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Abstract

The combination of congenital bilateral perisylvian syndrome (CBPS) with

lower motor neuron dysfunction remains unusual and suggests a potential

common genetic insult affecting basic neurodevelopmental processes. Here we

identify a putatively pathogenic missense mutation in the MCF2 gene in a boy

with CBPS. Using in utero electroporation to genetically manipulate cortical

neurons during corticogenesis, we demonstrate that the mouse Mcf2 gene con-

trols the embryonic migration of cortical projection neurons. Strikingly, we find

that the CBPS-associated MCF2 mutation impairs cortical laminar positioning,

supporting the hypothesis that alterations in the process of embryonic neuronal

migration can lead to rare cases of CBPS.

Introduction

Congenital bilateral perisylvian syndrome (CBPS) is a rare

malformation of the cerebral cortex, most often associated

with the following clinical signs: pseudobulbar palsy with

oromotor apraxia, mild bilateral spastic palsy, cognitive

impairment, and epilepsy.1 Despite this well-reported

clinical phenotype, there is often a diagnostic delay, espe-

cially when some of the clinical features are missing in

the early stages of the disorder. CBPS is considered by

certain authors as a peculiar form of cerebral palsy affect-

ing predominantly bulbar muscles, but some patients also

display congenital contractures as clinical and neurophysi-

ological signs consistent with an involvement of the lower

motor neuron (MN).2–4 The mechanism underlying this

unusual combination of both central and peripheral

motor impairment remains unknown, but it most proba-

bly involves a common genetic insult affecting basic cellu-

lar processes regulating the development of MNs and

cortical projection neurons (PNs). During the embryonic

period, PNs and MNs are generated in germinal ventricu-

lar zones then migrate radially to reach their final

anatomical position and interestingly, they share common

molecular regulators.5–7 Here, we identify a missense

mutation in the MCF.2 Cell Line Derived Transforming

Sequence (MCF2) gene in a boy with CBPS associated to

lower MN dysfunction. Using functional in vivo studies

in mice, we find that this CBPS-associated human muta-

tion has a pathogenic effect on the process of embryonic

PNs migration in vivo.
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Patient, Materials and Methods

Clinical description

The study was approved by the local ethics committee

and both patient and parental consent were obtained. The

patient, who is a 19-year-old boy, originates from Leba-

non and was born premature at 31 gestation weeks after a

prolonged oligoamnios. Both parents are healthy and not

related. The mother has four healthy female siblings. The

eldest sister had three children, including one healthy

boy. One maternal aunt was born with a spina bifida

occulta and carries no neurological sequelae. The patient

is a single child. At birth, he exhibited bilateral clubfeet,

hip dislocations, and asymmetric paraparesis leading to a

presumed diagnosis of congenital arthrogryposis. During

infancy and childhood, a severe developmental speech

and language impairment was observed along with exces-

sive drooling and feeding problems. Clinical examination

of the patient in our institution in late childhood was

characterized by a pseudobulbar palsy, an asymmetric

lower limb distal paresis with no movement below the

knees and severe muscle wasting. Right knee jerk was pre-

sent but left knee jerk was absent, as were ankle jerks

bilaterally. In addition, the patient did not report neither

sphincterial dysfunction nor sensory impairment.

MRI study

All MRI data were acquired with a dedicated head coil on

a 1.5T machine (Avanto Siemens Erlangen Germany).

Exome sequencing

Exome of the patient was captured using the Agilent Sur-

eSelet QXT Human All Exon V5 kit and sequenced on a

HiSeq2000 instrument (Illumina). Reads mapping and

variant calling were performed using BWA 0.7.13, Picard

2.9.0, GATK HaplotypeCaller 3.7 and annotated with

annovar 2017-07-17 and UCSC RefSeq (refGene) down-

loaded on 2018-08-10. The variants were searched in vari-

ous databases including dbSNP151, gnomAD 2.1, ClinVar

2018, and HGMD 2016. Pathogenicity prediction scores

were obtained for missense variants using SIFT, Poly-

Phen2, MutationTaster (MT), CADD.

Mouse in utero electroporation

Animal experiments were conducted according to the

Swiss and international guidelines, and approved by the

local animal care committee. Embryos from time preg-

nant embryonic day (E)14.5 CD1 mice were electropo-

rated in the lateral VZ of the dorsal pallium as described

previously.8 All constitutive expression of shRNAs and

cDNAs was driven by the human U6 promoter, in the

PLKO.1 vector for the shRNAs and pUB6/V5-His A

(pUB6) vector for hMCF2 (kind gift from Danny Manor),

TOM and GFP. The following shRNAs were electropo-

rated in equal ratios in control and experimental condi-

tions: Mcf2 shRNA (TRCN0000042653, Thermoscientific),

and Scramble shRNA (mature sense: CCTAAGGT-

TAAGTCGCCCTCG, Addgene). The G4A missense muta-

tion was induced in hMCF2 plasmid using site-directed

mutagenesis (InFusion Kit, Takara).

Results

MRI and nerve conduction studies

MRI scans of the brain revealed bilateral asymmetric peri-

sylvian polymicrogyria extending to the parietal cortex on

the right side. The sylvian sulci also displayed an abnor-

mal configuration bilaterally (Fig. 1A–C). MRI scan of

the spinal cord revealed a homogeneous thin spinal cord

without the physiological lumbar enlargement (Fig. 1D).

Additionally, nerve conduction studies demonstrated a

pure motor impairment from L4-S2 on both sides typical

of a lower MN dysfunction.

Exome sequencing

Exome sequencing of the proband and his healthy parents

revealed a putatively damaging missense mutation inher-

ited from his mother in the MCF2 gene, located on chro-

mosome Xq27, (NM_005369.5): c.4G>A, p.(Ala2Thr) in

exon 1. This variant is absent from the gnomAD database

(https://gnomad.broadinstitute.org/) and is predicted as

pathogenic by all used algorithms except Polyphen2

which classified it as likely pathogenic. MCF2, also known

as DBL, is a member of a large family of guanine nucleo-

tide exchange factors (GEFs) that modulates the activity

of Rho GTPases.9,10 Given that GEFs have been shown to

act as key regulators of cellular migration,11 we aimed to

test whether the CBPS-associated MCF2 mutation affected

cortical PNs in vivo.

In vivo mouse studies

mMcf2 was found to be expressed in control E17.5 PNs

in a previously published RNA sequencing dataset8 and

its subcellular cytoplasmic expression in cortical PNs at

postnatal day (P)0 was visualized following overexpres-

sion of HA-tagged mMCF2 by in utero electroporation of

PNs progenitors at E14.5 in the dorsal pallium (Fig. 2A).

A short hairpin RNA (shRNA) targeting mMcf2 induced

a 40% knock-down (KD) of the mRNA expression of
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mMcf2, as demonstrated by qRT-PCR of HEK 293T cells

cotransfected with pUB6-mMcf2 and control Scram or

mMcf2 targeting shRNA plasmids (Fig. 2B). Using in

utero electroporation to genetically manipulate migrating

PNs in mice, we next determined whether developmental

KD of mMcf2 regulated the migration of PNs. Strikingly,

the laminar positioning of PNs was altered by mMcf2 KD.

Indeed, ectopic PNs were found in the lower layers of the

somatosensory cortex in comparison to control (Scram)

PNs, which were mostly located in superficial cortical lay-

ers. Interestingly, this phenotype was fully rescued by the

overexpression of the WT human ortholog of mMcf2

(hMCF2), resistant to the effect of the mouse-targeted

shRNA, proving the specificity of the mMcf2-KD-related

migratory defect. In contrast, overexpression of the

CBPS-associated mutated hMCF2 failed to rescue the

migratory deficit induced by mMcf2 shRNA, indicating a

pathogenic effect of the missense hMCF2 mutation (G4A

- p.A2T) on cortical PNs migration (Fig. 2C).

Discussion

In this short report, we have attempted to explore the

underlying genetic cause of an unusual but repetitively

reported combination of perisylvian polymicrogyria and

lower motor neuron dysfunction. These findings have led

us to consider a genetic insult affecting basic cellular pro-

cesses common to the maturation of both PNs and MNs.

We have been able to identify an X-linked recessive

inherited CBPS-associated missense mutation in hMCF2

(G4A - p.A2T). Using cell-type genetic manipulation in

mouse embryos, we observed that mMcf2-KD impairs

corticogenesis by altering the laminar positioning of PNs

in vivo. Strikingly, the hMCF2 (G4A - p.A2T) mutation

was found to have pathogenic effects on neuronal migra-

tion, suggesting that this developmental process could be

altered in rare cases of CBPS.

The cell-specificity of the migratory deficit described in

PNs remains to be explored in MNs, but core biological

pathways involved in the migration of PNs appear to be

shared with MNs.5 In particular, MCF2 is part of the DBL

family of RhoGEFs that represents critical regulators of

cellular migration.11 RhoGEFs have been involved in regu-

lating neuronal migration through the REELIN path-

way12,13 and the SEMAPHORIN/PLEXIN pathway.14,15

The molecular underpinnings of the pathological effect of

the missense mutation in MCF2 (G4A - p.A2T) are

beyond the scope of this study, but based on the structure

of MCF2, we hypothesize that it could impact the function

of the SEC14 domain of the protein, thus affecting its sub-

cellular localization and its GEF activity.10 Interestingly,

another missense mutation in MCF2 has been associated

with schizophrenia,16 a complex neurodevelopmental dis-

order involving risk-genes regulating neuronal migration.8

Additionally, one missense mutation in MCF2 has been

described in a patient displaying undescended testis,17 pos-

sibly suggesting a role for MCF2 in cellular migration dur-

ing organogenesis.

Spinal MRICerebral MRI

D

Figure 1. MRI study shows a thin spinal cord and bilateral perisylvian polymicrogyria. (A–C) Brain MRI. Coronal T1-weighted sequence shows

asymmetric bilateral perisylvian polymicrogyria (A), also clearly depicted on axial T2 (B) and sagittal T1-weighted sequence (C) as a thickened

irregular cortex (white arrowheads), with widening of the left sylvian fissure (white star). (D) Spinal MRI. Sagittal T2-weighted sequence shows a

thin dorso-lumbar spinal cord with no anatomical lumbar bulge (white arrowheads).
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The use of animal models is a powerful tool in order

to mechanistically understand neurodevelopmental disor-

ders18 in the context of rare genetic variants associated

with complex traits.19 The in vivo model used in this

study allowed us to identify an interesting pathophysio-

logical process caused by the acute KD of Mcf2 in the

developing mouse. Further studies could take advantage

of induced pluripotent stem cells and human organoids

to recapitulate human developmental processes. Genomic

analyses should be used to search for other rare variants

associated with CBPS in a larger sample size to determine

whether additional mutations in the MCF2 gene can be

identified in rare cases of CBPS with similar lower motor

neuron dysfunction. The convergence of additional

genetic associations and in vivo/in vitro causal studies

would allow to strengthen the pathophysiological mecha-

nism identified in this study.
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Figure 2. Mouse in vivo study: Mcf2 knock-down (KD) alters the laminar positioning of projection neurons (PNs) at P0.5 and the G4A missense

mutation alters the migratory function of MCF2. (A) The overexpression of hMCF2 by E14.5 electroporation in S1 PNs colabeled with Tomato

(TOM) displays a cytoplasmic expression at P0.5. (B) q-RT-PCR of mRNA extracts from HEK-293T cells cotransfected with mMcf2 and Mcf2 or

Scramble (Scram) shRNA shows a 40% knock-down (KD) of the mRNA expression by Mcf2 shRNA, compared to Scram shRNA. Error bars = 95%

C.I. (C) shRNA-mediated Mcf2 KD by in utero electroporation at E14.5 dramatically impairs the laminar positioning of E14.5-electroporated PNs

coexpressing TOM in S1 at P0.5. This phenotype is fully rescued by the overexpression of the shRNA-resistant hMCF2 but the congenital bilateral

perisylvian syndrome (CBPS)-associated missense mutation G4A prevents any rescue. n = 6–11 brains per condition from ≥3 separate litters. Error

bars = 95% CI.
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