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Over the past decade, single cell genomics (SCG) made a swift transition from science fiction to a
handy new tool in the biologist’s toolset. The power of this technology lies in its ability to retrieve
information-rich genomic blueprints from themost fundamental units of biological organization—
individual cells. This is particularly significant in the case of bacteria, archaea, and protists, where
single cells constitute complete organisms. Such unicellular individuals comprise the vast majority
of biological diversity and biomass of our planet, yet only a small fraction of microbial diversity has
been discovered and studied. Together with other modern research tools, SCG has been increas-
ingly instrumental in deciphering the genomic composition, metabolic potential and evolutionary
histories of the “microbial dark matter.” While cultivation-free recovery of discrete genomes was
impossible in 2004, by 2009 it became a routine procedure that is accessible to the broad research
community through open-access SCG core facilities (e.g., scgc.bigelow.org). This rapid develop-
ment has enabled genomic studies of many previously unexplored branches of the tree of life
(Marcy et al., 2007; Rinke et al., 2013) and findings of hitherto unrecognized biogeochemical pro-
cesses and ecological patterns (Swan et al., 2011, 2013; Mason et al., 2012), paving the way for a new
wave of discovery in microbiology and biotechnology.

An exciting feature that sets SCG apart from other cultivation-independent technologies is
the retrieval of sequences of all the DNA molecules in a cell, in this way providing evidence for
their physical co-occurrence (or absence) in the analyzed cell or consortia of multiple cells. Such
molecules may include multiple chromosomes and plasmids of the host organism; genomes of
organelles, symbionts, viruses, and other infecting agents and prey items; and naturally transformed
DNA (Figure 1). The ability to collect this type of information offers a major, but still underutilized
opportunity to microbiology. Infections, symbioses, phagotrophy, horizontal gene transfer, forma-
tion of consortia, and other interactions among unicellular, uncultured organisms and extracellular
genetic elements can now be analyzed directly, in their natural environment. Such interactions
are thought to be of paramount importance to the functioning of oceans, soils, macroorganis-
mal (including human) biomes and other microbially-dominated ecosystems, although their in situ
studies have been severely hampered by methodological difficulties.

In one of the first applications of SCG on eukaryotes, multiple cells of the candidate
phylum Picozoa (formerly Picobilliphyta) were found to contain fragments of bacterial and
viral DNA, while no genes involved in photosynthesis were identified (Yoon et al., 2011).
This provided the first evidence that Picozoa are phagotrophs, correcting prior suggestions
of them being photosynthetic. The same SCG study also retrieved a complete genome of a
novel nanovirus from an infected Picozoa cell. A phylogenetically broader screen of uncul-
tured marine protists provided evidence for several novel symbiotic and phagotrophic interac-
tions (Martinez-Garcia et al., 2012). More recently, SCG of planktonic bacteria from a model
oxygen minimum zone revealed genomes and the spatiotemporal distribution of 69 novel
phages infecting SUP05, an abundant but yet uncultured lineage of Gammaproteobacteria (Roux
et al., 2014). Another SCG study, focused on surface ocean bacterioplankton, obtained genomes
of the first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia, and other
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FIGURE 1 | Schematic representation of the various types of DNA molecules (in red) and their occurrence inside and outside of eukaryotic (top) and

bacterial (bottom) cells.

ubiquitous, uncultured taxonomic groups of marine bacterio-
plankton (Labonte et al., in press). Using an innovative com-
bination of SCG, metagenomics, and microarray hybridization,
a virus infecting the candidate division Nanohaloarchaeota was
identified (Martínez-García et al., 2014). It is likely that similar
techniques will be increasingly utilized to untangle the complex
inter-taxa interactions in “microbial jungles” of oceans, soils and
other environments.

SCG is also becoming progressively instrumental in studies
of microbial horizontal gene exchange (sexual interactions) and
other microevolutionary processes in the environment. Micro-
bial genomics came a long way since the first sequencing of
a complete prokaryote genome, Haemophilus influenzae Rd, in
1995 (Fleischmann et al., 1995). As of January 2015, over 30,000
genomes of bacteria and archaea have been deposited in public
databases, at an accelerating rate. While this is a truly revolution-
ary achievement for microbiology, it is important to acknowledge
that we are still only scratching the surface of the full genetic
complexity and the underlying evolutionary processes in many
environmental microbial communities. To put current sequenc-
ing efforts in perspective, roughly 30,000 genomes of bacteria and
archaea are present in each 30µL of ocean water or 30µg of a fer-
tile soil (the same 30µL water/30µg soil also contain ∼300,000
viruses, a few eukaryotes and a large amount of detrital DNA).
The total number of microbial cells on the planet is in the order

of 1030 (Whitman et al., 1998), which collectively encode at least
1030 Mbp of genetic information. An important fundamental
question in microbiology is the extent and underlying mecha-
nisms of genome variation among cells that share highly similar
small subunit rRNA genes, i.e., belong to the same phylotype.
Already the earliest comparative genomics studies revealed mas-
sive differences in gene content among members of the same,
operationally defined bacterial species (Welch et al., 2002). Sub-
sequent studies confirmed that substantial genome content vari-
ation among individuals, indicative of extensive horizontal gene
exchange, is the rule rather than the exception in natural micro-
bial populations (Ochman et al., 2000; Papke et al., 2007; Shapiro
et al., 2012), with likely major implications to their resilience
and adaptability to new conditions, such as climate change or
exposure to antibiotics. From a technical perspective, the limited
clonality of many natural microbial populations makes it diffi-
cult to assemble discrete genomes from metagenomic reads, and
to unambiguously interpret such assemblies (Rusch et al., 2007;
Hess et al., 2011). Our current understanding remains rudimen-
tary when it comes to the extent of genetic variability within
most microbial populations, specific evolutionary and ecological
processes that govern this variability, and rates of these evolu-
tionary processes. By eliminating the need for arbitrary taxo-
nomic binning of omics data, SCG is well-suited to enable a
breakthrough in studies of microbial microevolution, and first
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publications in this area have already provided valuable insights
(Engel et al., 2014; Kashtan et al., 2014). These pilot studies sug-
gest that each cell in a natural microbial population may have
a unique subset of mutations, horizontally acquired and recom-
bined genes, mobile genetic elements, and other genetic features.
Instead of viewing this natural complexity as a nuisance, SCG
enables “forensic DNA investigations” of individual microbial
cells in the environment, opening a new window into their life
histories.

In order to obtain statistically representative samples of
members of natural microbial assemblages and their intra- and
inter-species interactions, the scalability of SCG will be of key
importance. In the past 5 years, the scale of SCG projects grew
from single genomes (Marcy et al., 2007; Woyke et al., 2009) to
10 s and 100 s of genomes (Rinke et al., 2013; Swan et al., 2013;
Kashtan et al., 2014), and further technology improvements are

well-underway. Increasingly sophisticated research applications
will also drive improvements in SCG data quality, such as bet-
ter genome recovery and reduced frequency of assembly errors.
Like any technology, SCG is at its best when combined with
other research tools, in order to most effectively address trans-
formative science questions. There is little doubt that SCG will be
increasingly utilized in diverse microbial studies, complementing
cultivation-based, community omics, biogeochemical, and other
research approaches.
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