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Abstract

The China National Center for Food Safety Risk Assessment (CFSA) uses the Foodborne Disease Monitoring and
Reporting System (FDMRS) to monitor outbreaks of foodborne diseases across the country. However, there are
problems of underreporting or erroneous reporting in FDMRS, which significantly increase the cost of related epi-
demic investigations. To solve this problem, we designed a model to identify suspected outbreaks from the data
generated by the FDMRS of CFSA. In this study, machine learning models were used to fit the data. The recall rate and
F1-score were used as evaluation metrics to compare the classification performance of each model. Feature impor-
tance and pathogenic factors were identified and analyzed using tree-based and gradient boosting models. Three real
foodborne disease outbreaks were then used to evaluate the best performing model. Furthermore, the SHapley
Additive exPlanation value was used to identify the effect of features. Among all machine learning classification
models, the eXtreme Gradient Boosting (XGBoost) model achieved the best performance, with the highest recall rate
and F1-score of 0.9699 and 0.9582, respectively. In terms of model validation, the model provides a correct judgment
of real outbreaks. In the feature importance analysis with the XGBoost model, the health status of the other people with
the same exposure has the highest weight, reaching 0.65. The machine learning model built in this study exhibits high
accuracy in recognizing foodborne disease outbreaks, thus reducing the manual burden for medical staff. The model
helped us identify the confounding factors of foodborne disease outbreaks. Attention should be paid not only to the
health status of those with the same exposure but also to the similarity of the cases in time and space.
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Introduction

Foodborne diseases are caused by eating food contam-
inated with pathogenic bacteria, viruses, parasites, nat-

ural toxins, or even chemical residues (Horwitz, 1977).
Foodborne diseases threaten people’s health and cause eco-
nomic losses globally every year (Todd, 1997; Li et al.,
2020). In 2015, the World Health Organization indicated
that foodborne diseases have caused a heavy burden on a
global scale. Approximately 600 million cases of foodborne
diseases occur worldwide annually, causing 420,000 deaths

(Oliver, 2019). Therefore, research on foodborne disease
monitoring and prediction is necessary.

A foodborne disease outbreak refers to the occurrence
of two or more foodborne disease cases with common ex-
posure and similar symptoms or more than one death record
(Murphree et al., 2012). The basic conditions for identifying
foodborne disease outbreaks are as follows: common expo-
sure to food and multiple people with similar symptoms
or one or more deaths. Factors that should be considered
to identify foodborne diseases are numerous and complex
(Bryan, 1978; Brown et al., 2017), and researchers have
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analyzed the burden of foodborne diseases in humans, food
animals, and food from the perspective of foodborne patho-
gens (Paudyal et al., 2018), such as Salmonella serovars
(Ferrari et al., 2019), Staphylococcus aureus ( Jia et al.,
2020), and Toxoplasma gondii (Zhang et al., 2019b).

At present, researchers have begun to apply data mining
(Thakur et al., 2010), machine learning, deep learning, and
other technologies to solve the problems of monitoring and
predicting foodborne diseases. Research on foodborne disease
monitoring (Wu and Chen, 2018) has helped to track the causes
of diseases and prevent further expansion of disease trends.
Xiao et al. (2015) proposed detection methods to automatically
detect local foodborne disease outbreaks and sporadic food-
borne disease outbreaks. Zhang et al. (2019a) integrated big
data of different aspects and designed a detection model for
foodborne diseases and risk assessment. Sadilek et al. (2012,
2013, 2018) collected Twitter data to monitor the sanitary
conditions of eateries and the health of customers. In addition,
social media data have also been used to monitor foodborne
disease outbreaks (Zhang et al., 2017; Effland et al., 2018).

The prediction of foodborne diseases primarily focuses on
predicting the future trends of a certain aspect of the disease.
Wang et al. (2018) considered the reporting delay of the
Foodborne Surveillance Database of the China National
Center for Food Safety Risk Assessment (CFSA) and applied
a Bayesian hierarchical model to predict the true daily num-
ber of patients using the daily number of patients visited. In
terms of disease risk prediction, researchers have used deep
learning methods to predict the short-term development
trend of influenza-like diseases (Wu et al., 2018b; Adhikari
et al., 2019) and foodborne diseases. Chen et al. (2019) de-
veloped a regularization-based eXtreme Gradient Boosting
(XGBoost) approach, which can be used to predict the trend
of foodborne diseases.

It can be seen that the research on foodborne disease out-
breaks has drawn the attention of researchers. However, these
methods are not fully applicable to the problem that should
be solved. In our problem scenario, the Foodborne Disease
Monitoring and Reporting System (FDMRS) of CFSA con-
ducted preliminary screening and integration of case data
based on rules, such as common food and common eating
places, to obtain suspected outbreaks. We counted the num-
ber of real and false foodborne disease outbreaks in 2019
generated by FDMRS based on the screening rules. After
review by medical staff, there were 6084 (80%) misjudged
outbreaks. From this point of view, the accuracy of suspected
outbreaks obtained through screening rules is only 20%, and
a large number of manual reviews by medical staff are still
required. Therefore, the problem that should be solved is to
establish and train a classification model, reduce the occur-
rence of misjudgments and missed judgments of the system,
and reduce the burden of manual judgment by medical staff.
Simultaneously, we can analyze the importance of each fea-
ture extracted from the data and provide medical workers
with guidance and suggestions from the data perspective.

Materials and Methods

Dataset

The data used in this study were obtained from the FDMRS
of CFSA, which is a national-level technical agency respon-
sible for food safety risk assessment in China. The dataset

comprises 2 parts: 3866 foodborne disease outbreaks obtained
from the epidemiological survey in 2019, which were con-
firmed by laboratory test results, and 7619 suspected food-
borne disease outbreaks in 2019 selected by FDMRS through
screening rules without laboratory testing. These suspected
outbreaks have been reviewed by medical staff and divided
into confirmed and excluded suspected outbreak groups.

In the dataset, there are one-to-many relationships between
the outbreaks and cases. Detailed information on the case
data can be obtained from the FDMRS database. The con-
firmed outbreaks from epidemiological surveys can be di-
rectly used as positive samples for the classification model.
In all suspected outbreaks, the confirmed suspected outbreaks
are regarded as positive samples, whereas the excluded sus-
pected outbreaks are regarded as negative samples.

Features

In this study, the features that we considered included case
information, exposure information, symptoms, and diagnosis
results, as shown in Supplementary Table S4. The subsequ-
ent feature extraction and feature importance analyses were
based on these features. For some features that can be sub-
divided, such as symptoms, diagnostic results, and food pro-
cessing methods, a corresponding comparison table is also
provided, as shown in Supplementary Table S5.

Model design

In this section, we introduce the problem definition, model
pipeline, model methods, and performance evaluation met-
rics. In addition, data preprocessing, feature extraction, and
other model training details are presented in Supplementary
Document D1 owing to the limitation of the number of words.

Problem definition

In our work, we abstract the problem of distinguishing whe-
ther a suspected foodborne disease outbreak is a real outbreak as
a classification problem and then build a classification model.
The model takes the suspected foodborne disease outbreaks as
input and outputs the discrimination result and probability. The
discrimination result represents whether the suspected outbreak
is a real outbreak (label = 1) or not (label = 0). The output
probability indicates the likelihood predicted by the model that
the suspected outbreak is a real outbreak.

Model pipeline

The model pipeline in Figure 1 can be summarized as
follows: (1) The FDMRS of CFSA integrates the cases in the
database to form suspected outbreaks of foodborne diseases
through some screening rules. (2) The suspected outbreaks
and the real outbreaks obtained from epidemiological in-
vestigations are combined as the entire dataset, and data
preprocessing and feature extraction are performed on the
dataset. We divided the dataset into training data (75%) and
testing data (25%). (3) Multiple classification models are
trained using the training data, and parameter tuning is per-
formed on them. (4) The recall rate and F1-score were used to
evaluate the model on the testing data. (5) The best per-
forming model obtained from the previous step was selected
to make predictions. The model output can be a probability
or classification label (0 or 1).
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Model methods and evaluation metrics

In this study, support vector machine (Cortes and Vapnik,
1995), logistic regression (Wright, 1995), naive Bayes
(Murphy, 2006), decision tree (DT) (Quinlan, 1986), random
forest (RF) (Breiman, 2001), gradient boosting DT (Friedman,
2001), adaptive boosting (Adaboost) (Freund and Schapire,
1996), and XGBoost (Chen and Guestrin, 2016) models were
used to fit the data.

We used the recall rate and F1-score to measure the clas-
sification performance of the models on the test set. The
formulas are as follows:

precision¼ TP

TPþ FP

recall¼ TP

TPþFN

F1� score¼ 2 ·
precison · recall

precisionþ recall

Detailed explanations of these machine learning algori-
thms and evaluation metrics are provided in Supplementary
Document SD1.

Results

Model results

Table 1 shows the recall rate and F1-score of each machine
learning model used in our study. As shown in Table 1, the
XGBoost model had the highest recall rate (0.9699) and the
highest F1-score (0.9582). It can be seen from Table 1 that
the performance of the classification model is not signifi-
cantly different between the test and training sets. The results
for the test set were slightly lower than those of the training
set, which was normal and acceptable. From this point of view,
our model does not have the problem of overfitting. We use the
XGBoost model as an example to analyze the confusion ma-
trix* of the model, which is shown in Supplementary Table S1.
According to the confusion matrix, the missed outbreaks are
only 3% of all positive cases, and 97% of all positive cases
were correctly predicted, which is the recall rate.

In addition to taking categories as the output of the
XGBoost model, we also attempt to output the classification
results of the XGBoost model in the form of probability.
Probability can indicate how likely it is that a suspected
foodborne disease outbreak is a real outbreak. By traversing
all possible classification thresholds, the threshold value of
the maximum F1-score achieved is 0.5341; that is, when the
output probability of a suspected outbreak is greater than
0.5341, the outbreak is considered a real foodborne disease
outbreak; otherwise, it is excluded.

Feature importance analysis

Interpretable machine learning (Doshi-Velez and Kim,
2017) plays an increasingly important role in the medical
field. If we use machine learning models to provide sugges-
tions for risk prediction and diagnostic decisions, but fail to
provide reasonable explanations, it is difficult to convince
people to accept the results (Ahmad et al., 2018). In most
cases, researchers focus more on how the model makes de-
cisions and the influence of each feature in the model on the
final decision than the single classification result obtained by
the model. Feature importance (Grabczewski and Jankowski,
2005) is a tool for feature selection and for improving the

FIG. 1. Model pipeline of foodborne disease outbreak monitoring and identification in the study. The whole process can
be divided into two parts: data preparation, preprocessing, and feature extraction, which are used to obtain the training and
test sets of the model, and model training, evaluation, and prediction.

Table 1. Recall and F1-Score of the Models

in the Training Set and Test Set

Model

Training set Test set

Recall F1-score Recall F1-score

SVM 0.9648 0.9516 0.9641 0.9506
LR 0.9603 0.9490 0.9599 0.9488
NB 0.9480 0.9426 0.9524 0.9425
DT 0.9743 0.9567 0.9616 0.9469
RF 0.9656 0.9533 0.9641 0.9517
GBDT 0.9767 0.9672 0.9666 0.9574
Adaboost 0.9782 0.9674 0.9674 0.9554
XGBoost 0.9715 0.9560 0.9699 0.9582

Adaboost, adaptive boosting; DT, decision tree; GBDT, gradient
boosting decision tree; LR, logistic regression; NB, naive Bayes;
RF, random forest; SVM, support vector machine; XGBoost,
eXtreme Gradient Boosting.

*Details for the confusion matrix can be found at https://en
.wikipedia.org/wiki/Confusion_matrix
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FIG. 2. Feature importance of random forest (a), adaptive boosting (b), and eXtreme Gradient Boosting (c) models and
comparison of the three models (d). The abscissa represents the feature importance calculated using the Gini index as an indicator.
The ordinate is the name of the feature we considered in the model. Because there are many features that are used as model input,
we add up features that account for a very small proportion and denote them as Other Feature. Color images are available online.
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FIG. 3. Impact of features on the XGBoost model output in outbreaks caused by Vibrio parahaemolyticus (a), Salmonella
(b), Norovirus (c), and diarrheagenic Escherichia coli (d). In the analysis of pathogenic bacteria, the SHAP value is used as
an indicator to measure the importance of features. The figure shows the top 20 features that play a decisive role in model
classification. The ordinate is the name of the feature, and the abscissa is the size of the SHAP value. The larger the value,
the greater the positive influence on the model output; and the smaller the value, the greater the negative influence on the
model. All data sample points are displayed in the figure for each feature dimension; therefore, the distribution of data
points under a certain feature can be seen in the figure. The different colors represent the value of the feature and size of the
feature value. For example, if the feature ExPosure_Otherisill of a sample point has a large value, it means that this feature
has a positive effect on judging a suspected outbreak as a real outbreak. SHAP, SHapley Additive exPlanation; XGBoost,
eXtreme Gradient Boosting. Color images are available online.
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interpretability of the model. In this study, we set the Gini
index (Gastwirth, 1972; Lerman and Yitzhaki, 1984) as an
indicator to evaluate the importance of features.

It can be seen from Table 1 that the classification models
based on the tree structure and gradient boosting algorithms,
such as RF, Adaboost, and XGBoost, attain better perfor-
mance. Therefore, these three representative models were
selected for the feature importance analysis. Figure 2 illus-
trates the importance of features in the RF, Adaboost, and
XGBoost models. Because many features are used as model
input, we add up features that account for a very small pro-
portion and denote them as Other Feature. An analysis of the
importance of features is presented in the Discussion section.

Identification of pathogenic factors

To understand the impact of various pathogenic factors on
foodborne disease outbreaks, we analyzed the proportion
of various pathogenic factors in the outbreaks, and the results
are shown in Supplementary Figure S3. Among the 158 out-
breaks that can be found for the pathogenic factors,
most outbreaks were caused by Vibrio parahaemolyticus
(41.1%), Salmonella (33.5%), Norovirus (13.9%), diarrhea-
genic Escherichia coli (7.0%), and others (4.5%).

In addition, we integrated outbreaks caused by the same
pathogenic factors. The differences in factors influencing
foodborne disease outbreaks caused by different pathogenic
factors in the XGBoost model were compared, as shown in
Figure 3. The SHapley Additive exPlanation (SHAP) value
(Lundberg and Lee, 2017; Lundberg et al., 2018) was used as
an indicator to measure the importance of features. Figure 3
shows the top 20 features that play a decisive role in model
classification. The larger the value, the greater the positive
influence on the model output; and the smaller the value, the
greater the negative influence on the model. Different colors
represent the values of the feature. For example, if the feature
ExPosure_Otherisill of a sample point has a large value, this
feature has a positive effect on judging a suspected outbreak
as a real outbreak. The analysis is presented in the Discussion
section.

Model validation in real cases

Because the XGBoost model has the highest recall rate and
F1-score, we chose the XGBoost model to validate the model
performance on real cases. Three confirmed, typical, food-
borne disease outbreaks in 2019 were taken as examples to
assess the classification effect. Compared with the traditional
feature importance (Grabczewski and Jankowski, 2005) and
permutation importance (Altmann et al., 2010), the SHAP
value (Lundberg and Lee, 2017; Lundberg et al., 2018) can
not only reflect the relationship between the features and the
predicted results but also reflect the positive and negative

effects on a single sample. Therefore, the SHAP value was
used to explain the prediction results of these three outbreaks.
Specific information on the outbreak cases is presented in
Supplementary Table S2. The classification results for the
three foodborne disease outbreaks are listed in Table 2.

For these three foodborne disease outbreaks, the effects
of the features on the final classification results are shown in
Figure 4. The prediction results of the three foodborne dis-
ease outbreaks were 0.93, 0.91, and 0.94, respectively. The
base value is 0.5341, which is the threshold value with the
maximum F1-score generated by traversing the thresholds.
The red color indicates the feature that increases the predic-
ted value, and blue color indicates the feature that reduces
the predicted value. The names and values of the features
are also marked in the figure at the bottom of the bar. The
figure indicates that the feature of whether other people
with the same exposure were sick (ExPosure_OtherIsill)
in the three foodborne outbreaks contributes the most to the
identification of outbreaks as real ones.

Discussion

In this study, we used a variety of machine learning models to
fit the data and compared the classification performance of each
model, with the recall rate and F1-score as evaluation metrics.
In our problem, we focus on whether the model has few missed
judgments and how many positive examples are predicted
correctly, which is the recall rate. Therefore, in our problem
scenario, the recall rate is more important than the F1-score
when F1-scores of the models are not significantly different.

In the model validation section, the results are well inter-
pretable: except for the feature of whether other people were
sick, other features with high contribution were determined
by the characteristics and specific situation of the outbreak.
For example, Yunnan_OUTBREAK_6014, the third out-
break in Figure 4, was caused by consumption of homemade
liquor; thus, in Figure 4c, we can see that homemade (fami-
ly = 1) also contributes to the prediction results.

Analysis of pathogenic factors indicated that V. para-
haemolyticus and Salmonella are the two main pathogenic
bacteria. We find that pathogenic factors of the cases in the
same outbreak are similar, which also proves that the real
outbreaks are credible and reasonable. Simultaneously,
the influencing factors differed slightly in terms of onset
symptoms. In outbreaks caused by V. parahaemolyticus,
Norovirus, and diarrheagenic E. coli, acute gastroenteritis
accounts for a higher proportion, whereas fever is a major
feature of outbreaks caused by Salmonella.

As for feature importance, it can be seen that the feature
importance values obtained by the three models have simi-
larities and differences. The similarity is that whether oth-
ers are sick is the most important feature among the three

Table 2. Prediction Results of Three Foodborne Disease Outbreaks

by the eXtreme Gradient Boosting Model

Outbreak ID
Prediction result

(label)
Prediction result

(probability) The meaning of the prediction

Shandong_OUTBREAK_11058 1 0.9352 Confirmed as a foodborne disease outbreak
Guangdong_OUTBREAK_112 1 0.9076 Confirmed as a foodborne disease outbreak
Yunnan_OUTBREAK_6014 1 0.9344 Confirmed as a foodborne disease outbreak
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classification models. The difference is that a few features
in AdaBoost and XGBoost have extremely high weights,
while the distribution of feature importance in RF is more
balanced. This difference can be explained by the underlying
implementation of the algorithm. Adaboost (Freund and
Schapire, 1996) and XGBoost (Chen and Guestrin, 2016) can
change the distribution of data during the training process,
resulting in proportions of some features becoming increas-
ingly higher after the iteration of the models. Multiple DTs
in RF (Breiman, 2001) are constructed by random sampling
of samples and features, and the results of multiple DTs are
summarized as the final results. The algorithm does not
change the data distribution of the training samples; there-
fore, the weights of some features will not be too high.

We compared the importance of the features of the three
models in Figure 2d. In addition to features with the highest
weight, other features with higher weights are the features of
the time dimension (ExPosure_Eattime, Disease_SickTime,
and Disease_TreatTime) and space dimension (ExPosure_Buy
Address and ExPosure_EatAddress). Therefore, when identi-
fying foodborne disease outbreaks, more attention should be
paid to the similarity of cases in the time and space dimensions.

Simultaneously, many aspects still need to be improved.
First, expanding the size of the dataset may lead to more ob-
jective experimental results. Second, foodborne disease out-
breaks have regional characteristics. For example, foodborne
disease outbreaks in Yunnan province are related to toxic wild
mushrooms (Zhao et al., 2018), whereas outbreaks in coastal
provinces, such as Shandong, are related to aquatic animals
(Wu et al., 2018a). Therefore, for future work, classification
models can be trained separately for each province or for a
finer-grained division to discover the similarities and differ-
ences in foodborne disease outbreaks in various regions.

Conclusions

In this study, we abstract the problem of distinguishing
whether a suspected foodborne disease outbreak is a real
foodborne disease outbreak as a classification problem and
build multiple classification models.{ A comparison of the
classification performances of different models shows that
the XGBoost model has the best performance with a recall
of 0.9699 and an F1-score of 0.9582. Considering the in-
terpretability of the model, importance of the features of the
models and pathogenic bacteria involved in the outbreak
cases were analyzed. In addition, we verified our model on
real cases to improve the credibility of our method. In the
future, our classification model will be applied to the big
data analysis and early warning platform of CFSA, which is
still under construction, to improve the accuracy of the
existing outbreak identification system to a certain extent,
thereby reducing the burden of manual judgment for some
medical workers.
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