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Vasculogenic mimicry (VM) is the formation of vascular channels lacking endothelial cells.

These channels are lined by tumor cells with cancer stem cell features, positive for

periodic acid-Schiff, and negative for CD31 staining. The term VM was introduced by

Maniotis et al. (1), who reported this phenomenon in highly aggressive uveal melanomas;

since then, VM has been associated with poor prognosis, tumor aggressiveness,

metastasis, and drug resistance in several tumors, including breast cancer. It is proposed

that VM and angiogenesis (the de novo formation of blood vessels from the established

vasculature by endothelial cells, which is observed in several tumors) rely on some

common mechanisms. Furthermore, it is also suggested that VM could constitute a

means to circumvent anti-angiogenic treatment in cancer. Therefore, it is important to

determinant the factors that dictate the onset of VM. In this review, we describe the

current understanding of VM formation in breast cancer, including specific signaling

pathways, and cancer stem cells. In addition, we discuss the clinical significance of VM

in prognosis and new opportunities of VM as a target for breast cancer therapy.

Keywords: vasculogenic mimicry, breast cancer, angiogenesis, cancer stem cell, epithelial-mesenchymal

transition, triple negative breast cancer

BACKGROUND

Breast cancer is the most prevalent malignant tumor in women worldwide. Approximately 2.1
million cases were diagnosed in 2018, and it is the leading cause of cancer death in women (2).
According to the WHO, breast cancer is classified histologically into invasive carcinoma, and
other specific types, such as invasive lobular carcinoma, metaplastic carcinoma, carcinoma with
medullary factor, among others (3, 4). However, chemotherapy of breast cancer is determined by
another tumor classification. Up to 70% of invasive breast tumors show estrogen receptor alpha
(ERalpha) or progesterone receptor (PR) expression. This group of patients is treated with ER-alpha
inhibitors or aromatase inhibitors alone or in combination with standard chemotherapy (taxanes
plus anthracyclines). About 20% of the patients have amplification or overexpression of the ERBB2
gene (HER2/neu). For these patients, treatment includes the use of antibodies directed against the
ERBB2-encoded protein, which is a receptor of the EGFR family, and small molecules that inhibit
the tyrosine kinase activity of the receptor. Finally, there is a group of tumors in which none of
these markers is detected; these tumors are called triple-negative breast cancer (TNBC). They are
a heterogeneous group of tumors with unfavorable prognosis, in which standard chemotherapy is
used (5, 6). Recently, new therapies for breast cancer have been approved. For example, the use
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of talazoparib or olaparib (poly (ADP-ribose) polymerase
inhibitors (PARP) enzymes) in patients withmutations in BRCA1
and BRCA2 (7). CDK4 and CDK6 kinase inhibitors have been
approved as a therapy for patients with estrogen receptor-positive
and HER2-negative tumors (8). Patients with the same type
of tumors, bearing mutations in the PIK3CA gene have been
approved for PI3K kinase inhibitors (9). In the case of TNBCs,
a high percentage have been shown to exhibit expression of
PD-L1, a PD-1 ligand that inactivates the immune response. In
this group, atezolizumab (a humanized anti-PD-L1 antibody)
has been approved for use in combination with nab-paclitaxel
(10, 11).

On the other hand, while a tumor is growing, hypoxic zones
are formed due to the lack of blood vessels. Tumor vessel
formation can occur through angiogenesis, i.e., the development
of new blood vessels from pre-existing ones. When stimulated
by the tumor, endothelial cells from normal vessels begin
to migrate and proliferate, forming new vessels inside the
tumor. Tumor angiogenesis is regulated by the VEGF (Vascular
Endothelial Growth Factor) and the transcription factor
HIF1alpha (Inducible Hypoxia Factor 1alpha). Discovery of some
factors that regulate angiogenesis has led to the development of
specific drugs that block this process, such as antibodies against
VEGF (Bevacizumab) or molecules like sunitinib or sorafenib,
which inhibit crucial kinases in angiogenesis (12, 13). In breast
cancer, angiogenesis is considered a poor prognostic factor for
survival (14). However, anti-angiogenic therapies in breast cancer
have not demonstrated benefit in overall survival as adjuvant
treatment or in metastatic disease (14, 15).

VASCULOGENIC MIMICRY AND RELATED
SIGNAL PATHWAYS

In 1999, Maniotis et al. described the formation of tumor
vessels lacking endothelial cells in uveal melanoma. These vessels
were positively stained with periodic acid-Schiff (PAS), and
they did not possess endothelial cell markers such as Factor
VII-related antigen or CD31. They had a characteristic pattern
and erythrocytes inside. In highly invasive cell lines grown in
matrigel, structures similar to tumor vessels with cells positive
for PAS and negative for CD31 were observed. Besides, these
structures allowed the perfusion of a dye, showing that they were
functional vessels. This phenomenon was termed vasculogenesis
mimicry (VM) (1). Subsequently, VM was reported in other
tumors, such as breast, ovary, prostate, and lung, among
others (16–18). Positive PAS staining without CD31 detection
(PAS+CD31–) is the most widely used marker for defining the
presence of VM (Figure 1). The presence of erythrocytes in the
vessels and their perfusion capacity suggest that they can irrigate
tumors to avoid hypoxia and to transport nutrients. In addition,
the presence of VM has been associated with the appearance of
metastasis (19).

Since the discovery of VM, several factors regulating the
formation of these vessels have been described. Like in the case
of angiogenesis, hypoxia promotes VM. In cell lines derived
from esophageal carcinoma, it was observed that inhibition of

HIF1alpha inhibits the formation of VM and decreases the levels
of proteins involved in the creation of these vessels, such as
VE-cadherin, EPHA2 (ephrin A2) and Laminin 5gamma2 (20,
21). VE-cadherin is a relevant protein in VM. Under normal
conditions, VE-cadherin is located in the plasma membrane
of endothelial cells where it regulates intercellular unions.
However, it has been observed that it is overexpressed in cells
capable of performing VM. VE-cadherin is positively regulated
by VEGF and by HIF1alpha (Figure 2A). VE-cadherin directs
the location of EPHA2 to the intercellular junctions between
cells that form the characteristic tubes of VM. EPHA2 is
a kinase that activates two essential pathways in VM: PI3K
(phosphoinositide 3-kinase) and ERK1/2 (extracellular signal-
regulated kinase 1/2) (through FAK kinase) which are associated
with survival, proliferation, and migration (Figure 2C). PI3K
also allows the activation of MMP14 (matrix metalloproteinase-
14) which in turn activates MMP-2. This metalloproteinase cuts
laminin 5gamma2, producing gamma2’ and gamma2x fragments,
which promote cell migration. Inhibition of the factors involved
in VM signaling prevents the formation of vessels (16, 22, 23).

On the other hand, some microRNAs (miRNAs) are related
to the regulation of vascular mimicry. MiRNAs are non-coding
19-to 24-base RNAs that control gene expression by binding to
mRNAs, usually in the 3′untranslated region (3′-UTR). MiRNAs
can decrease transcription or prevent translation. In cancer,
different microRNAs have been found to modify the regulation
of oncogenes and tumor suppressor genes (24). MicroRNAs also
regulate VM by interacting with specific genes; for example, miR-
141 controls the expression of EPHA2. A decrease in miR-141
expression has been observed in high-grade gliomas. Besides, in
glioma-derived cell lines, a decrease in miR-141 is associated with
an increase in EPHA2 and an increase in VM (25).

FACTORS INVOLVED IN VM IN BREAST
CANCER

The presence of VM in breast cancer has been associated
with poor prognosis in several clinical parameters (Table 1).
Overexpression of factors regulating VM in breast tumors,
such as HIF1alpha, VE-cadherin, and EPHA2 has also been
reported (33–36). In a mouse breast cancer model, inhibition
of angiogenesis promoted VM by expression of VE-Cadherin
and other VM regulators in triple-negative tumors (37). In the
MDA-MB-231 cell line (derived from a triple-negative tumor)
which can form a pattern of tubular structures in matrigel,
low expression of miR-204 was observed, while overexpression
of miR-204 decreased the VM. This study also showed that
PI3K-alpha and c-SRC are targets of miR-204. Therefore, it was
proposed that miR-204 regulates critical pathways in VM, such
as PI3K, MAPK, and SRC (38). Another factor associated with
VM in breast cancer is osteopontin, a phosphoprotein related
to tumor progression in different types of cancer. In a spheroid
model of cell lines derived from breast tumors, an increase
in osteopontin expression was observed in cells that formed
vessels in matrigel. The expression of osteopontin was associated
with a decrease in hsa-mir-299-5p, which targets osteopontin

Frontiers in Oncology | www.frontiersin.org 2 February 2020 | Volume 10 | Article 220

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Andonegui-Elguera et al. Vasculogenic Mimicry in Breast Cancer

FIGURE 1 | Vasculogenic mimicry in Triple Negative Breast Cancer. (A) CD31-PAS Double-staining (magnification 40x). (B) CD31-positive endothelial vessel (black

arrow). (C) Tubular-type vasculogenic mimicry (VM) channel (black arrow), PAS-positive cuboidal tumor cells (red asterisks), PAS reaction in the luminal surface (blue

arrow).

FIGURE 2 | Molecular mechanisms associated with vasculogenic mimicry in breast cancer. (A) The incipient malignant tumor retains its epithelial architecture through

adherens junctions mediated by E-Cadherin but has an innermost hypoxic core (gray cells). Hypoxia promotes the stabilization of HIF1alpha, which is followed by its

translocation to the nucleus, granting access to its target genes. (B) TGFβ signaling and hypoxia-induced TWIST expression promote the epithelial-mesenchymal

transition. E-Cadherin loss provokes a distortion of the epithelial architecture. (C) The sequence of molecular events initiated by hypoxia ultimately leads to the

acquisition of cellular features associated with VM vessel formation, including the presence of EPH2 and CD44 in the plasma membrane. The purple gradient of the

cells lining the lumen of the VM vessel is intended to represent PAS staining. Dotted line indicates an indirect interaction.
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TABLE 1 | Vasculogenic mimicry and its association with prognosis in cancer.

Number of patients (percentage VM+) Association p-value References

331 (7.9%) VM group tended to have a lower 60-month survival rate than the non-VM group p = 0.071 (18)

VM group tended to have a higher hematogenous metastases than the non-VM group p = 0.059

90 (28.6%) VM correlated with lymph node metastases p = 0.004 (26)

Histological grade p < 0.001

Nottingham prognostic index (NPI) (worse prognosis) p < 0.001

No correlated with the presence of:

ER p = 0.391

PR p = 0.321

Her2 p = 0.114

VM correlated with overall survival p < 0.001

And disease-free survival p < 0.001

200 (30%) VM and Osteopontin co-expression correlated with pathological complete response p = 0.006 (27)

202 (16.8%) VM presence was higher in TNBC vs. non TNBC p = 0.003 (28)

VM correlated with worst p < 0.001

Disease free survival and overall survival p = 0.015

134 (30.6%) VM presence was higher in TNBC vs. non TNBC p = 0.004 (29)

100 (29%) VM presence was higher in TNBC vs. non TNBC p = 0.020 (30)

VM correlated with poorer overall survival p = 0.015

174 (24.7%) VM presence was higher in TNBC vs. non TNBC p = 0.044 (31)

120 (22.5%) VM correlated with positive node status; p = 0.027 (32)

a higher tumor stage p = 0.022

and higher levels of HER2 p = 0.018

VM did not correlate with ERalpha or PR status p = 0.143

(39). Besides, in a study that analyzed 200 breast cancer patient
samples, an association of the presence of Osteopontin and
VM was observed (27). On the other hand, in the MDA-
MB-231 cell line, overexpression of WT-1 isoforms (Wilm’s
tumor 1) promoted VM, by increasing the expression of EPHA2
and VE-cadherin (40). The enzyme DDAH1 (dimethylarginine
dimethylaminohydrolase-1) has also been associated with the
formation of VM: inhibition of DDAH1 in MDA-MB-231 cells
prevents the formation of VM. Interestingly, miR-193b decreases
the levels of DDAH1 and, therefore, inhibits the formation of
VM (41, 42). Other miRNAs regulate VM in breast cancer.
In endothelial cells, cisplatin treatment was shown to promote
the production of IL-6, which, through the STAT3 signal
transducer, promotes cisplatin resistance and vessel formation
by VM in MDA-MB-231 cells. The miR-125a targets IL-6 and
STAT3. Decreased levels of miR-125a in endothelial cells were
associated with increased production of IL-6 which promotes
vessel formation by VM in breast cancer cells (43). On the
other hand, the non-coding long RNA TP73-AS1 was shown to
decrease the levels of miR-490-3p, which negatively regulates the
TWIST1 gene. TWIST participates in the epithelial-mesenchymal
transition and promotes the formation of VM. Therefore, the
expression of TP73-AS1 stimulates the formation of VM through
the overexpression of TWIST1 (44).

THE ROLE OF CSCS IN VM

In normal adult tissues, there are cells with the ability
to proliferate, self-renew, and differentiate that allow tissue

regeneration. These cells are known as stem cells. Similarly,
it has been proposed that in malignant tumors, there is a
cell subpopulation with the ability to self-renew and undergo
less differentiation. In addition, it is hypothesized that these
cells show mesenchymatous features, higher invasive capacity,
and improved resistance to chemotherapeutic treatment. These
cells have been called Cancer Stem Cells (CSCs). CSCs are
characterized by specific markers, including CD44, CD133,
CD166, ABC transporters, or metabolic enzymes such as
Aldehyde dehydrogenase-1 (ALDH1) (45). It has recently been
described that in different types of cancer, cells with stem
characteristics actively participate in the formation of VM (46).

In human breast tumor xenografts transplanted inmice, it was
demonstrated that a CD44+CD24– cell subpopulation presented
CSC characteristics. CD44+CD24– cells obtained from mouse
tumors were able to form tumors in other mice when as few
as 1,000 cells were injected, while CD44+CD24+ cells did not
form tumors even when injected more than 10,000 cells. In
addition, tumors formed from CD44+CD24– cells presented
cell heterogeneity, demonstrating that these cells were able to
differentiate into a heterogeneous tumor (47). On the other hand,
ALDH1 expression has been shown to be a marker of stem cells
in normal tissue and breast tumors. In murine models, ALDH1+
cells derived from breast tumors were shown to have a superior
ability to form tumors. Furthermore, the expression of ALDH1
is associated with lower overall survival and a higher probability
of developing metastases in breast cancer patients (48, 49). In
addition, the presence of ALDH1 is associated with the formation
of VM. Both factors were shown to be associated with poorer
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overall and disease-free survival. Both the expression of ALDH1
and the presence of VM were most prevalent in triple-negative
tumors (28). In an in vitro model using the HCC1937/p53 cell
line (a triple-negative cell line with inducible p53 transfection)
it was observed that ALDH1A3+ cells (one of the isoforms
of the ALDH1 enzyme) could form tubular structures when
they were grown in matrigel, while ALDH1A3- cells were not
capable of creating such structures. The expression of ALDH1A3
coincided with the presence of Ki67, a proliferation marker, so
it is inferred that cells that express the stem cell marker also
have a greater proliferative capacity (50). On the other hand, in
a study that included 134 samples of breast cancer patients, it was
demonstrated that the CD133 marker was associated with VM
in different breast cancer subtypes. The subtype that presented
a more significant number of cases with VM and vessels with
higher volume was the triple-negative. In addition, in the MDA-
MB-231 cell line, a subpopulation characterized by the expression
of the CD133 marker was described. This subpopulation was able
to establish vessels in a matrix and expressed VE-cadherin and
the metalloproteinases MMP-2 and MMP-9 (29). Therefore, as
in other tumors, CSCs in breast tumors are actively involved in
the formation of vessels of tumor origin. However, not all reports
agree on the specific presence of CSC markers and the presence
of VM. For example, Sun et al. found an association between
VM formation and the presence of ALDH1 and CD44+CD24–
phenotype, but not with the presence of CD133 (30). Therefore,
it will be important to determine whether there is a single
type of CSC in breast cancer or whether populations with stem
cell characteristics are variable among tumors. Ginestier et al.
demonstrated that only a fraction of the ALDH1-positive cells
also possesses the CD44+CD24– phenotype. In addition, these
cells had greater tumorigenic capacity compared to those with
only one or none of these markers (49). Hence, stem cell markers
used so far in breast cancer are not universal and may represent
variants, sometimes synergistic, but with specific characteristics
relevant to the treatment and progression of breast cancer.

VM IN TRIPLE-NEGATIVE TUMORS

Triple-negative Breast Cancer (TNBC) includes a heterogeneous
group of tumors characterized by the absence of expression
of ER, PR, and that do not possess overexpression or HER2
amplification. Although these tumors have a high response
to chemotherapy, they also have a poor prognosis for overall
survival and relapse (51, 52). There is a higher proportion of
triple-negative tumors with VM compared to tumors positive
for ER, PR, and/or HER2. Accordingly, these tumors also have
a greater number of vessels formed by VM (28–31). However,
this association is controverted (26, 32). Indeed, Liu et al.
found a correlation between the expression of HER2 and VM
(32). Nonetheless, none of these studies grouped triple negative
tumors, and the ER and PR, or HER2 mark were evaluated
independently. Finally, in vitro analyses have shown differences
in the ability to form vessels by VM and themechanisms involved
in this process between TNBC and no-TNBC cells. However,
most of these studies use the MDA-MB-231 cell line as the TNBC

tumor model and, only occasionally compare it to a different
cell line. Despite the importance of the MDA-MB-231 line as a
breast cancer study model, it is difficult to make a generalization
regarding all TNBC tumors, due to their heterogeneity between
patients and even within single tumors (40, 42, 44, 53). Although
vessel formation by VM is more common in TNBC tumors, it
is not exclusive to this type of tumor. However, due to the lack of
specific therapies in this group, VM inhibition is a good candidate
for therapeutic targeting.

RELATIONSHIP BETWEEN CSCS, VM AND
THE EPITHELIAL-MESENCHYMAL
TRANSITION

As mentioned above, the presence of CSC markers is associated
with the formation of VM. In addition, other factors related to
morphological and cellular motility have a role in VM. During
tumor progression, the epithelial-mesenchymal transition refers
to the change of epithelial tissue, with very close cells
interacting through intercellular unions to a mesenchymal-
like tissue, i.e., cells with greater invasive capacity, a large
amount of intercellular material and without the apicobasal
polarity characteristic of the epithelium. (54, 55). The epithelial-
mesenchymal transition is regulated by three families of
transcription factors: SNAI (SNAI1/Snail and SNAI2/Slug), ZEB
(Zinc finger E-box-binding homeobox; ZEB1 and ZEB2) and
TWIST (TWIST1 and TWIST2). The activation of these gene
families has been described. Nonetheless, the main mechanism
by which these transcription factors promote TMS is through
the repression of genes essential for the epithelial structure,
such as CDH1, which encodes for E-cadherin, involved in
adherens junctions (56). These factors bind epigenetic regulators
and, together, regulate gene expression. For example, TWIST1
increases the expression of BMI1 (a repressor complex of
the Polycomb family), and both are essential to repress
the expression of CDH1 (57, 58). TGF-beta is one of the
pathways that initiate the epithelial-mesenchymal transition.
TGF-beta is a family of ligands that bind serine/threonine
kinase receptors. In turn, these receptors phosphorylate and
activate SMAD proteins. Finally, SMAD activation regulates the
transcription of factors associated with EMT, such as SNAI1
or ZEB. On the other hand, it has been observed that the
activation of the EMT program entails the cellular acquisition
of CSC characteristics (Figure 2B) (54). In immortalized cells
of breast epithelium, the overexpression of SNAIL increases the
percentage of CD44+CD24– cells. Furthermore, CD44+CD24–
cells show EMT-distinctive morphology. This phenomenon was
also observed in cells transformed by the introduction of
the HER2/neu oncogene (59). Therefore, EMT promotes the
occurrence of CSCs in breast cancer.

Both EMT and CSC are related to VM. In TA2 mice
(a mammary tumor model) MDA-MB-231 xenograft tumors,
hypoxia-induced with the anti-angiogenic agent sunitinib is
associated with VM and an increase in CD133+ cells. In addition,
in matrigel cell cultures, activation of the HIF1alpha factor
promotes TWIST1 transcription, which increases the percentage
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of CD133+ cells and vessel formation through VM. In this
model, the inhibition of TWIST1 prevents the formation of VM
and the emergence of cells with stem markers (31). On the other
hand, the ZEB1 factor decrease in MDA-MB-231 cells inhibits
VM and increases the expression of E-cadherin. In doing so,
EMT is reversed while VM is inhibited (60). In breast cancer
tumors, overexpression of TWIST is associated with a lower
expression of epithelial factors such as E-cadherin (61, 62).
Increased TWIST levels also correlate with more advanced stage
tumor and are more common in TNBC tumors and HER2+ (63).
Overexpression of TWIST and SLUG has also been observed in
stromal tumor cells (64). However, the association of TWIST
expression with disease-free survival and overall survival has
not been consistently observed throughout these studies (63–65).
Moreover, in a sample of 100 breast tumors, Nodal expression
was associated with VM formation and VE-cadherin expression
in a subgroup of tumors. Nodal is part of the TGF-beta family and
participates in the development and regulation of differentiation
(66). In vitro studies have demonstrated that Nodal expression
is necessary for the formation of vessels by VM (67). Therefore,
EMT, VM, and the presence of CSCs are interrelated and not
isolated phenomena. Common features are the change toward
an epithelium with invasiveness and migration capacity, less
differentiation, and the ability to create tumor vessels.

VM AS A THERAPEUTIC TARGET

As mentioned above, VM vessel formation is a process that
includes proliferation, migration, invasiveness, and alterations
in intercellular junctions. Accordingly, therapeutic inhibition of
VM can target any of these processes. For example, it has been
proposed that the use of a cytotoxic drug such as vincristine
in combination with a specific inhibitor of the sarcoma family
kinases (SFKs), which regulate signaling pathways involved in
processes associated with VM, could have an additive effect
on VM inhibition. In fact, an in vitro model using liposomes
showed that both drugs can cause cell death and inhibition of
vessel formation in MDA-MB-231 cells grown in matrigel. In
addition, the use of these liposomes decreases the tumor volume
of xenografts in nude mice (68). The authors also demonstrated
that the use of liposomes for transporting compounds with
different targets, such as epirubicin (a DNA intercalant) and
celecoxib (a cyclooxygenase 2 inhibitor) are able to inhibit VM
in breast cancer cells (69). On the other hand, it has also been
proposed that the best strategy to inhibit vessel formation in
tumors will be the simultaneous inhibition of angiogenesis and
VM. New drugs, like acridine in complex with metals, such as
gold, have shown the ability to promote apoptosis of cancer cells
and inhibit the formation of vessels formed by endothelial cells
(angiogenesis) or cancer cells (VM) (70).

The use of compounds obtained from natural extracts,
such as brucine, has also been associated with VM inhibition.
Brucine inhibits migration and invasiveness of MDA-MB-231

cells (71). Besides, brucine modifies the structure of actin and
tubulin cytoskeleton and inhibits the formation of vessels by
VM (72). Hinokitiol is also a natural compound with anti-
tumor properties. In cells obtained from mammospheres, it
was demonstrated that hinokitiol diminishes levels of the EGFR
protein by increasing its proteasome-mediated degradation and,
consequently, inhibits VM (73).

On the other hand, vessel formation by VM depends on the
EGFR receptor in CSCs ALDH+ derived from breast tumors
(74). Another compound that has demonstrated the ability to
inhibit vessel formation by VM is 6’-bis (2.3-dimethoxybenzoyl)-
a,a-D-trehalose (DMBT) a derivative of brartemicin, a metabolite
isolated from actinomycetes (75).

Currently, there are no specific therapies to inhibit VM.
However, it is possible to propose that epithelial-mesenchymal
transition, invasiveness and the presence of cancer stem cells
may be useful targets to slow the formation of vessels by VM, in
addition to having antitumor effect per se.

CONCLUSION

VM is an alternative mechanism to angiogenesis that allows
vessel formation without the involvement of endothelial cells.
These vessels provide nutrients to the tumor and can serve
as a means of spreading cancer cells. The absence of a
therapeutic benefit of anti-angiogenic therapies in breast cancer
may be due to the formation of vessels by VM. In addition,
the formation of vessels with tumor cells may be a factor
explaining the increased aggressiveness of tumor subtypes such
as TNBC. However, VM also occurs in other breast cancer
subtypes. The role of CSCs in VM in breast cancer will be
better defined when specific stem markers are found to classify
these cells. In addition, it will be important to use a greater
variety of in vitro and in vivo models of breast cancer cells
to determine the specific factors associated with the formation
of VM in breast cancer. Finally, the discovery of particular
factors involved in VM in breast cancer will make it possible
to more precisely target therapies that inhibit the formation of
vessels and may affect several processes that are important for
tumor progression.
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