dependent lincRNAs significantly correlated

with the fold-changes of their adjacent risk-dependent genes

(Spearman rho¼0.69, P<2e�16, Fig. 3a2). These coherences be-

tween differentially expressed lincRNAs and local dysregulated

mRNAs fall in with a general feature of lncRNAs in other systems

(Yang et al., 2017a). What is new, however, is the statistical associ-

ation of two seemingly irrelevant associations of lincRNA–gene

pairs—between group difference and across-sample correlation—

whether one agrees with the other.

To inspect the cis-regulatory effects of risk-dependent lincRNAs,

we then employed our cis-regulatory lincRNA–gene-association

score (CisPi-score). Theoretically, the more a score for a given

lincRNA deviates from zero, the stronger this lincRNA impacts the

cis-regulation of gene. For a given lincRNA, therefore, when we

compare a CisPi-score that assumes adjacent gene targeting to the

CisPi-score that assumes distal gene targeting within a TAD, similar

CisPi values indicate that the most well-associated target gene of this

lincRNA is local. For all risk-dependent lincRNAs, these two types

of CisPi scores exhibited a global similarity (P<2e�16, Pearson

r¼0.88 and Spearman rho¼0.85) as well as focal similarity (90%

of the 320 risk-dependent lincRNA–gene pairs displayed distal tar-

geting scores similar to the estimated local targeting scores—sitting

within two original dashed lines in Fig. 3b). Together, these data

support the theory that these differentially transcribed lincRNAs

often indicate cis-regulatory functions in the local space (Cai et al.,

2016).

3.3.2 Risk-dependent lincRNAs prioritized by CisPi may play a

cis-regulatory role by targeting local biomarker genes

Prioritized by an early version of the CisPi scoring scheme for local

targeting, we previously discovered a functional lincRNA relevant

to cardiology (Yang et al., 2017a). We now examined whether the

advanced CisPi method prioritizes tumor-associated lincRNAs.

From the distribution of calculated CisPi scores, we selected 34

lincRNAs (25 up-regulated and 9 down-regulated in HR patients)

that exhibited the top 10% leading CisPi scores and local targeting

(presented at the top-right and bottom-left panel in Fig. 3b,

Supplementary Table S4). Except for the MYCN amplification

locus, these 34 prioritized lincRNAs were independent of other re-

current genetic rearrangements, such as deletion of 1p or 11q and

gain of 17q (Fig. 3c).

CisPi further associated these 34 prioritized lincRNAs with 14

up-regulated and 10 down-regulated putative target genes (Fig. 3c,

Supplementary Table S5). Functional enrichment analysis of these

14 HR up-regulated genes revealed an enrichment in cell growth,

proliferation and nervous system development (with the genes IL6,

LOX, MYCN, SEMA3D and VAX2). These HR up-regulated genes

also over-represented five upstream regulators (eg, FOXM1, KRAS,

NOTCH1, etc) (Ingenuity IPA analysis, P<1e�3, Fig. 3d) whose

oncogenic roles had been reported. In contrast, the 10 HR down-

regulated genes only indicated one upstream regulator, GATA2,

that could independently operate on neuronal differentiation (El

Wakil et al., 2006). These results are expected, given a cis-

regulatory model of lincRNA loci targeting to local genes, with both

derived from risk-dependent alterations in expression.

3.3.3 CisPi-prioritized lincRNAs and target genes stratify

risk-groups and are prognostic in NB, regardless of MYCN status

We next tested whether the abnormal expression of these 34 priori-

tized lincRNAs is robustly informative in predicting the HR status of

new patients. We mapped these 34 lincRNAs into the non-coding

transcripts measured by the RNA-Seq data of a larger, independent

Germany population (n¼498), resulting in 32 recaptured lncRNAs

(25 up-regulated and 7 down-regulated transcripts, Supplementary

Table S4). With an unsupervised bi-clustering of the noncoding tran-

scriptome profiling of these 32 lincRNA transcripts alone, 432 (87%)

tumors were correctly classified for their risk-groups (Fig. 4a). This

accurate risk-stratification occurred regardless of the MYCN status,

which is currently the best-characterized genetic marker of risk in

neuroblastoma, suggesting that the loci represent novel biomarkers.

High-risk neuroblastoma is a severe pediatric tumor character-

ized by poor prognosis. Therefore, we further examined the power

of these prioritized lincRNAs to predict outcome endpoints,

using the robust RXA-LSP indicator (Supplementary Method).

Compared against the polyadenylated TARGET profiling, our 34

risk-dependent lincRNAs significantly predicted overall survival
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Pearson r= 0.69
P= 5.4e−23−2

0

2

4

6

0 4 8
log2 FC lincRNAs

m
ax

 (|
lo

g2
 F

C
|) 

in
 a

dj
ac

en
t g

en
es

1.0
1.5
2.0
2.5
3.0

count

−100 0 100 200

−1
00

0
10

0
20

0

320 out 592 risk−dep lincRNAs with
risk-dep genes at adjacent or in a TAD

CisPi uisng DE TAD genes

ci
s−

Pi
 u

si
ng

 D
E 

ad
ja

ce
nt

 g
en

es

Pearson: 0.88
Spearman: 0.85 

enhancer lincRNA
other lincRNA

ELFN2 MYCN: DDX1

PIRT
SOX4; NRSN1

● ● ●
●

●●●
●

●● ●
●

●
●●

●●●
● ●●●

●●
●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●●●●

●●●●● ●

●

● ●●
●●

●●●●●●●

●

●●
●

●
●

●●●
●
●●

●

●●●●
●

●● ●

P●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

IL6
SEMA3D IL6

MYCN; DDX1

PIK3R1

FOXM1
INHBA
KRAS

Tgf beta
NOTCH1

−log10(P)
0 2 4 6

IL6,LOX,MYCN
IL6,IRX1,LOX

GPC5,IL6,LOX,MYCN
IL6,LOX,MYCN
IL6,LOX,MYCN

GATA2 MYO18B,SNTG2,TMEM196

Upstream regulators

Development of neurons

−log10(P)
0 2 4 6

IL6,LOX,MYCN,
SEMA3D,VAX2

Disease& function

1

0 4 8 12 16 20 24

20
4

8
12

16

20
24

3
0

4
8

12
16

4
0
4
8
12
16

5

0
4

8
12

16

6

0
4

8
1216

7
0

4
8

12

8
048129 048

1210
0481211 04

812

12 0
4

8
12

13
0

4
8

14
0

4
8

15
0
4
8

16
0
4
8

17
0
4
8

18
0

4

19
0

4

20

0

4
21

0
4

22
0

4

X
0 4 8

12

Y
0 4

TT
LL

7
SN

TG
2

KC
NF

1

MYCN,DDX1

VAX2

NKX3−2
EPHA5

IRX1CDH9PIK3R1LOX

TMEM196

IL6

SEM
A3D

ADCY8

GPC5SLC7A8LRFN5SLCO3A1

PIRT

LRP5L,M
YO18B

ELFN2

Association among lincRNA-gene pairs

Genomic loci of prioritized lincRNAs

0
1

2

D
en

si
ty

−1 0.0 1
Spearman Correlation Coefficient

risk-dep lincRNA & any genes   
risk-dep lincRNAs & risk-dep genes 

 adjacent pairs
 pairs in a TAD
 random pairs

any lincRNAs & any genes   

(a1) (a2)

(b) (c)

(d1) (d2)

Fig. 3. CisPi metric not only prioritized the phenotype-associated licnRNAs

but predicted target genes of lincRNAs. (a1) Density plot showing the

Spearman’s coefficients for five types of lincRNA–gene pairs across 68 sam-

ples. Vertical dashed lines are the significance cutoff at r¼0.6 where signa-

tures dispatch from random controls (dotted lines). Risk-dependent adjacent

pairs showing the highest proportion of positive correlation. (a2) Hexbin plot

presenting the coherent risk-dependence of identified lincRNAs (x-axis) and

genes (y-axis). (c) Sparse scatterplot for two types of cisPi-scores, one model-

ing the adjacent targeting (y-axis) and another modeling all potential targets

within a TAD (x-axis). The orange diagonal line indicates y¼x with two

dashed lines for standard deviations. Annotated lincRNAs are labeled with

the names of their nearest ‘target’ gene(s). Horizontal dashed lines indicate a

10% cutoff (cisPi <�10 or >40) for prioritization. (b) Circos plot of the 34 pri-

oritized lincRNAs in the human genome, noted by 14 HR-upregulated genes

(in red) and 10 HR-downregulated genes (in blue) sitting adjacent or in a TAD.

(c) Ingenuity Pathway Analysis (IPA, www.Ingenuity.com) on these 24 pre-

dicted target genes (P<0.001) showing an enriched disease and function

(panel 1) and upstream regulatory molecules (Panel 2)
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(log-rank P¼0.021, empirical P¼0.038, Supplementary Fig. S5a).

Evaluated in the independent Germany patients, the RXA-LSP indi-

cator significantly separated favorable outcomes with a negative

value from unfavorable outcomes with a positive value for all

patients with neuroblastoma (Fig. 4b1) and patients without

MYCN amplification, a cohort that is generally considered to be in

the low risk group (Fig. 4b2) (severe empirical P¼0.003 and

<0.001 respectively). We also observed a similar significance to pre-

dict event-free survival (EFS, Supplementary Fig. S5b). Notably, ex-

pression of the predicted target genes of these lincRNAs also

accurately stratified overall survival prediction for neuroblastoma in

all patients, and specifically in patients without evident MYCN-

amplification (Fig. 4c, Supplementary Fig. S5 b, c2 and d2), suggest-

ing a role for lincRNAs in guiding the risk-dependent expression of

‘target’ genes. To our best knowledge, this is the first attempt to

infer gene biomarkers from lincRNA biomarkers that are associated

with these genes, a successful implementation of the downstream

gene-driven strategy for the prediction of functional lincRNAs.

4 Discussion

Altered expression of lncRNAs that stratifies tumor risk is an in-

formative readout of oncogenic enhancer activity. These lncRNAs

provide complementary information on cis-regulation, with or with-

out a hallmark of enhancer activity. Therefore instead of focusing

only on the enhancer hallmarks, our CisPi metric prompts a more

quantitative consideration of differentially expressed lncRNAs with

local target genes from RNA-Seq data alone, irrespective of enhan-

cer detection. However, our analysis cannot distinguish the underly-

ing cis-regulatory mechanisms which could be enhancer activity

and/or lncRNA expression that targets the predicted local genes.

Nevertheless, this methodology can be applied to the enormous

amount of previously generated RNA-Seq data, opening the door

wider to computational knowledge discovery.

LincRNAs, a subset of lncRNAs residing in evolutionarily con-

served intergenic regions and mostly being polyadenylated, hold

one-quarter of annotated human lncRNAs (GENCODE v19). We

observed a significant co-localization of lincRNA transcripts at

active enhancers, suggesting that lincRNAs could be enhancer-

templated and active enhancers could be transcribed into polyadeny-

lated RNAs. Given that only minorities of lncRNAs emanating from

enhancers are polyadenylated, lincRNAs that have polyA tails and

that are transcribed from enhancers without typical enhancer hall-

marks are intriguing—indicating that either enhancer detection by

ChIP-seq may have failed to identify these loci or that these loci rep-

resent a novel class of transcriptional regulatory lincRNAs. Our pre-

vious approach based on non-polyadenylated libraries will miss

most of these lincRNAs, and so it will be incomplete to decipher

functional cis-regulation (Yang et al., 2017a). Instead, this practice

of using deep-sequenced (>50 M reads per sample) polyadenylated

RNA-Seq data provides complementary insights into cis-acting

lincRNAs. In the future, applying this framework to data of total

RNA-Seq profiling is practical and will lead to a more profound

understanding of cis-regulatory gene network in disease.

Finally, with the increase in available sequencing data, incorpo-

rating population genetic evidence from GWAS, quantitative gen-

omic evidence from the transcriptome, and epigenetic evidence from

histone marks are encouraging for knowledge discovery. Our results

demonstrate the promise of such computational incorporation for

precision genomics. Notably, with evidence of an independent tran-

scriptional association associated with disease, additional GWAS

findings could lead to the discovery of new functional candidates,

such as the LINC01264 at the RET locus that we predicted in this

study. If validated, this strategy will provide post-GWAS research

an essential opportunity to validate candidates computationally.
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Fig. 4. Clinical implication of the prioritized lincRNAs, regardless of the MYCN

status. (a) Heatmap with 32 prioritized lincRNAs in 498 independent patients,

the Germany dataset, using a two-way hierarchical cluster of CPM (Complete

linkage with Manhattan distance). The color in the left vertical bar codes risk-

dependence, red for up-regulation and blue for down-regulation in HR.

(b) Overall survival of patients stratified by the RXA-LSP indicator built on

these lincRNAs for all patients (Panel 1) and patients without MYCN amplifi-

cation (Panel 2). (c) Overall survival of patients stratified by the RXA-GSP indi-

cator of 24 predicted target genes

CisPi discloses regulatory lincRNAs i669
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