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Infectious hematopoietic necrosis (IHN) is an economically important disease of salmonid

fish caused by the IHN virus (IHNV). Under industrial aquaculture settings, IHNV can

cause substantial mortality and losses. Actually, there is no confirmed and cost-effective

method for IHNV control. Clear Springs Foods, Inc. has been performing family-based

selective breeding to increase genetic resistance to IHNV in their rainbow trout breeding

program. In an earlier study, we used siblings cross-validation to estimate the accuracy

of genomic prediction (GP) for IHNV resistance in this breeding population. In the

present report, we used empirical progeny testing data to evaluate whether genomic

selection (GS) can improve the accuracy of breeding value predictions over traditional

pedigree-based best linear unbiased predictions (PBLUP). We found that the GP

accuracy with single-step GBLUP (ssGBLUP) outperformed PBLUP by 15% (from

0.33 to 0.38). Furthermore, we found that ssGBLUP had higher GP accuracy than

weighted ssGBLUP (wssGBLUP) and single-step Bayesian multiple regression (ssBMR)

models with BayesB and BayesC priors which supports our previous findings that the

underlying liability of genetic resistance against IHNV in this breeding population might

be polygenic. Our results show that GS can be more effective than either the traditional

pedigree-based PBLUP model or the marker-assisted selection approach for improving

genetic resistance against IHNV in this commercial rainbow trout population.

Keywords: bayesian multiple regression, disease resistance, genomic selection, infectious hematopoietic
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INTRODUCTION

Infectious hematopoietic necrosis (IHN) is an important disease
of salmonid fish that is caused by IHN virus (IHNV), which
is a single-stranded negative-sense RNA rhabdovirus (1). IHNV
is endemic to the Pacific Northwest in North America (2) and
has spread through continental Europe, China, and Japan (3–5).
IHNV is infectious to Pacific salmon and trout (Oncorhynchus
spp.), as well as to Atlantic salmon (Salmo salar) (2), and can
cause significant mortality and losses at nearly all stages of
production in commercial aquaculture settings (6–8). Currently,
unfortunately, there is no confirmed and cost-effective method
for IHNV prevention or treatment. Therefore, the development
of rainbow trout strains with genetic resistance to IHNV
is needed for improving animal well-being and decreasing
economic losses that are inflicted by this infectious viral induced
disease to food aquaculture production (8).

The additive genetic basis for IHNV resistance is evident
from the moderate estimates of heritability for IHNV binary
survival status (h2 = 0.23–0.55) and survival days to death
(h2 = 0.02–0.20) in a steelhead trout population (2). Recently,
we also found moderate estimates of heritability for IHNV
binary survival status (h2 = 0.25–0.28) and survival days to
death (h2 = 0.23–0.33) in a commercial rainbow trout breeding
population (8). These reports suggest that rainbow trout strains
with genetic resistance against IHNV can be developed by
means of traditional family-based selective breeding. However,
up to now, the development of strains with enhanced resistance
to IHNV in rainbow trout has been limited to traditional
pedigree-based selection. The process of selecting and developing
IHNV-resistant strains is further complicated due to the high
genetic variability of the IHN virus as revealed by phylogenetic
and nucleotide sequence analyses of 84 IHNV isolates (9).
Nevertheless, selective breeding of a rainbow trout strain for
resistance to IHNV has been conducted at the Clear Springs
Foods Inc. (CSF) breeding program since the year 2000 (10),
and the selection differential for resistance to IHNV has been
on average 10% for the last eight generations between 2000 and
2016 (8).

Few quantitative trait loci (QTL) mapping research have
been previously conducted to detect genetic polymorphisms
linked with IHNV resistance and to determine the genetic
basis of IHNV resistance in rainbow trout populations. A
number of moderate-large-effect QTL associated with IHNV
resistance were detected on 12 rainbow trout chromosomes using
linkage analysis (3, 11–13) and genome-wide association studies
(GWAS) (10). However, these earlier QTL mapping studies
had several experimental limitations which we described and
discussed elsewhere (8). To this end, we have recently performed
GWAS for IHNV resistance using a 57K SNP panel and multiple
regression single-step methods and found that the inheritance
of resistance to IHNV in the Clear Springs breeding population

is controlled by up to 10 small-moderate effect QTL (explained

genetic variance = 2.0–8.8%) and large-unknown number of

minute effect loci (8).
There is uncertainty on the best computational algorithm

when using multiple regression based models in GWAS and

genomic selection (GS) studies because the underlying genetic
bases of a complex trait and the population structure can have
major impact on the statistical power to detect marker effects
and on the accuracy of genomic prediction (GP) (8). Therefore,
it is recommended to compare the results from the best existing
computational GWAS and GP methods when elucidating the
genetic architecture of a complex disease and performing GP for
the first time in a population (8).

When using multiple regression based GWAS and GP models
that fit all single nucleotide polymorphisms (SNPs) with high
quality genotypes, the genomic best linear unbiased prediction
(GBLUP) method assumes that all SNPs have a non-zero
contribution to the variance of the studied trait, with equal
variance for each SNP, and that the distribution of the SNP
effects follows a normal distribution (14–16). In addition, the
single-step GBLUP (ssGBLUP) approach was developed, which
combines the pedigree-based (A) and genomic relationship (G)
matrices into the H relationship matrix (17, 18). On the other
hand, the Bayesian variable selection model assumes that the
trait genetic variance is explained by a relatively small number
of loci, each with a small-moderate or large effect (14, 19–
23). Based on the underlying assumptions of these models, the
GBLUP model is expected not to perform as well as the Bayesian
variable selection model when the trait genetic architecture is
not mainly polygenic. For that reason, the GBLUP method was
extended to the weighted ssGBLUP (wssGBLUP) method. The
wssGBLUP mimics the Bayesian variable selection model by
fitting all SNPs in the multiple regression model but assigning
differential weights to the SNPs based on the variance of each
SNP effect (8, 24). Lately, Bayesian variable selection models
that use a single-step approach have been developed (25–28),
including the single-step Bayesian multiple regression (ssBMR)
method (8, 25, 28).

Assessment of the accuracy and bias of GP using progeny
testing data is preferred over cross-validation (CV) analysis due
to these reasons: First and foremost, there is a practical breeding
purpose for GS, which is the actual de-facto improvement from
selective breeding by passing over genetic variants or alleles
associated with superior performance from parents to their
offspring. Second, the CV analysis is unreliable because it is
highly stochastic, and the GP accuracy is impacted by the
magnitude of the estimated heritability. Third, it has been shown
that the correlation of mid-parent genomic estimated breeding
value (GEBV) with the mean progeny performance for each
progeny testing family is a reliable estimator of the accuracy of
the predicted breeding value (BV) (29, 30). Fourth, the bias of BV
predictions for binary phenotypes (i.e., disease survival STATUS)
when using CV analysis is incorrect (8) because all the binary
observations within a class of variables are identical (i.e., each
animal has one binary survival phenotype record of either 0 or
1) (31). With progeny testing data this drawback is circumvented
by calculating the accuracy and bias of BV predictions using
progeny performance data per evaluated progeny testing family
(e.g., average survival rate) (8, 23, 32).

The development of multiple-regression based GWAS and
GS methods, along with the manufacturing of the rainbow trout
57K SNP array (33) have provided the critical tools to perform
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whole genome-enabled selection for resistance against IHNV
in rainbow trout. Recently, we estimated GP accuracies in the
range of 0.30–0.39 for IHNV resistance in the CSF rainbow
trout breeding population using simulation-based CV analysis
(8). In the current study, we aimed to validate those estimated GP
accuracies using empirical progeny performance data. Thus, the
specific objectives of the study were to (1) evaluate the accuracy
and bias of BV predictions for IHNV resistance using empirical
data from progeny testing evaluations, (2) compare the accuracy
and bias of BV predictions estimated with multiple regression
single-step methods (ssGBLUP, wssGBLUP and ssBMR) and
traditional pedigree-based PBLUP, (3) determine the extent of
linkage disequilibrium (LD) and the effective population size

(Ne) in the CSF population, and (4) assess the impact of
relatedness between training and testing animals on the GP
accuracy in commercial rainbow trout breeding populations.

MATERIALS AND METHODS

Ethics Statement
This study used rainbow trout fin clips collected after controlled
exposure to IHNV as part of a selective breeding program at
the CSF research facility. As farm animals used in a commercial
breeding program, these fish are exempted from regulation
under the U.S. Animal Welfare Act and therefore not subject to
oversight by an Institutional Animal Care and Use Committee
or other such ethics committee. This exemption is defined
in U.S. Code title 7, chapter 54, section 2,132 g. However,
experimentation and handling were conducted in accordance
with U.S. government principals for the use and care of vertebrate
animals used in testing, research, and training, which includes
provisions to minimize animal suffering. Specific measures for
amelioration of animal suffering during the fish pathogen testing
included minimization of handling, maintenance of optimal
water temperature, and oxygen saturation, and the fish were
fed a standard fish meal diet to satiation daily. Fish near death
from severe symptoms of infection during the observation period
were removed and terminated (by immersion in a lethal dose of
MS222) before collection of fin tissue tominimize suffering. After
the 3-week observation period, surviving fish were terminated
by immersion in a lethal dose of MS222 before sampling
and disposal.

Fish Growing and IHNV Disease Challenge
Samples were collected from disease-naïve parents and their
disease challenged offspring fish in brood years 2014 and
2016, respectively, by staff at the CSF research facility in Buhl,
Idaho, and processed following already described procedures (8).
Briefly, healthy fish from the previous generation were artificially
spawned to produce fertilized eggs from 104 families of year-
class (YC) 2016. Fin tissue samples from each parent fish were
collected at the time of spawning. The offspring were grown
to ∼1 g (62 days post-fertilization) and 50 fish per family were
selected randomly for disease challenge and were infected with
IHNV by immersion into a volume of water equivalent to 10x
the total body weight of the fish in g containing 10,000 plaque-
forming units of IHNV per mL for 1 h (IHNV isolate 220-90).

After exposure, the fish were moved to 19-L tanks by family
(50 fish/family/tank), because young and small fish cannot be
labeled individually, and monitored for a 21-day period, with
mortality recorded daily. Fin tissue samples were collected from
mortalities during the 21-day monitoring period and survivor
samples were taken at the end of the challenge. Fin clips from
all fish (mortalities and survivors) were individually kept in 95%
ethanol until DNA was isolated using published protocols (34).

Training and Testing Sample for GP
The training sample of this GP study comprised 104 pedigreed
full-sib (FS) families from YC 2016 of the CSF commercial
breeding company. The 104 families included 19 paternal half-
sib (HS) families and two maternal HS families, and they were
generated using 81 sires and 101 dams (Table 1). Sixty-three
families were made by mating each of 63 sires with a single
dam. Among the families that were made by mating a sire with
multiple dams: 17 sires were mated with two dams, one sire was
mated with three dams, and another sire was mated with four
dams. Among the families that were produced by mating a dam
with multiple sires: two dams were mated with two sires. These
YC 2016 families represented a commercial nucleus breeding
population that was undergoing intensive selection for growth

TABLE 1 | Experimental variables of genomic selection for IHNV resistancea.

Experimental variable Training Testing Progeny

performance

Phenotyped FS families 104 Nab 62

Phenotyped sire-HS families 19 Na 10

Phenotyped dam-HS families 2 Na 0

Number of sires 81 Na 52

Number of dams 101 Na 62

MEAN-PHENOTYPED offspring per family 50 Na 100

MIN-PHENOTYPED offspring per family 43 Na 99

MAX-PHENOTYPED offspring per family 52 Na 100

TOTAL phenotyped fish 5,191 Na 6,198

Genotyped FS families 100 35 Na

Genotyped sire-HS families 18 4 Na

Genotyped dam-HS families 2 2 Na

Families GENOTYPED in both TRAINING

& TESTING sets

35 35 Na

Families GENOTYPED only in TRAINING

set

65 Na Na

Families GENOTYPED only in TESTING set Na 0 Na

MEAN-GENOTYPED offspring per family 14 4 Na

MIN-GENOTYPED offspring per family 9 1 Na

MAX-GENOTYPED offspring per family 30 8 Na

Genotyped parents 51 Na Na

Genotyped offspring 1,449 124 Na

TOTAL genotyped fish 1,500 124 Na

Number of pedigree records 6,693 Na Na

aGenomic selection for infectious hematopoietic necrosis virus (IHNV) resistance

conducted in the Clear Springs Foods, Inc. year-class 2016 breeding population.
bNa indicates either non-available or non-needed data cell.
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and IHNV resistance for the past eight generations. The fish were
evaluated for IHNV resistance in the laboratory challenge, with
one tank per family with an initial stocking of 50 fish per tank.
The 104 families were evaluated by groups of 7–10 families at
11 challenge dates. After the IHNV challenge, IHNV resistance
phenotype records on N = 5,191 fish were collected. From the
total 104 training sample families, 100 FS families were genotyped
with an average of 14 offspring fish per family (range 9–30 fish)
for a total of N = 1,449 genotyped training offspring fish.

The testing sample of this GP study comprised 35 FS families
which were part of the genotyped 100 training FS families.
Specifically, from the 100 families that were genotyped as part
of the training sample, 35 families were also included in the
testing sample. Thus, there were 35 families that contributed
offspring fish to both the training and the testing samples. From
each testing family, an average of 4 offspring fish were genotyped
(range 1–8 fish) for a total of N =124 genotyped testing offspring
fish (Table 1).

Progeny Testing Families
In this GS study, 62 progeny testing families (PTF) from the
YC 2018 were IHNV challenged to assess the accuracy of the
predicted breeding values (BVs) for fish included in the testing
sample (Table 1). The 62 PTFs were created using 52 sires and
62 dams; and these 114 breeders were taken from the testing
genotyped sample (i.e., these breeders are offspring of the 35
families included in the testing sample). A sample of ∼100 fish
from each PTF was IHNV challenged to generate IHNV disease
survival records from a total of N = 6,198 fish.

IHNV Resistance Phenotypes
We had a binary survival status (STATUS) record for each
evaluated fish. The resistance phenotype STATUS had two
categories: 1 for fish that died during the 21 days post
challenge evaluation period; and 2 for fish that survived for
the duration of the challenge. The binary records of disease
survival STATUS were analyzed using animal threshold models
described below.

SNP Genotyping
The fish sampled from the CSF population were genotyped by
a commercial service provider (AKESOgen, Norcross, GA and
RUCDR, Rutgers University, Piscataway, NJ) using the Rainbow
Trout Axiom 57K SNP array (Chip) following previously
described procedures (8, 33). We randomly sampled survivor
offspring and early dying offspring per family with an average of
14 fish per family (range of 9–30) from a total of 100 training
families (offspring N = 1,449) for SNP genotyping. We also
genotyped all the sires from which fin clips were available (N
= 51). The dams were not sampled. As part of the testing
sample, we randomly sampled an average of four offspring fish
per family (range 1–8) from 35 families out of the 100 training
families (offspring N = 124) for SNP genotyping (Table 1). The
quality control (QC) pipeline procedures applied to the Chip-
SNP genotype data was described elsewhere (23). Briefly, the QC
pipeline discarded the SNPs that showed a significant distortion
from the expected Mendelian segregation in each FS family
(Bonferroni adjusted to P < 0.05) and also removed offspring fish
that did not have matching genotypes with the parents given in
the pedigree (i.e., that did not pass the pedigree check). After this
initial data QC, we had genotype data for 42,045 SNPs in the raw
Chip genotype dataset.

Before GS analyses, the raw marker genotype dataset was
further QC filtered using computer algorithms from the software
BLUPF90 (35) and procedures already described (8). Briefly, the
QC retained SNPs with a genotype calling rate higher than 0.90,
minor allele frequency higher than 0.05, and with departures
from Hardy-Weinberg equilibrium lower than 0.15, based on
the difference between expected and observed frequency of
heterozygotes. Parent-progeny pairs were tested for discrepant
homozygous SNPs, and SNPs with a conflict rate higher than 1%
were removed from the dataset. Next, we determined the physical
map location (GenBank Assembly Accession GCA_002163495.1)
(36, 37) of each of the QC filtered SNPs and those that did not
have a physical map location were discarded. After this final data
QC, we had data on 34,640 genotyped SNPs and 1624 genotyped
fish (1,449 training offspring and 124 testing offspring from YC
2016 and 51 sires from YC 2014) for GS analysis (Tables 1, 2).

TABLE 2 | Estimated genetic parameters for IHNV resistance in a commercial rainbow trout breeding populationa.

Methodb Phenotypedc Genotyped Genetic parameterf

Families Fish Families Fish SNPs σ
2
a σ

2
f/d σ

2
e h2

PBLUP 104 5,191 Nad Na Na 0.950 ± 0.518 0.231 ± 0.88 1.002 ± 0.029 0.25 ± 0.12

ssGBLUPe 104 5,191 100 1,624g 34,640 0.657 ± 0.156 0.191 ± 0.063 1.001 ± 0.028 0.22 ± 0.06

aClear Springs Foods, Inc. year-class 2016 rainbow trout breeding population.
bVariance components for infectious hematopoietic necrosis virus (IHNV) resistance were estimated using pedigree-based BLUP (PBLUP) and PBLUP with genomics data (ssGBLUP).
c IHNV resistance phenotype: binary fish survival status (STATUS) after IHNV challenge.
dNa indicates that data are not available; the PBLUP model uses only pedigree and phenotype records in the analysis.
eThe year-class 2016 families were genotyped with 39,189 SNPs. After data QC, we had 34,640 and 1,624 effective SNPs and animals, respectively.
fGenetic parameter estimate (± standard error): σ

2
a is the additive genetic variance; σ

2
f/d is the variance due to nested effects of families within challenge date; σ

2
e is the residual error;

and h2 is the estimated narrow-sense heritability. For the binary survival STATUS, the heritability estimated on the underlying scale of liability was transformed to the observed scale of

disease survival.
gThis total of n = 1,624 fish included the genotyped training (n = 1,449 offspring fish), testing (n = 124 offspring fish) and parents (n = 51 sires) samples.
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Estimation of Genetic Parameters for IHNV
Resistance
The binary survival STATUS records (n = 5,191) were fitted
to an animal threshold model to estimate genetic variance
parameters for IHNV resistance. The variance components
analysis was conducted using pedigree-based BLUP (PBLUP)
and PBLUP with genomic information (ssGBLUP) under a
Bayesian framework, using computer applications from the
software BLUPF90 (35). The binary records of survival STATUS
were analyzed using an animal threshold model with the
software THRGIBBS1F90. We utilized the same statistical model
described below in the section of GS analysis with single-step
GBLUP. The Gibbs sampler collected data from a total of one
million iterations, of which the first 200,000 iterations were
discarded; one sample was saved from every 100 iterations
from the remaining 800,000 iterations; thus, results from 8,000
independent samples were used in the analysis. The proper
mixing and convergence of the Markov chain Monte Carlo
(MCMC) iterations were assessed with an script written using the
R package CODA (38).

The heritability for survival STATUS was calculated as: h2 =

σ 2
a /

(

σ 2
a + σ 2

f /d
+ σ 2

e

)

; where h2 is the narrow-sense heritability;

σ 2
a is the additive genetic variance; σ 2

f /d
is the variance due to the

nested effect of families within the challenge date; and σ 2
e is the

residual error variance. The heritability for the binary survival
STATUS estimated on the underlying scale of liability using a
threshold model was transformed to the observed scale of disease
survival STATUS using methods described elsewhere (23).

GS Using Single-Step GBLUP Methods
The marker genotype data from training fish and pedigree
information on all fish included in this GS study were used to
estimate GEBV for the genotyped testing fish sample (n = 124)
using two methods: (i) ssGBLUP (17, 39); and (ii) wssGBLUP
(40). These single-step methods use all available information
on sampled fish, including pedigree, genotype, and phenotype
records, as well as those offspring fish without genotype data, n=
3,742 (17, 39). The CSF sample used in this GS study included n
= 5,191 offspring fish from 104 YC 2016 families that had IHNV
resistance data (Table 1). From these 5,191 phenotyped offspring
fish, a subset of 1,449 had genotype data from 34,640 effective
SNPs (Table 2).

In GS with ssGBLUP, the weight for each SNP is 1 for
the first iteration, which means that each SNP has the same
weight (i.e., single-step GBLUP). For the following iterations
(2nd, 3rd, etc.), the weights are SNP-specific variances that
are calculated using the estimate of the SNP allele-substitution
effect from the previous iteration and the corresponding SNP
allele frequencies (24). Estimates of SNP effects were computed
using a weighted relationship matrix, using this equation: û =

DM′
[

MDM′
]−1

âg, where û is the vector of the estimated SNP
effects; D is a diagonal matrix of weights for variances of SNP
effects; M is a matrix relating genotypes of each SNP to each
individual; and âg is the estimate of the additive genetic effect for
genotyped animals. The individual variance of SNP effects, which

corresponds to the diagonal elements ofD, was estimated as (41):
σ̂ 2
u,i=û2i 2pi

(

1−pi
)

, where: û2i is the square of the effect at SNP i,
and pi is the observed allele frequency for the second allele of SNP
i. In this GS study, we used results from the 1st (ssGBLUP) and
the 2nd iteration (wssGBLUP), because usually the 2nd iteration
estimates genomic predictions (32) and SNP effects (24, 42, 43)
with the highest accuracy.

We fitted a threshold mixed model for the binary data survival
STATUS using this animal model: y=1µ+Za+Wc+e, where 1

is a vector of 1s, µ is the overall mean of phenotypic records, a
is a vector of random individual animal effects, c is a vector of
random common environment effects, e is a vector of residual
effects, and Z and W are incidence matrices relating records to
random animal and common environment effects in a and c,
respectively. The variances of a, c and e are:

var





a

c

e



 =





Hσ 2
a 0 0

0 Iσ 2
c 0

0 0 Iσ 2
e



 ,

where σ 2
a , σ

2
c and σ 2

e are additive genetic, common environment
and residual variances, respectively, and H is a matrix that
combines pedigree (A) and genomic (G) relationship matrices, as
in Aguilar et al. (17), and its inverse as defined elsewhere (17, 39).
The fish offspring from each FS family were assigned to one tank
for IHNV challenge evaluation, so the tank and family effects
were confounded. The 100 tested families were evaluated in 11
challenge dates (date), with 7–10 families per date. This nested
random family/date effect was used to account for the common
environment effect.

The GS for the binary survival STATUS was conducted using
Bayesian methods implemented in the software BLUPF90 (35).
Exactly, the GS for STATUS with ssGBLUP and wssGBLUP were
conducted using the computer program THRGIBBS1F90. The
Gibbs sampling scheme and the methods used to assess the
correct mixing and convergence of the MCMC iterations were
similar to those described in the section of estimation of genetic
parameters for IHNV resistance.

GS Using Single-Step Bayesian Multiple
Regression
We conducted GP for the binary IHNV survival STATUS with
a single-step Bayesian multiple regression (ssBMR) method
using 1-Mb non-overlapping SNP windows (25, 27). The ssBMR
method uses the pedigree information and all fish that had
phenotype and genotype records, as in the wssGBLUP method.
In ssBMR, the genotypes for non-genotyped animals are imputed
explicitly given the pedigree data, and corresponding imputation
residuals are fitted in the ssBMRmodel. Thus, the GPwith ssBMR
model was conducted using the same phenotype and genotype
records used for wssGBLUP (Tables 1, 2).

We fitted a threshold mixed model for the
binary data STATUS using this animal model:
y=1µ +Xb+Zǫǫ+ Za+Wc+e; where X is an n×k matrix
of observed or imputed genotype covariates for k total number of
SNPs across the genome for both genotyped and non-genotyped
n individuals; b is a vector of k additive SNP effects; ǫ is the
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imputation residuals for non-genotyped individuals, Zǫ is the
design matrix allocating records to breeding values of non-
genotyped individuals; and a is a vector of random polygenic
effects. The other elements of the model were already described
in the section of GS with ssGBLUP. Scaled inverse chi-squared
distributions were used for genetic variance and residual variance
as described in (25). In these priors, the degree of freedom was
4, and scaled parameters were estimated by assuming the
proportion of variance of the phenotypic data explained by the
regression is 0.5. The GS analysis for the binary STATUS was
performed with ssBMR using the Bayesian variable selection
methods BayesB and BayesC (26) implemented in the software
JWAS (44).

In the BayesB and BayesC, the prior assumption is that
the marker effects have identical and independent mixture
distributions (21). So, both methods fit a mixture model to
estimate marker effects (21), which assume that there are two
types of SNPs: a fraction (1− π) of SNPs with non-zero effects
and another fraction (π) of SNPs that a-priori have zero effect
on the quantitative trait (45). In BayesB, the variance parameter
assumed for the random SNP effects is specific to each fitted
locus (46). On the contrary, an effect variance that is common
to all SNPs is used in BayesC (47). In this study, the parameter
π was treated as unknown with a uniform prior and estimated
with BayesBπ and BayesCπ models, separately, using the option
“estimatePi=true” in the ssBMR analysis. We also tested the
impact of treating π as known and setting it to 0.999 on the
GP accuracy when performing ssBMR with BayesB and BayesC
models. In a previous study with this dataset, we tested few
mixture parameters (π = 0.990, 0.995, 0.999) and found that
ssBMR-BayesB with π = 0.999 detected the largest number of
genomic windows associated with IHNV resistance and with the
largest additive genetic variance (8).

The BayesB and BayesC methods use Gibbs sampling in the
GS analysis (46). The characteristics of the Gibbs sampler and
diagnosis methods to test the proper mixing and convergence
of the MCMC iterations were like those used in the section of
estimation of genetic parameters for IHNV resistance.

Accuracy and Bias of Breeding Value
Predictions
The accuracy of predicted breeding values G(EBV) was estimated
as the correlation of the mid-parent G(EBV) with the mean
progeny performance (MPP) for each progeny tested family ().
After data QC, we had disease challenge data from 62 progeny
testing families (n= 6,198 fish).

The bias of the predicted G(EBV) was estimated as the
regression coefficient of MPP on the predicted mid-parent
G(EBV) for each PTF. A value of 1.0 for the regression of true
BV, performance phenotype or MPP on predicted G(EBV) is
theoretically expected for unbiased estimates of G(EBV); and a
deviation from 1.0 can be interpreted as prediction bias (48, 49).
Before estimating the bias or regression coefficient, the predicted
G(EBV) for the binary survival STATUS, which was estimated
on the underlying scale of liability, was transformed to the
observed scale. The categorical data analysis performed with

the software BLUPF90 and JWAS uses a probit link function;
consequently, the estimated G(EBV) was transformed to the
standard normal cumulative distribution function (CDF) to
estimate the probability of survival (50, 51).

Relatedness Between Training and Testing
Animals in GS Studies
We calculated relatedness between training and testing animals
using genomic and pedigree data in the current GS study
for IHNV resistance. First, the genomic (G) and pedigree-
based relationship (A22) matrices were calculated using the
software BLUPF90 (35); the A22 is a pedigree-based relationship
matrix only for genotyped animals (52, 53). Then, we
calculated summary statistics (e.g., sum, average, variance,
standard deviation, minimum, maximum and total number of
relationships) for sub-elements of the A22 and G matrices,
separately, using a recently developed Fortran90 software which
is on request available from the authors.

Likewise, we also computed relatedness between training and
testing animals in our already published GS study on resistance
to bacterial cold water disease (BCWD) (23) using the above
outlined methods. From this published BCWD study, the dataset
in which both the training and testing sample sets included
siblings from the same 25 families (each with ∼40 offspring fish)
was used to estimate relatedness between training and testing
animals. Subsequently, we compared the relatedness between
training and testing animals estimated in the current GS for
IHNV resistance study and the previously published GS for
BCWD resistance study.

Linkage Disequilibrium and Effective
Population Size Estimates
The linkage disequilibrium (LD) analysis comprised 100
unrelated fish from the YC 2016 families from the CSF
commercial breeding population. We developed five-replicated
samples each with 100 unrelated individuals by randomly
sampling, with replacement, one offspring fish from each of the
100 YC 2016 families. Thus, the LD analysis was performed using
data from 100 unrelated fish (n = 100) genotyped with 34,640
effective SNPs. It should be noted that the genotype data that we
used in the LD analysis was a subset of the training sample that
we used for the GP with 100 genotyped YC 2016 families (9–30
offspring per family).

The LD was estimated using described procedures (54).
Briefly, the LDwas computed as the Pearson’s squared correlation
coefficient

(

r2
)

for each pair of allele counts at two linked loci on a
chromosome, and the r2 was estimated for adjacent SNPs within
each chromosome. The LD was estimated using the computer
program PREGSF90 (55) from the software BLUPF90 (35) using

the following expression: r2 = D2

p1p2q1q2
; where D = p11p22 −

p12p21 corresponded to the frequency of the genotypes; p and
q are the alleles frequencies. The r2 estimates were adjusted for
experimental sample size with this expression: r2

adj
= r2−(2n)−1,

where n is the number of unrelated individuals used in the LD
analysis (56).
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The LD decay with physical distance was estimated using
already described procedures (54). Briefly, the LD decay with
distance between markers was estimated with the Sved’s equation
(57): LDij = 1

(1+kNetdij)
; where LDij is the estimated LD for

the marker-pair i and j; k is a constant based on the type of
chromosome used in the LD analysis (k =4 for autosomes); Net

is the effective population size for chromosome t and dij is the
distance between markers i and j. The Netwas calculated using

the Saura’s expression (56): Net = (4dt)
−1[(r2t− (2n)−1)

−1
− α];

where dt is the average length of chromosome t in Morgan
units; r2t is the average LD of the chromosome t; (2n)−1 is the
adjustment term for experimental sample size; and α is a fixed
parameter related to mutation (1= absence of mutation; 2=
presence of mutation), and we used α = 2.

RESULTS

Heritability of IHNV Resistance
The estimates of narrow-sense heritability

(

h2
)

were 0.22 and
0.25 for ssGBLUP and PBLUPmodels, respectively (Table 2). The
estimate of heritability using genomic data

(

h2 = 0.22± 0.06
)

was somewhat lower and with smaller standard error than the
estimate with the pedigree-based model

(

h2 = 0.25± 0.12
)

.

Accuracy and Bias of BV Predictions for
IHNV Resistance
The accuracy of BV predictions was higher for the GP models
ssGBLUP (0.38), wssGBLUP (0.35) and ssBMR-BayesBπ (0.34)
than for the pedigree-based PBLUP model (0.33), and the
PBLUP and ssBMR-BayesCπ models had similar accuracy
(Table 3). However, the PBLUP model (0.33) had higher
accuracy GP than the ssBMR models BayesB (0.28) and
BayesC (0.30) when using a mixture parameter of π =

0.999. Among the GP models, both single-step GBLUP models
(ssGBLUP and wssGBLUP) had higher accuracy of GP than
the four tested ssBMR models (Figure 1). Among the ssBMR
models, the BayesBπ and BayesCπ (0.33–0.34) had higher
GP accuracy than the BayesB and BayesC (0.28–0.30) when
using a mixture parameter of π = 0.999 (Table 3 and
Additional Table S3).

The relative change in accuracy of GP methods compared
to the pedigree-based PBLUP model is shown in Figure 2.
The accuracy of predictions with the ssGBLUP, wssGBLUP and
ssBMR-BayesBπ models outperformed the PBLUP model, by 15,
6, and 3%, respectively (Table 3). Conversely, the accuracy of
predictions with PBLUP outperformed the BayesB and BayesC
models when using a mixture parameter of π = 0.999.

The bias of BV predictions was lower (i.e., closer to 1.0) for
PBLUP (0.60), ssGBLUP (0.58) and ssBMR-BayesBπ (0.53) than
for wssGBLUP (0.38) and ssBMR-BayesB (0.36) (Table 3). The
ssBMR-BayesC and ssBMR-BayesCπmodels had the most biased
GP (0.32). Overall, the predicted breeding values for IHNV
resistance were biased downwards in this study (i.e., average bias
of 0.44).

TABLE 3 | Accuracy and bias of breeding value predictions for IHNV resistancea.

Modelb Accuracye Biasf Relative increase of

GS accuracy over

PBLUP (%)g

Fitted SNPs in

ssBMR modeli

PBLUP 0.33 0.60 Nah Nah

ssGBLUP 0.38 0.58 15.2 Nah

wssGBLUP 0.35 0.38 6.1 Nah

ssBMR-BayesBπ
c 0.34 0.53 3.0 741

ssBMR-BayesBd 0.28 0.36 −15.2 35

ssBMR-BayesCπ 0.33 0.32 0.0 6,758

ssBMR-BayesCd 0.30 0.32 −9.1 35

aClear Springs Foods, Inc. year-class 2016 rainbow trout breeding population. The IHNV

resistance phenotype: binary fish survival status (STATUS) after IHNV challenge.
bThe breeding values for IHNV resistance were estimated using these models: pedigree-

based BLUP (PBLUP), single-step GBLUP (ssGBLUP), weighted ssGBLUP (wssGBLUP),

and single-step Bayesian multiple regression (ssBMR) with BayesB (ssBMR-BayesB) and

BayesC (ssBMR-BayesC) models.
cThe mixture parameter π was assumed unknown and estimated by the ssBMR analysis.

The posterior mean for π from the Bayesian analysis with BayesBπ and BayesC was π =

0.979 and π = 0.805, respectively.
dThe mixture parameter π was assumed known and set to π = 0.999 in the

ssBMR analysis.
eThe accuracy of predicted G(EBV) was defined as the correlation of mid-parent G(EBV)

with the mean progeny performance (MPP) from each progeny tested family (PTF).
fThe bias of predicted G(EBV) was defined as the regression coefficient of mean

progeny performance (MPP) from each progeny tested family (PTF) on predicted mid-

parent G(EBV).
gRelative over-performance of the GS model in comparison to the traditional pedigree-

based PBLUP model.
hNa indicates that these data cells are not available.
iThe number of SNPs with non-zero effect on IHNV resistance (k) that are fitted in the

ssBMR model at each iteration was estimated with this expression: k = (1− π)p; the

analysis was performed using p = 34,640 effective SNPs.

Estimates of Relatedness Between
Training and Testing Animals
To assess why the accuracy of genomic BV predictions in
this study was lower than in our previous published study on
resistance to bacterial cold water disease (BCWD) (23), we
quantified the level of relatedness between the training and
testing fish in both studies. The summary of the genomic
(G) and pedigree-based (A22) measures of relatedness between
training and testing animals calculated in the GS studies for
IHNV resistance and BCWD resistance are presented in Table 4.
Although the number of effective or high quality polymorphic
SNPs was similar in both GS studies (∼35K SNPs), the number
of total genotyped animals (training and testing fish) was
higher in the BCWD study (n = 1, 900) (23) than in the
current IHNV study (n = 1, 573). However, the number of
genotyped training animals with phenotypes was higher in the
IHNV study (n = 1, 449) than in the BCWD study (n = 979)
(Table 4).

The sum of genomic and pedigree-based relationships
between training and testing animals was significatively higher in
the GS for BCWD resistance

(

6Gij = 61, 634 ; 6Aij = 82, 841
)

than in the current GS for IHNV resistance
(

6Gij = 5, 416 ; 6Aij = 6, 226
)

. Likewise, the average
of genomic and pedigree-based relationships between
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FIGURE 1 | Accuracy of breeding value predictions for IHNV resistance using multiple regression based single-step methods and pedigree-based PBLUP. The

genomic breeding value predictions were performed with single-step GBLUP (ssGBLUP), weighted ssGBLUP (wssGBLUP) and four single-step Bayesian multiple

regression models (TIFF file).

FIGURE 2 | Relative increase in accuracy of genomic predictions over those estimated with pedigree-based PBLUP model. The genomic breeding value predictions

were performed with single-step GBLUP (ssGBLUP), weighted ssGBLUP (wssGBLUP) and four single-step Bayesian multiple regression models (TIFF file).
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TABLE 4 | Genomic and pedigree-based relationship between training and testing

animals in genomic selection studies.

Variable IHNV-CSF 2016a BCWD-TLUM 2013b

Genomic

(G)

Pedigree-

Based

(A22)

Genomic

(G)d
Pedigree-

Based

(A22)

Training animals (offspring

fish)c
1,449 1,449 979 1,473

Testing animals (offspring

fish)

124 124 921 930

Effective genotyped animals 1,573 Na 1,900 Na

Effective genotyped SNPs 34,623 Na 35075 Na

Sum of relationships 5,415.63 6,226.19 61,634.31 82,841.17

Average of relationships 0.030 0.035 0.068 0.060

Variance of relationships 0.007 0.006 0.011 0.008

Standard deviation of

relationships

0.082 0.078 0.105 0.088

Minimum relationship −0.122 0.000 −0.161 0.000

Maximum relationship 0.697 0.563 0.820 0.531

Total number of

relationships

179,676 179,676 901,659 1,369,890

aGenomic selection study for IHNV resistance in Clear Springs Foods, Inc. (CSF),

year-class 2016 rainbow trout breeding population.
bGenomic selection study for BCWD resistance in Troutlodge, Inc., all-female, May-

spawning (TLUM), year-class 2013 rainbow trout breeding population.
cThe training dataset included genotype data only from offspring fish. The genotype data

from parents were not included in the relatedness analysis.
dRelatedness between training and testing animals was estimated for the genomic

selection Scheme 3 presented in Vallejo et al. (23), in which both the training and testing

sample sets included the same 25 families each with ∼40 offspring fish.

training and testing animals was substantially higher in the
BCWD resistance study

(

Gij = 0.068 ; Aij = 0.060
)

than

in this study
(

Gij = 0.030; Aij = 0.035
)

. The maximum of
genomic relationships between training and testing animals
was higher in the BCWD study

(

maxGij = 0.820
)

than
in this study

(

maxGij = 0.697
)

. However, the maximum
of pedigree-based relationships was slightly higher in
this study

(

maxAij = 0.563
)

than in the BCWD study
(

maxAij = 0.531
)

.

Estimates of Linkage Disequilibrium and
Effective Population Size
We evaluated the extent of LD and effective population size

(Ne) in this rainbow trout commercial population to evaluate the
impact of these population genetic parameters on the estimated
GP accuracy. The mean LD

(

r2
)

, distance between analyzed loci-
pairs in base pairs (bp), and Ne estimated for each rainbow
trout chromosome in the current study for IHNV resistance is
presented in Table 5. The estimated whole-genome average LD
was r2 = 0.26. The average LD per chromosome ranged from
0.21 to 0.39, with average strong LD of r2 ≥ 0.25 on 17 of the
29 chromosomes.

Noticeably, chromosome Omy5 had the highest mean LD
(

r2 = 0.39
)

followed by Omy1, Omy2 and Omy7
(

r2 = 0.29
)

(Table 5). Chromosomes Omy21
(

r2 = 0.21
)

and Omy18 and

TABLE 5 | Linkage disequilibrium and effective population size in rainbow trouta.

Chromosome Number

of SNP

Length

(bp)

Mean SNP

distance

(bp)b

Mean (r2)c Mean

(Ne)
d

1 1,561 80,463,726 51,546 0.29 30

2 1,483 84,556,146 57,017 0.29 29

3 1,303 78,925,913 60,572 0.24 35

4 1,751 84,440,242 48,224 0.23 24

5 2,360 91,752,627 38,878 0.39 4

6 1,440 80,326,334 55,782 0.27 31

7 1,408 78,384,816 55,671 0.29 33

8 1,533 83,354,286 54,373 0.26 32

9 1,271 67,842,687 53,377 0.23 44

10 1,312 69,431,880 52,921 0.27 33

11 1,369 79,446,316 58,032 0.25 35

12 1,503 81,660,641 54,332 0.25 32

13 646 57,022,654 88,270 0.23 61

14 1,274 80,208,004 62,958 0.24 26

15 1,066 60,567,863 56,818 0.25 38

16 1,437 70,578,346 49,115 0.26 42

17 1,278 70,907,611 55,483 0.24 38

18 1,048 58,027,267 55,370 0.22 44

19 1,027 58,695,507 57,152 0.22 49

20 764 40,785,495 53,384 0.24 48

21 802 49,169,528 61,309 0.21 56

22 924 48,276,594 52,247 0.24 60

23 940 47,802,591 50,854 0.27 43

24 773 40,072,015 51,840 0.23 59

25 1,464 81,698,882 55,805 0.24 25

26 556 35,878,529 64,530 0.27 54

27 789 44,808,344 56,791 0.25 49

28 811 40,281,028 49,668 0.27 46

29 747 42,333,531 56,671 0.27 44

Average 1,194 65,093,083 55,827 0.26 39

aThe linkage disequilibrium (LD) analysis included 100 unrelated fish from the year-class

(YC) 2016 families from the Clear Springs Foods, Inc. breeding population. We developed

five-replicated samples each with 100 unrelated individuals by randomly sampling, with

replacement, one offspring from each of the 100 YC 2016 families.
bThe average distance, in base pairs (bp), between SNP pairs within each chromosome.
cThe LD analysis was performed using 34,640 effective SNPs, and the LD was defined as

the Pearson’s squared correlation coefficient (r2 ) for each pair of allele counts at two linked

loci on a chromosome. The r2 was estimated for adjacent SNPs within each chromosome

and here we present the average LD from five replicated samples.
dThe mean effective population size (Ne) from five replicated samples.

Omy19
(

r2 = 0.22
)

had the lowest mean LD estimates. The
average distance between two adjacent SNPs ranged from 38,878
to 88,270 bp per chromosome with a genome-wide average
distance of 55,827 bp.

The average effective population size was Ne = 39 (Table 5).
Chromosomes Omy13 (Ne = 61) and Omy22 (Ne = 60) had
the largest effective population size. Chromosome Omy5 had
the smallest effective population size (Ne = 4). Relatively small
effective population size was also estimated for chromosomes
Omy4, Omy14 and Omy25 (Ne = 24− 26 ).
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The LD decay with physical distance estimated for each of the
29 rainbow trout chromosomes using the ∼35K SNP panel are
presented in Figure 3. Overall, strong level of LD (r2 ≥ 0.25)
extended over 5Mb on all the 29 chromosomes. Strikingly, the
strong level of LD extended over 40Mb on chromosome Omy5.
In addition, the strong level of LD extended over 20Mb on
chromosomes Omy4, Omy14 and Omy25.

DISCUSSION

In this study, for the first time using empirical progeny
testing data, we found that the gain in GP accuracy achieved
with ssGBLUP and wssGBLUP was higher than traditional

pedigree-based PBLUP by 15 and 6%, respectively. Thus, these
results highlight the potential for effective genetic improvement
of resistance against IHNV using genome-enabled selective
breeding methods in this rainbow trout breeding population.
In addition, our results confirmed the importance of designing
GS studies that warrant a high genomic relationship between
training and testing animals to estimate high accuracy GP.
Furthermore, we found that ssGBLUP had higher accuracy GP
than wssGBLUP and ssBMR which suggest that the underlying
liability to IHNV resistance might be polygenic. Taken together,
these results indicate that whole genome-enabled BV prediction
models will be more effective than traditional pedigree-based
prediction model or the marker-assisted selection method for

FIGURE 3 | Linkage disequilibrium decay with physical distance estimated by chromosome using 34K SNP panel in year-class 2016 families from Clear Springs

Foods, Inc. rainbow trout breeding population. For the LD analysis, in five replicates, one fish from each of the 100 YC 2016 families was randomly sampled with

replacement; so, each genotype data set used for LD analysis included 100 unrelated fish. Here, we present results LD decay with physical distance from replication 5

(TIFF file).
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improving genetic resistance against IHNV in this commercial
rainbow trout population.

Heritability of IHNV Resistance
The heritability estimates for IHNV resistance in our study
were moderate

(

h2 = 0.22− 0.25
)

(Table 2) and much lower
than those reported already using pedigree-based model in a
different hatchery rainbow trout population that was naïve to
IHNV with no previous history of selective breeding for the
trait (2). Our estimates of heritability underline the potential for
genetic improvement for IHNV resistance through family-based
selective breeding in this commercial rainbow trout population.
In this study, the heritability estimate based on genomic data
(ssGBLUP) was lower

(

h2 = 0.22± 0.06
)

than those based on
PBLUP

(

h2 = 0.25± 0.12
)

. However, the heritability estimated
with ssGBLUP had much lower standard error than the
heritability estimated with PBLUP.

Strikingly, our estimated heritability for IHNV
survival STATUS using genomic data was much lower
(

h2 = 0.22± 0.06
)

than the heritability reported by Brieuc
et al. (2) for IHNV mortality using a pedigree-based model
(

h2 = 0.38; 95% CI [0.23, 0.55]
)

. Our studied population has
been selected for IHNV resistance for eight generations (Richard
Towner, unpublished results) and the population used by Brieuc
et al. (2) was not under selective breeding pressure for resistance
to IHNV, and therefore had larger genetic variation for IHNV
resistance than in this study.

Accuracy and Bias of Predicted Animal
Breeding Values
Recently, we have shown that the ssGBLUP and wssGBLUP had
higher accuracy of BV predictions for resistance to IHNV than
PBLUP using an stochastic CV analysis (8) and in this study we
confirmed those findings using empirical progeny performance
records. The estimated GP accuracy for resistance to IHNV was
similar between the two studies. In our previous study, the GP
accuracy with wssGBLUP (0.39) was higher than with ssGBLUP
(0.34), while in the current study the GP accuracy with ssGBLUP
(0.38) was higher than wssGBLUP (0.35) (Additional Table S1).
The GP accuracy estimated with progeny performance data in
this study is more reliable than that estimated with CV analysis
(23, 32) because it has been shown that the correlation of mid-
parent GEBV with the mean progeny performance for each PTF
is a reliable estimator of the accuracy of the predicted breeding
values (29, 30).

The accuracy of BV predictions was higher with PBLUP
in the present study using progeny performance data (0.33)
than in our previous study using CV analysis (0.24) (8). Due
to the increased accuracy of predictions with PBLUP in this
study, the relative increase in GP accuracy over the pedigree-
based PBLUP in this study (6.1–15.2%) was lower than in
our previous study (41.7–62.5%) (8). Interestingly, the accuracy
of BV predictions for resistance to IHNV we estimated with
PBLUP in this study was similar to the accuracy of PBLUP
BV predictions we have previously estimated for bacterial cold
water disease (BCWD) resistance in a different rainbow trout
population (23). However, the estimates of GP accuracy for

resistance to IHNV in this study (0.28–0.38) were lower than
the accuracy estimates of genomic predictions for BCWD
resistance (0.66–0.71) (Additional Table S1). The lower GP
accuracy estimated in this IHNV study was due to the sub-
optimal GS study design caused by logistical problems and
other limitations that were imposed on the study design by the
constraints of the ongoing commercial rainbow trout breeding
program. One major disadvantage in the IHNV study was that
DNA samples and genotype data could not be obtained from
weekend mortalities, which together with other missing samples
accounted for ∼38% of the fish that were phenotyped as dead
or susceptible to the disease. While the phenotype records from
those fish were available for the PBLUPmodel, we were unable to
obtain genomic information from them, which has substantially
reduced the power of the GS models to estimate SNP effects on
disease susceptibility. Another major difference was the higher
relatedness between the training and testing fish in the BCWD
study, which we quantified and later discuss with more detail.

Furthermore, the IHNV and BCWD GS studies differed in
these experimental design variables (Additional Table S2): (i)
number of phenotyped fish in the training sample (BCWD: n =

7,893; IHNV: n = 5,191); (ii) sibship size of the training families
(BCWD: mean genotyped offspring per family = 29, range 19–
40; IHNV: mean genotyped offspring per family = 14; range
9–30); (iii) sibship size of the testing families (BCWD: mean
genotyped offspring per family = 31, range 1–44; IHNV: mean
genotyped offspring per family= 4, range 1–8); and (iv) number
of genotyped fish in testing sample (BCWD: n= 930; IHNV: n=
124). Consequently, the GS for BCWD resistance afforded higher
statistical power to detect marker effects than the GS for IHNV
resistance. In addition, another major factor which might have
determined the noticeable difference on GP accuracy between
these two GS studies was the genetic architecture of the studied
traits. The genetic resistance against IHNV might be polygenic
in the CSF 2016 population, and thus may require larger size
of training sample for high accuracy GP (Daniela Lourenco,
personal communication), whereas the genetic resistance against
BCWD had an oligogenic architecture in the studied population.
Previously, we have found that oligogenic trait architecture is
advantageous for estimating high accuracy GP using relatively
small-moderate training sample size (23).

The bias of BV predictions for the binary survival STATUS
(i.e., IHNV resistance) estimated with CV analysis is incorrect
and, consequently, was themost biased (i.e., bias farther from 1.0)
(Additional Table S1) (8) due to extreme-phenotype problems in
which all binary observations within class variables are identical
(i.e., each individual has one binary survival phenotype record
of either 0 or 1) (31). In this study, the above problem was
avoided by estimating the accuracy and bias of BV predictions
using empirical progeny testing data (i.e., offspring survival rate
per IHNV challenged progeny testing family) (23, 32). Thus,
the BV predictions for IHNV resistance in this study had much
lower bias (i.e., bias closer to 1.0) than those estimated with CV
analysis (i.e., bias farther from 1.0). However, the bias estimates of
predictions in this study were higher than those in a GS study for
BCWD resistance (i.e., bias closer to 1.0) conducted in a different
rainbow trout population (Additional Table S1) (23).
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Overall, the gain in GP accuracy obtained with ssGBLUP
and wssGBLUP was 15 and 6%, respectively, higher than using
traditional pedigree-based PBLUP. Thus, these results highlight
the potential for effective genetic improvement of IHNV genetic
resistance in this rainbow trout breeding population using
genome-enabled selective breeding method.

Comparison of Multiple Regression
Single-Step GS Methods
The usage of accurate statistical methods and computer
algorithms is key for elucidating the genetic basis of resistance
to complex diseases and GP using GWAS and GS, respectively.
In this study, genomic predictions for IHNV resistance were
computed using two multiple regression single-step GS methods
that calculate the effect of all markers simultaneously, thus
accounting for LD between neighboring loci (21, 46, 58). A
unique feature of these multiple regression single-step based
methods is that they use all available pedigreed animals with
genotype and/or phenotype records in the GWAS and GS
analysis. Thus, they have higher power of marker effect detection
than those methods that do not use a single-step method and test
for association using one-marker at a time without accounting
for LD between neighboring loci and without using phenotypes
on non-genotyped relatives.

Among the GS models, ssGBLUP had the highest GP
accuracy for IHNV resistance (Table 3) followed by GS models
(wssGBLUP and ssBMR models) expected to be powerful when
analyzing traits that are controlled by few moderate-large effect
QTL (i.e., oligogenic inheritance trait). In addition, among
the ssBMR models, we found that models that fit a higher
number of SNPs (BayesBπ and BayesCπ) had higher prediction
accuracy than those that fit a lower number of SNPs (BayesB
and BayesC) (Additional Table S3). These results suggest that
the genetic resistance against IHNVmust bemore polygenic than
oligogenic. In a previous study, we found that IHNV resistance
was controlled by few loci with moderate effects (EGV = 2.0–
8.8%) and a large-unknown number of minute-effect loci (8),
which further support the hypothesis of polygenic inheritance for
IHNV resistance in rainbow trout.

The observed difference in GP accuracy between the
two single-step based GS methods (ssGBLUP/wssGBLUP and
ssBMR) is due to differences in the underlying model
assumptions and the genetic architecture of the analyzed
trait. In this study, we evaluated GP models that assume a
purely polygenic inheritance for IHNV resistance and a normal
distribution of the marker effects such as ssGBLUP, and we also
evaluated GS methods such as ssBMR and wssGBLUP, which
assume that the trait genetic variance is explained by a reduced
number ofmoderate-large effect QTL, instead of purely polygenic
inheritance (25, 59, 60). Indeed, the Bayesian variable selection
models run with ssBMRwas shownmore powerful than standard
mixed linear GBLUP-based models when the trait under study
is controlled by few loci with moderate-large effect and many
minute-effect loci, i.e., oligogenic inheritance trait (23, 60, 61).
In this study, ssGBLUP had higher GP accuracy than wssGBLUP
and Bayesian variable selection models run with ssBMR. In

addition, ssBMRmodels that fit a high number of non-null effect
SNPs (BayesBπ with 741 SNP, and BayesCπ with 6,758 SNP) had
higher GP accuracy than ssBMR models that fit a low number
of SNPs (BayesB and BayesC each with 35 SNP). Thus, these
results suggest that the underlying liability of genetic resistance
against IHNVmight be polygenic, which imply that the heritable
component of IHNV resistance is due to thousands of loci each
having a minor effect on liability to IHNV resistance.

Impact of Relatedness Between Training
and Testing Animals on GP Accuracy
The most critical factors for estimating high accuracy GP when
performing intra-population GS are (i) the extent of LD between
markers and QTL; (ii) the training population sample size; and
(ii) the degree of relatedness between the training and testing
animals (14, 62, 63). In this study, we computed pedigree-
based (A22) and genomic (G) relationship between training
and testing individuals for two GS studies (Table 4), separately,
and found that the average and sum of genomic and pedigree-
based relationships in the current GS for IHNV resistance was
substantially lower than in the GS for BCWD resistance (23).
Intuitively, the level of relatedness between training and testing
individuals is defined by the GS study design; and clearly, the
design features of the GS for BCWD resistance ensured a higher
level of relatedness between the training and testing animals than
in the GS for IHNV resistance (Additional Table S2). Thus, the
lower level of relatedness between the training and testing fish in
the current IHNV resistance study likely contributed to the lower
GP accuracy estimates in comparison with the BCWD study.

With simulation-based studies using empirical data from two
of our GS studies for BCWD resistance using 100 and 138
families fromYC 2013 and YC 2015, respectively, from the TLUM
population, we determined that we need to evaluate 20–40 FS
offspring per training (and testing) family to compute GP with
high accuracy (unpublished results). Thus, when performing
intra-population GS with rainbow trout, if the breeding goal is
to make population-wide inferences on GP, then we should aim
to include in the training and testing sample a large collection
of families each with small family sibship size, i.e., 150 families
each with ∼10 offspring. However, if the breeding goal is to
make high accuracy GP in a subset of the population (i.e., pre-
selected top performance families with candidate breeders for
the next generation), then we should include in the training
and testing sample a reduced number of families each with a
reasonably large family sibship size, i.e., 30–50 families each with
20–40 offspring. Furthermore, we should include full-sibs from
the same families in the training and testing sets to maximize the
degree of relationship between the training and testing animals,
and thus estimate genomic predictions with high accuracy.

Linkage Disequilibrium and Effective
Population Size
In this study, we estimated for the first time genome-wide
distribution of LD and its decay with physical distance using
a dense 34K SNP panel in the CSF YC 2016 rainbow trout
breeding population. The mean LD across the rainbow trout
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chromosomes was high
(

r2 = 0.26
)

. The average LD estimated in
this population was high and similar to the average LD estimated
in the TLUM population

(

r2 = 0.27
)

(54). Chromosome Omy5
had the highest average LD (r2 = 0.39) and also the lowest
effective population size (Ne = 4). Similarly, Omy5 had also the
highest LD

(

r2 = 0.44
)

and lowest effective population size (Ne

= 14) in the TLUM population (54). In Omy5, the higher than
average LD is probably caused by large chromosomal inversions
detected in other studies, which prevented recombination in fish
that are heterozygous to the inversion (37). Overall, this CSF
rainbow trout population had an average effective population size
ofNe = 39 which was smaller than the estimates ofNe = 145 and
Ne = 155 in the NCCCWA (64) and TLUM (54) rainbow trout
populations, respectively.

We found that the strong LD level (r2 ≥ 0.25) extended over
5Mb in all the rainbow trout chromosomes, over 40Mb onOmy5
and over 20Mb on Omy4, Omy14, and Omy25 in the CSF YC
2016 rainbow trout population. In the past, we found that the
level of strong LD decayed rapidly at distances >2 cM which is
equivalent to ∼1.2Mb in the NCCCWA rainbow trout breeding
population (64). Recently, we found strong level of LD extending
over 1Mb on all the chromosomes and over 25Mb on Omy5 in
the TLUM rainbow trout population using 34K SNP panel (54).
Therefore, our results confirmed that the extent of long-range LD
in this commercial rainbow trout population was as high as those
observed in two other rainbow trout breeding populations.

Taken together, we found that the current GS for IHNV
resistance and the GS for BCWD resistance (23) studies had
similar levels of genome-wide average LD (0.26 vs. 0.27) and
total samples size of training genotyped fish (1,500 vs. 1,570),
although a different samples size of phenotyped fish (5,191 vs.
7,893) (Additional Table S2). However, the average relatedness
between the training and testing animals was substantially lower
in the current GS for IHNV resistance than in the GS for BCWD
resistance with genetic/pedigree relatedness of 0.035 vs. 0.060 and
genomic relatedness of 0.030 vs. 0.068 for the IHNV and BCWD
studies, respectively (Table 4). Clearly, the level of relatedness
between training and testing animals on each GS study was
imposed by the study design (Additional Table S2). Therefore, as
already suggested for terrestrial livestock species (14, 62, 63), our
results confirm the importance of designing optimal GS studies
which warrant a high relatedness between training and testing
animals to estimate genomic predictions with high accuracy in
rainbow trout.

CONCLUSION

Our current study on genomic selection for improving resistance
to IHNV in rainbow trout using empirical progeny testing
data and multiple regression single-step methods found that
genomic selection models improved the accuracy of breeding
value predictions by 3–15% over the pedigree-based PBLUP.
Furthermore, we found that ssGBLUP had higher GP accuracy
than wssGBLUP and ssBMR models which suggest that the
underlying liability of genetic resistance against IHNV in
this rainbow trout breeding population might be polygenic.

Therefore, our results highlight that the GP models will be more
effective than either the traditional pedigree-based PBLUPmodel
or the marker-assisted selection method for improving genetic
resistance against IHNV in rainbow trout aquaculture.
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