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ABSTRACT: Machine learning techniques, specifically gradient-
enhanced Kriging (GEK), have been implemented for molecular
geometry optimization. GEK-based optimization has many advan-
tages compared to conventionalstep-restricted second-order
truncated expansionmolecular optimization methods. In particular,
the surrogate model given by GEK can have multiple stationary
points, will smoothly converge to the exact model as the number of
sample points increases, and contains an explicit expression for the
expected error of the model function at an arbitrary point. Machine
learning is, however, associated with abundance of data, contrary to
the situation desired for efficient geometry optimizations. In this
paper, we demonstrate how the GEK procedure can be utilized in a
fashion such that in the presence of few data points, the surrogate
surface will in a robust way guide the optimization to a minimum of a potential energy surface. In this respect, the GEK procedure
will be used to mimic the behavior of a conventional second-order scheme but retaining the flexibility of the superior machine
learning approach. Moreover, the expected error will be used in the optimizations to facilitate restricted-variance optimizations. A
procedure which relates the eigenvalues of the approximate guessed Hessian with the individual characteristic lengths, used in the
GEK model, reduces the number of empirical parameters to optimize to two: the value of the trend function and the maximum
allowed variance. These parameters are determined using the extended Baker (e-Baker) and part of the Baker transition-state (Baker-
TS) test suites as a training set. The so-created optimization procedure is tested using the e-Baker, full Baker-TS, and S22 test suites,
at the density functional theory and second-order Møller−Plesset levels of approximation. The results show that the new method is
generally of similar or better performance than a state-of-the-art conventional method, even for cases where no significant
improvement was expected.

1. INTRODUCTION
The optimization of molecular structures is instrumental for
the computational chemistry procedure to establish the
fundamental thermodynamics of a chemical processthe
reaction enthalpy and the activation energy. The zeroth-
order understanding of the dynamics of a chemical reaction is
based on the optimization of equilibrium structures, transition
states, reaction pathways, constrained optimization on the
ground-state potential energy surface, and so forth. In
photochemistry, the location of conical intersections along
the reaction pathway plays a fundamental role in under-
standing the radiative and radiationless decay of excited
molecular systems. In general, optimization, unconstrained or
constrained, on ground- and excited-state potential energy
surfaces is the essence in our extraction of a qualitative
understanding and a quantitative prediction of the nature of a
chemical process. For this reason, various efforts to make
optimization procedures as robust and efficient as possible are
of fundamental importance to computational chemistry. In this
report, we will present an alternative to the usual approach in
computational chemistrythe standard surrogate model of

restricted-step second-order Taylor expansion approxima-
tions1−3 in combination with approximative second deriva-
tives4 and a Hessian-update method, for example, the
BFGS5−11 and MSP12−14 approaches used for minimum and
transition-state optimizations, respectively.
The standard surrogate model has several shortcomings. To

mention a few, the method is not an exact interpolator, that is,
it can in general only exactly reproduce the gradients of the last
two molecular structures, this surrogate model will never
converge to the exact ab initio model, the surrogate model
cannot in general describe anharmonic characteristics, success
is critically associated with the Hessian update method, it
cannot simultaneously describe several stationary points, and it
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does not facilitate an explicit measure of the difference between
the surrogate and the exact model. What will be described here
is an approach that in its simplicity will actually address all
these problems of standard optimization methods.
The Kriging model15,16a Gaussian process regression-like

procedureis an exact interpolation procedure to describe a
multidimensional function. Adapted to molecular geometry
optimization, the multidimensional function is the energy and
the independent variables are the coordinates of the nuclei.
The Kriging model exists in several formssimple, ordinary,
or universal Kriging. In its initial form, the interpolation
approach is based on measured or computed energies for
various molecular structures. However, molecular geometry
optimizations are most efficient in a framework in which both
energy and analytical gradients are computed at the same time.
To take full advantage of the information provided by the
gradients a special form of Kriging has been developedthe
gradient-enhanced Kriging (GEK).17−19 Recently the GEK
approach has been used for geometry optimizations for
equilibrium and transition-state structures.20−23 These initial
studies have demonstrated the potential of the Kriging
procedure in association with molecular structure optimiza-
tions. However, these studies have also shown that in order to
be competitive with commonly used algorithms, a GEK-based
method should also be able to make use of the empirical and
practical knowledge accumulated through decades of use and
improvement of second-order methods. In particular, Meyer
and Hauser23 have proved that a good choice of internal
coordinates is an essential part of a successful GEK-based
optimization algorithm, as it is for conventional ones, and they
have also suggested that the use of a heuristic estimate for the
Hessian matrix would be of particular importance. The main
differences between the present work, which addresses the
previously mentioned points, and these recent similar
approaches will be presented in Section 3.6. It is also worth
to mention that Gaussian process regression has been used for
the optimization of, for example, minimum energy reaction
paths and in minimum mode saddle-point searches.24−27

It is the hypothesis of the current project that the GEK
superior properties, as compared to standard second-order
optimization procedures, do not require a large amount of data
and also manifest themselves in situations with limited data. In
this respect, it is suggested that GEK-guided molecular
structure optimization for systems close to an equilibrium
structure can outperform standard methods.
In this report, an implementation of GEK will be described,

based as much as possible on standard procedures used in
molecular geometry optimization. The most significant differ-
ence will be that the surrogate model is based on GEK rather
than a second-order truncated Taylor expansion of the energy
surface. Also, a standard restricted-step optimization procedure
is used, with the simple but significant difference that the step
restriction is subject to a cap on the expected variance (the
uncertainty) of the surrogate modela restricted-variance
optimization. The optimization will be done in internal
coordinates, thus eliminating translational and rotational
variance from the surrogate model. The use of internal
coordinates,28,29 further, enables the implementation of
different effective length scales for the various coordinates
the so-called l values. The GEK, as used in this report, uses the
approximate Hessian to define l values and the appropriate
internal coordinates for the coordinate space in which the
Kriging data are expressed (but Hessian update methods are

unnecessary). In this report, it will be described in detail how
the hyperparametersthe l value and the baseline or trend
functioncan be defined such that the model for a single
sample point completely includes all quantitative properties of
a conventional approach with a Hessian model function
(HMF).4 The use of additional sample points in the GEK takes
on the role of the Hessian update procedure.
The rest of this report will be organized as follows. First, the

design considerations of a GEK-based molecular structure
optimizer are discussed. Second, a theory section is presented
to highlight the essence of the required relations to attain the
objectives for the implementation of the new optimization
method. Subsequently, the computational details are pre-
sented, followed by a discussion of the results. Finally,
summary and conclusions are presented.

2. DESIGN
Machine learning methods are commonly associated with vast
amount of data and data mining. Successful molecular
structure optimizations, on the other hand, are manifested by
limited datathe less data used, the more successful the
optimization. To design a machine learning implementation
for structure optimization requires an understanding of why
standard methods work as well as they do. Following this
insight, a GEK-guided optimizer should mimic these features
as close as possible. Hence, we will very briefly address the
recipe which is the key feature that makes ordinary structure
optimization work.
Let us first start with the blunt statement that any

optimization based on only analytical energies and gradients,
as is commonly the case in ab initio implementations, is
nothing more than a tweaked steepest descent method. The
road to success is guided by several key features. First, the
selection of coordinates to specify the molecular structure is of
fundamental importance. The very first implementations of
molecular structure optimizations typically used the Cartesian
rectilinear coordinates. However, it is clear today that
curvilinear coordinates are by far superior to rectilinear
coordinates (see, e.g., refs 28 and 29). One possible reason
for this success is that in curvilinear coordinates the Hessian
will be diagonally dominant. Second, the generation and use of
an approximate Hessian (in the absence of the exact one) will
provide the optimization procedure with crucial information of
the shape of the energy landscape and will guide the
optimization procedure in a firm way toward the stationary
point. One of the most used such approximate Hessians is the
one based on a HMF.4 The success of this approximate
Hessian is argued to be its ability to provide a reasonable guess
not only of the diagonal elements but also of the off-diagonal
termsthe coupling between the internal coordinates. Third,
the use of a Hessian update procedure which will modify the
approximate Hessian to be semiconsistent with the acquired
gradient information. It is worth noting that different types of
update methods are suggested for different types of
optimization cases (e.g., local minimum or transition state
structure optimizations), and that the update is normally done
for a limited set of gradients. Fourth and final, the optimization
procedure itself. The consensus today is that a step-restricted
second-order optimization scheme, such as the restricted-step
rational-function optimization procedure, is the preferred
approach.1

In the proposed implementation of the GEK-guided
molecular structure optimization all of these key features will
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be considered. That is, the procedure will use internal
coordinates, as suggested under the first point. Internal
coordinates will, additionally, be of benefit because this will
result automatically in a surrogate model of the energy surface
which is translationally and rotationally invariant. Moreover,
the last point will be fully implemented, that is, microiterations
will explore the surrogate model using state-of-the-art
restricted-step second-order procedures. Note, however, that
in association with a GEK procedure the step restriction can be
modified and this will be described below. The second and
third pointsapproximate Hessian and Hessian updateare
very much related. We start by noting that in the conventional
optimization procedure, the approximate Hessian is a seed for
the Hessian update procedure. We propose to use the
information provided by the approximate Hessian for defining
the internal coordinates and the characteristic lengths used in
the surrogate model. When the model is built with a single

sample point, its second derivatives will be identical to the
HMF approximate Hessian. The addition of further sample
pointsenergies and gradientswill modify the surrogate
model, and this will therefore take the place of a Hessian
update method. By design the method is an exact interpolation
and will always be consistent with all of the data that the
Kriging is based on. Furthermore, not only will the energy and
gradients be represented exactly at the sample points, the
model can represent several stationary points at the same time.
This last property will not be of particular importance when
the only goal is to find a local minimum, as in the present
work, but consider that, in the case of a chemical reaction, the
surrogate model will be able to represent the minima of the
reactants and the products, and the stationary point of the
transition state at the same time, if appropriate data is supplied,
providing a more realistic representation of the “true surface”.

Figure 1. Schematic comparison of the conventional RS-RFO optimization method (top) and the proposed RVO algorithm, based on a GEK
surrogate model, and using RS-RFO in the micro iterations (bottom).
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With this in mind, the conventional and GEK-supported
optimizations are rather similar (see Figure 1). The major
difference is that for GEK-supported optimizations, it becomes
necessary to have two nested loops of macro and micro
iterations, with the latter engaged to find a stationary point on
the surrogate model. In the conventional optimization, the
stationary point on the surrogate model is found analytically in
one shot (although several tries may be needed to satisfy step
restrictions). The outer (macro) loop resembles otherwise the
conventional loop, with the difference that the guessed Hessian
is used to build the GEK surrogate model and it is not subject
to Hessian update methods. The inner (micro) loop, in turn, is
identical to a conventional loop, except that energies, gradients,
and analytical Hessians are obtained from the surrogate model.
The variance restriction is implemented by ensuring that the
microiterations remain within the variance threshold.
In the theory section to come, it will be demonstrated how

the GEK can be parameterized and implemented such that it
should be in all respects as good as, if not better than, the
standard state-of-the-art quasi-Newton optimizers available
today.

3. THEORY

Initially, a presentation of the Kriging and GEK model is given.
A brief discussion then proceeds to present the Mateŕn
covariance function. This will be followed by a description of
how the GEK model can be constructed using the information
from the approximate Hessian. The section is concluded with a
brief summary of the differences between the present GEK-
supported optimization implementation method and other
similar recently published ones. In what follows here bold
lower- and uppercase symbols represent vectors and matrices,
respectively.
3.1. Kriging. The Kriging approach is a method to design a

mathematical basis for making predictions through inter- or
extrapolation. In the case of molecular geometry optimizations,
the energy predictorthe surrogate model, E*(q)will
predict the energy as a function of the coordinates (arbitrary
coordinates, e.g., Cartesian, internal coordinates, etc.) of the
molecular system, q. This predictor is based on the known
energies at some n sets of coordinates of the molecular
systemthe source data or sample points, E(qi) for i ∈ {1, ...,
n}.
The Kriging model or, as it is also called, Gaussian process

regression (GPR), is based on an equation containing two
terms

μ μ* = + −−q q M yE v 1( ) ( ) ( )T 1
(1)

the components of this equation will be explained in some
details below. The first term, μ, is the trend function (in its
simplest form, the mean or a constant), while the second term
is the local deviation of the energy around μ.30 First, the
covariance vector v(q) contains the correlation between the
coordinates of the prediction point q and each sample point qi.
Second, the covariance matrixM holds the correlation between
the sample points. Finally, y is the column vector of function
values from the source data, which in our case are the energies
of the system, that is, yi = E(qi), and 1 is a vector of n elements
with the value of one, where n again is the total number of
sample points.
The correlation can be calculated in internal coordinates or

Cartesian coordinates, and can be defined by various kernels or

covariance functions, for example, Gaussian or Mateŕn
covariance function31 (see below). The covariance matrix M
is an n × n matrix defined as follows

= =M q qf f d( , ) ( )ij i j ij (2)

where f is a covariance function and dij is a scalar generalized
distance between the coordinates at sample points i and j, in
our case expressed as

∑= =
−

=

q q
q q

d d
l

( , )ij i j
k

K
i k j k

k1

, ,
2i

k
jjjjj

y
{
zzzzz

(3)

where K is the number of degrees of freedom of the molecular
system (K = 3N − 6 for a nonlinear system with N nuclei and
no external fields) and lk is a scale parameter that influences the
width of the covariance functionthe characteristic length
in the kth dimension. The covariance vector v(q) is defined
analogously, replacing one of the sample points with the
desired arbitrary point q, that is

=v q qf ( , )i i (4)

In particular, at the jth sample point, q = qj, the covariance
vector is identical to the jth column of the covariance matrix
M.
The predictor is sometimes expressed in two alternate forms,

highlighting its linear combination features. On the one hand,
it can be viewed as a linear combination of basis functions
(given by the covariance function f) centered at the sample
points

∑μ μ* = + = +
=

q v q w wv qE ( ) ( ) ( )T

i

n

i i
1 (5)

where the vector w, the weights, is the solution of the linear
system

∑ μ= − ∀ ∈ { }
=

M w qE j n( ) 1, ...,
i

n

ij i j
1 (6)

The w vector depends only on the sample points (their
coordinates and energies), and the only dependence on the
prediction point q is through the basis functions (the
covariance vector) v(q).
On the other hand, the predictor can also be viewed as a

linear combination of the energies at the sample points

∑

ω

ω

μ μ

μ μ

* = + −

= + −
=

q q y

q q

E

E

( ) ( ) ( 1 )

( )( ( ) )

T

i

n

i i
1 (7)

where now the dependence on q is included in the weights ω,
which are however independent on the energies. The ω vector
is similarly obtained as the solution of the linear system

∑ ω = ∀ ∈ { }
=

M q v q j n( ) ( ) 1, ...,
i

n

ij i j
1 (8)

The first form has the advantage that the same w vector can
be used for prediction on any point q, while in the second case,
the ω(q) vector can be obtained once the coordinates of the
sample points are known, regardless of their energies. For the
present application, we find the first form, eq 5, more
convenient and efficient.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00257
J. Chem. Theory Comput. 2020, 16, 3989−4001

3992

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00257?ref=pdf


The trend function μ can in principle be chosen in a number
of ways, giving rise to different Kriging variants. Its role is
providing a base or default value in the absence of any data, or
far from any sample point. In simple Kriging, μ is given a fixed
constant value, as a parameter or determined by the problem
to solve. In ordinary Kriging, it is also a constant, but its value is
determined from the source data, to reflect the expectation
value of the underlying random process. In universal Kriging, it
is a general function of the coordinates, μ(q), with parameters
that are to be determined as part of the Kriging procedure. In
the rest of this work, we will refer only to simple Kriging, so the
trend function μ is effectively an externally defined constant.
3.2. Gradient-Enhanced Kriging. In many optimization

problems, it is usual that not only the value of the function but
also its derivatives with respect to the coordinates are available.
Molecular geometry optimizations are no different and in
addition to the energy, at a particular sample point, E(qi), one
can often compute the gradient, g(qi) = ∇E(qi), efficiently.
The formulation of GEK has been presented in two different

waysthe indirect and the direct versionswhere the latter is
a mathematically more strict extension, and this is the version
we used in the present algorithm. In this approach, the gradient
data are added explicitly to the equations, such that

∑ ∑ ∑μ* = + +
∂
∂= = =

q wv q u
v q

q
E ( ) ( )

( )

i

n

i i
i

n

k

K

i k
i

k1 1 1
,

(9)

where u is a new set of weights particular to the gradient
information. The whole affair can be included in the original
formalism by simple generalization of the covariance vector v,
the covariance matrix M, the column vector of function values
y, and the vector 1, such that the contribution from the
gradient information is included in a consistent way (for details
consult ref 18). Note that now the basis functions for the
surrogate model are not only the covariance functions centered
at each sample point, vi(q) but also the derivative of each with

respect to every degree of freedom k, ∂
∂
v q

q
( )i

k

.

3.3. Details of the Covariance Function. The covariance
function f plays a central role in the Kriging and GEK model,
being used in the definition of M and v. It expresses the
expected correlation between data point energies, based on the
difference in their coordinates. Informally, basic requirements
on f are that it should give 0 for points at infinite distance, and
1 for identical points; it should also be independent of the
order of the points, f(x,y) = f(y,x); furthermore, it should
produce an invertible M if eq 1 is to be used. A more rigorous
description of covariance functions can be found, for example,
in ref 32.
Common covariance functions are the exponential, squared

exponential (Gaussian), and Mateŕn covariance functions. The
latter is a family that can be tuned with a parameter p and
includes the first two as special cases. For integer non-negative
values of p, the Mateŕn covariance function can be written as
the product of an exponential and a polynomial of order p

∑

= − +
!

!
+ !

! − !
+

=

−

f d p d
p
p

p i
i p i

p d

( ) exp( 2 1 )
(2 )

( )
( )

(2 2 1 )

p ij ij

i

p

ij
p i

0 (10)

which simplifies to the exponential covariance function for p =
0

= −f d( ) eij
d

0
ij

(11)

and to the squared exponential or Gaussian covariance
function in the limit p → ∞

=∞
−f d( ) eij

d /2ij
2

(12)

(Note that dij is a distance and always non-negative, eq 3.)
Because the predictor is expressed as a linear combination of

basis functions, and the coefficients w,u are independent on the
predicted coordinate q, obtaining analytical derivatives for the
predictor is trivial as long as the corresponding derivatives for
the covariance function are available. In the GEK formalism,
the surrogate model includes first derivatives of the covariance
function. Therefore, in order to compute analytical Hessians,
we require that at least up to third derivatives of the covariance
function be defined.
The derivative of f 0 is undefined at dij = 0, as it shows a cusp

and will not even be appropriate for building a GEK model.
The Gaussian covariance function, however, is infinitely
differentiable. Other members of the Mateŕn family are
differentiable up to order 2p, which sets a minimum value of
p = 2 for our GEK-based optimization

= + + −f d
d

d( )
5

3
5 1 eij

ij
ij

d
2

2
5 ij

i

k

jjjjjj
y

{

zzzzzz
(13)

this is also known as the Mateŕn-5/2 covariance function, due
to a more general parameterization in terms of = +v p 1

2
.

Following ref 20, we used f 2 as the covariance function for our
model.

3.4. Restricted-Variance Optimization. Among the most
successful second-order methods for molecular structure
optimizations is the rational function approach.33,34 In
particular, the automatic restricted-step version of the
method,1 restricted-step rational-function optimization (RS-
RFO), has proven to be a robust optimizer.35 It is critical to
the optimization procedure that no steps are taken such that
the new structure is outside of the range in which the second-
order approximation is valid. Hence, the step-restriction
element of the procedure is instrumental for successful
optimizations. This approach, however, has a shortcoming:
the size of the step restriction has to be chosen. Here, ad hoc
procedures and experimentation have led to reasonable rules
for how large such restriction is and how this value can be
modulated during the course of the optimization.
The GEK model, in difference to any second-order

optimization procedure, contains an explicit measure of the
quality of the surrogate modelthe expected error or variance
at any given structure. If the electronic structure calculations
are reproducible, the corresponding energy at a sample point is
known with certainty and the variance should be zero;
however, for any other structure the predicted variance,
s2(q), can be used as a measure of the reliability of the
surrogate model. Hence, a restricted-variance optimization
(RVO) scheme has been implemented in which the step
restriction in the microiterations is not done with respect to
the size of the displacement but according to whether the
predicted variance at the new structure is below a tolerated
threshold. If not, the step length is reduced until the value of
the variance is below the threshold. Because the variance
restriction will not limit the step size in absolute terms, it has a
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definite advantage in exploring large geometry displacements if
this is supported by an acceptable variance.
For a positive definite M (which is guaranteed by a Mateŕn

covariance function), the expected variance for the prediction
is given by36

μ μ
=

− −
[ − ]

−
−q

y M y
v q M v qs

n
( )

( 1 ) ( 1 )
1 ( ) ( )T2

1
1

(14)

where the first factor accounts for the variance of the sample
points, while the second measures the distance of q to the
sample points, and will give zero whenever q = qi. Assuming a
Gaussian variance, the actual energy can thus be estimated,
with a 95% confidence , to l ie in the interva l

* ±q qE s( ) 1.96 ( )2 .
The variance restriction is enforced by making sure that

every microiteration (see Figure 1, bottom right) produces a
95% confidence interval within the specified threshold, that is

≤qs1.96 ( ) thresholdj
2

(15)

If that is not the case, the step restriction is halved and the
microiteration is recalculated. If the step restriction becomes
very small, or the predicted variance is very close to the
threshold, the microiterations are stopped. The microiterations
are considered converged, and therefore stopped, when they
satisfy the global convergence criteria and the predicted
gradient is smaller than the gradient at the last macro iteration;
this is to ensure improvement when the gradient is already
converged, but not the step size. The micro iterations are also
stopped when they reach a maximum iteration number.
3.5. Selection of Characteristic Lengths. The GEK

model has a number of parameters that can be adjusted,
namely the characteristic lengthslk valuesand the trend
function μ. A usual strategy is to adjust these l values to
maximize the likelihood37 and the trend function to make sure
that the surrogate model is boundthat it has at least a
minimum at a finite distance from the sample points. In
practice optimizing the l values is a nontrivial task in itself and,
especially with large number of dimensions, can be a
computational bottleneck.
The role of the l values is to provide an individual length

scale for each coordinate. The energy can be expected to be
very sensitive to small changes in some coordinates (e.g., strong
bonds), while large changes in other coordinates are needed to
produce significant energy changes (e.g., weak dispersion
interactions). To some extent, this same information is
encoded in the approximate HMF Hessian, which assigns an
estimated force constant to each degree of freedom. Thus, in
this research project a completely different way to select the
“optimal” l values is suggested. In line with the design
considerations mentioned above, these parameters will be set
such that the curvature of the surrogate model at the latest
sample point, i, reproduces the HMF approximate Hessian if
the model is built with only this sample point. This is
implemented as follows.
First, we note that with a single sample point the surrogate

model Hessian is diagonal, with elements given by

μ= −
∂
∂

q q
q

H E
f

( ) ( ( ))i kk i
k

2

2
(16)

Therefore, we first diagonalize the approximate Hessian,
yielding linear combinations of coordinates as eigenvectors.
The subsequent optimization will be in the basis of these
eigenvectors. In our approach, as in ref 20, the trend function μ
is set as the maximum energy value among the sample points,
Emax, plus a constant, to ensure a bound surrogate model;
therefore, μ − Emax is a constant and equal to μ − E(qi) when
the model is built with this single sample point because Emax =
E(qi) in this case. It follows that the l values can be set, for a
Mateŕn-5/2 kernel, eq 13, from the following expression

μ
=

−
= { }ql

E
H q

E E
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i kk i ik

max

HMF
max

(17)

where lk is the characteristic length of coordinate k and Hkk is
the corresponding eigenvalue of the approximate Hessian
(which is always positive definite4). In this way, the surrogate
model Hessian exactly matches the HMF Hessian evaluated at
the sample point qi. It is prudent to point out that because
every new structure has its own approximate Hessian, the l
values are re-evaluated on each (macro) iteration. Hence, this
procedure corresponds to a dynamic change of the l values
during the course of the optimization. To avoid too large
characteristic lengths, HHMF(qi)kk is set to be no smaller than
some threshold. It should also be emphasized that the
surrogate model’s Hessian only matches the approximate
Hessian if the model is built with a single point (something
that will only be actually done on the first macro iteration), but
this condition is used to define the l values. As further sample
points are added to the model, the surrogate model’s Hessian
at the latest point will be modified. Thus, including more
sample points effectively replaces the Hessian update
procedure of standard quasi-Newton methods.

3.6. GPR versus RVO. Before continuing, the key
differences between the present implementation (RVO) and
that by Denzel and Kas̈tner (GPR)20 are highlighted in some
detail. In the GPR implementation, Cartesian coordinates were
employed, an assortment of different thresholds for step
restrictions (0.5 a0 to 5 a0) were applied for different
optimization methods, the underlying optimization method
was a L-BFGS algorithm with a “window” (number of steps in
memory) equal to the number of dimensions of the molecular
system, a special design is implemented to facilitate over-
shooting, a single l value of 20 a0 is used, and, finally, a
multilevel surrogate model is implemented. This is to be
compared with the present implementation (RVO) which uses
force-constant-weighted internal coordinates (the surrogate
model is now translational and rotational invariant), a variance
restriction is implemented, the underlying optimization
method in the micro iterations is a RS-RFO procedure, the
GEK-supported optimization uses the data of a limited set of
structures (10, see below) to generate the surrogate model, no
special features (e.g., overshooting) are implemented to
accelerate the optimization, multiple l values are automatically
selected based on the HMF approximate Hessian, and no
multilevel procedure is engaged.
The implementation by Jacobsen and co-workers22 is in

many aspects similar to the one of Denzel and Kas̈tner,20 in
that it uses Cartesian coordinates and a single l value.
However, the latter is dynamically updated maximizing the
marginal likelihood during each optimization. Computational
results are presented for seven molecular systems ranging from
crystal structures and clusters to small molecules.
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Compared with Meyer and Hauser’s implementation of
GPR with internal coordinates,23 the main differences are that
they define the internal coordinates at the initial structure, do
not employ force constant (Hessian) information to define the
coordinates, use a single l value for all coordinates, which they
optimize by minimizing the likelihood, and apply a cumulative
step-length restriction on the micro iterations. In contrast, we
redefine the internal coordinates at every macroiteration using
a force-constant-weighted approach, the l values are defined
from the HMF Hessian, and the micro iterations are limited by
a maximum variance, not a maximum step length. Indeed, they
write: “a slightly worse performance can be expected for longer
trajectories, possibly requiring an occasional reconstruction of
the active set of coordinates” and “future undertakings will
have to encode this knowledge [force constants and
couplings], e.g., via a pre-informed choice of hyperparameters
in their machine learning models”. The present method
addresses these two points exactly (without previous knowl-
edge of their work, we may note).

4. COMPUTATIONAL DETAILS
The new optimization procedure has been implemented in the
Slapaf module of the open-source OpenMolcas quantum
chemistry program package.38 The linear system of equations
(eq 6, extended with gradients18) is solved using the standard
LAPACK routine dposv.39 Benchmark calculations are
performed to test the hypothesis that GEK-supported
geometry optimization does not need vast amount of data
but is already superior to standard second-order methods with
few sample points. Further goals of the benchmarks are to
investigate and document the significance of restricted-variance
optimizations when starting at a structure far from the final one
and the ability of GEK-supported optimization to cope with
anharmonic or very flat energy surfaces.
Below, the benchmarks are described in some detail,

followed by a brief presentation on how the remaining
hyperparameters of the GEK model and RVO procedure were
optimized.

4.1. Benchmark Test Suites. For the benchmarking of the
method the following test suites have been employed: (i) the
Baker equilibrium structures, extended by including three
additional molecules used as sample cases in the original paper

Table 1. Number of Macroiterations to Converge the Molecular Geometry Optimization of the Molecular Structures of the e-
Baker Test Suite Using Conventional RS-RFO and RVO Supported by GEKa

HF/6-31Gb DFT(B3LYP)/def2-SVP

molecule RS-RFO RVO RS-RFO RVO rmsd

1: water 3 3 4 4 0.000
2: ammonia 4 4 3 4 0.000
3: ethane 5 4 4 4 0.000
4: acetylene 4 4 3 4 0.000
5: allene 4 3 4 4 0.000
6: hydroxysulphane 7 7 7 6 0.000
7: benzene 3 3 4 3 0.000
8: methylamine 5 5 3 3 0.000
9: ethanol 5 5 5 4 0.000
10: acetone 5 5 5 5 0.000
11: disilyl ether 14 11 15 12 0.000
12: 1,3,5-trisilacyclohexane 12 10 34 13 0.003
13: benzaldehyde 6 6 6 6 0.000
14: 1,3-difluorobenzene 5 4 5 4 0.000
15: 1,3,5-trifluorobenzene 5 4 8 4 0.000
16: neopentane 4 4 6 4 0.001
17: furan 5 5 5 5 0.000
18: naphthalene 5 4 5 5 0.000
19: 1,5-difluoronaphthalene 5 5 5 5 0.000
20: 2-hydroxybicyclopentane 15 13 12 13 0.001
21: ACHTAR10 10 9 29 16 0.002
22: ACANIL01 6 6 6 6 0.000
23: benzidine 10 9 11 8 0.000
24: pterin 7 7 7 6 0.000
25: difuropyrazine 6 5 6 5 0.000
26: mesityl oxide 7 6 7 6 0.000
27: histidine 29 24 33 28 0.003
28: 2,3-dimethylpentane 27 23 18 23 0.015
29: caffeine 7 6 7 6 0.000
30: menthone 32 21 25 25 0.004
31: ACTHCP 21 16 21 18 0.001
32: histamine−H+ 17 14 18 14 0.000
33: hydrazobenzene 16 15 26 18 0.004

aHighlighted in bold are cases where the difference between both methods is larger than 1 iteration. The last column shows the root mean square
displacement (rmsd, in Å) between the final structures of the previous two columns. bStep and variance restrictions are disabled.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00257
J. Chem. Theory Comput. 2020, 16, 3989−4001

3995

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00257?ref=pdf


(e-Baker),40 (ii) the Baker transition state structures (Baker-
TS),41 and (iii) the S22 suite designed by Hobza and
coworkers.42 The first set is included for reference and to
demonstrate that GEK-supported optimization has advantages
already for cases where conventional methods converge fast.
The second set of structures was initially designed for
benchmarking transition state optimizations with initial
starting structures close to the expected transition state
structures. However, here, as in ref 20, the starting structures
are employed to compute the equilibrium structures of the
reactants or the products. In this sense, the test set provides
starting structures that are not trivially close to a converged
structure. It is expected that this would exhibit the superiority
of the new approach as compared to conventional methods.
However, the analysis will be possibly blurred by the selected
restricted step, which ultimately could be the most significant
contribution to slow convergence. Nevertheless, it will possibly
expose the benefits of a restricted-variance optimization.
Furthermore, the test set is included here so that a direct
comparison can be made to the work of Denzel and Kas̈tner.20

The latter test suiteS22will allow for an analysis of the
significance of weak interactions. This suite contains 22 van
der Waals complexes in which dispersion and/or hydrogen
bonding dominate the interactions.
Initially, the e-Baker test suite is used as a training set for the

hyperparameters (see below), in combination with the
Hartree−Fock method and a 6-31G basis set. Benchmark

calculations are then conducted for the e-Baker and Baker-TS
test suites at the DFT level of approximation, using the B3LYP
functional and def2-SVP basis set. For the S22 test suite, MP2
calculations were performed using the 6-31G** basis set. The
RVO optimization procedure was benchmarked against the
standard optimization procedure, as implemented in Open-
Molcas using default options. This implementation is a RS-
RFO procedure which uses a step restriction of 0.3 au, force-
constant-weighted internal coordinates, the HMF approximate
Hessian, and BFGS Hessian updates. No symmetry constraints
were used, unless explicitly mentioned. The convergence
criteria, used both for the RVO and standard optimizations,
were the default values: gradient root-mean-square (rms) and
maximum component below 3 × 104Eha0

−1 and 4.5 ×
104Eha0

−1, respectively; displacement rms and maximum
component below 1.2 × 103a0 and 1.8 × 103a0.
To reduce the influence of numerical noise in the

comparisons and to ensure a proper description of the PES
around equilibrium structures, especially in dispersion- or
BSSE-bound complexes of the S22 and Baker-TS sets, the
accuracy of the computed energies and gradients was increased
2−3 orders of magnitude from the default. We note, however,
that the results for the e-Baker and Baker-TS sets do not
change significantly due to the increased accuracy. In the
Supporting Information, we include tables obtained with the
default OpenMolcas accuracy, that can be compared with
Tables 1 and 2.

Table 2. Number of Macroiterations to Converge the Molecular Geometry Optimization of the Molecular Structures of the
Baker-TS Test Suite Using Conventional RS-RFO and RVO Supported by GEKa

this work ref 20b RVO vs GPR

reaction RS-RFO RVO rmsd L-BFGS GPR rmsd

1: HCN ⇌ HNC 12 13 0.000 22 18 0.000
2: HCCH ⇌ CCH2 13 12 0.000 24 20 0.000
3: H2CO ⇌ H2 + CO* 32 36 0.985 59 103 0.557
4: CH3O ⇌ CH2OH 7 7 0.000 18 15 0.000
5: ring opening cyclopropyl* 24 11 0.842 42 37 0.842
6: ring opening bicyclo[1.1.0]butane (TS 1) 19 13 0.000 30 28 0.001
7: ring opening bicyclo[1.1.0]butane (TS 2) 23 13 0.000 54 48 0.001
8: 1,2-migration β-(formyloxy)ethyl 36 28 0.001 87 93 0.005
9: butadiene + ethylene ⇌ cyclohexenec* 116 75 0.009 89 122 1.005
10: s-tetrazine ⇌ 2HCN + N2 9 7 0.000 15 21 0.000
11: trans-butadiene ⇌ cis-butadiene 9 6 0.000 32 30 0.001
12: CH3CH3 ⇌ CH2CH2 + H2 11 9 0.000 24 16 0.000
13: CH3CH2F ⇌ CH2CH2 + HF 11 7 0.000 20 15 0.001
14: vinyl alcohol ⇌ acetaldehyde 15 13 0.000 19 26 0.001
15: HCOCl ⇌ HCl + CO 10 8 0.000 12 12 0.000
16: H2O + PO3

− ⇌ H2PO4
− 32 28 0.002 64 74 0.001

17: CH2CHCH2−O−CHCH2 ⇌ CH2CHCH2CH2CHO 26 21 0.002 98 73 0.008
18: SiH2 + CH3CH3 ⇌ SiH3CH2CH3 17 17 0.001 44 38 0.008
19: HNCCS ⇌ HNC + CS 17 13 0.000 25 19 0.001
20: HCONH3

+ ⇌ NH4
+ + CO 13 9 0.000 21 19 0.000

21: rotational TS in acrolein 21 12 0.000 49 47 0.001
22: HCONHOH ⇌ HCOHNHO 11 9 0.000 23 20 0.000
23: HNC + H2 ⇌ H2CNH 15 10 0.000 21 18 0.000
24: H2CNH ⇌ HCNH2 16 13 0.000 25 18 0.000
25: HCNH2 ⇌ HCN + H2* 48 42 0.482 254 30 1.197

aThe root mean square displacement (rmsd, in Å) between the final structures is shown in the third numerical column. As a reference the GPR and
L-BFGS results of Denzel and Kas̈tner, using DFT, are listed. Finally, the rmsd between the RVO and GPR optimized structures is presented.
Highlighted in bold are cases where the difference between the first two columns is larger than 1 iteration. An asterisk marks cases where RVO
clearly converges to a different local minimum from RS-RFO and/or GPR. bSee Table S2 in ref 20. cRS-RFO and RVO optimizations performed
with symmetry constrained to Cs.
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4.2. GEK Hyperparameter Optimization. There are two
hyperparameters affecting the GEK surrogate model: The
characteristic lengths or l values, and the trend function μ. As
mentioned above, it is possible to optimize the l values by
maximizing a likelihood function, but we chose to set them
derived from the HMF approximate Hessian (eq 17). This
leaves the trend function as the only hyperparameter to
optimize. We set it as some energy above all the sample points
used to build the model, to guarantee that the surrogate model
contains at least a minimum in the region close to the sample
points. We note that our l values actually depend on the value
of the trend function.
It was observed that in the optimizations of the e-Baker test

suite, where initial structures are relatively close to the final
minima, step restriction based on length or variance is not an
important feature. Thus, step and variance restriction in RS-
RFO and RVO were disabled for the HF e-Baker test suite, and
the value of the trend function was coarsely optimized by
minimizing the total iteration count in this set. The final value
we arrived at was 10.0Eh above the highest energy of the
sample points; this is, by the way, identical to the value used in
ref 20. Note also that this value corresponds directly to (μ −
Emax) in eq 17.
It can be argued that there are additional hyperparameters,

which we set somewhat arbitrarily: the covariance function was
chosen, as described above, to be the Mateŕn-5/2 covariance
function, we did not test other possibilities. The minimum
value for the HMF Hessian eigenvalues (affecting the
maximum allowed l value) is 0.025Eha0

−2. The number of
sample points (geometries, energies and gradients) selected to
build the surrogate model was limited to 10, and these are
simply the last 10 macro iteration points; this number is twice
the default number of iterations used to update the Hessian
matrix in the RS-RFO procedure. The limited number of
sample points is sufficient to acquire accuracy around the
stationary point which is the target of the optimization. A
much larger number of sample points would, of course, have to
be used if the purpose were to generate a global surrogate
model. It is our experience, during this project, that the
convergence rate is rather insensitive to the number of sample
points once it exceeds 5. As a compromise between the
additional CPU time of the RVO, as compared to RS-RFO,
and superior convergence of the former, we have selected to
use 10 sample points.
4.3. RVO Parameters. The main parameter affecting the

RVO optimization, once the surrogate model has been defined,
is the variance restriction or the maximum allowed uncertainty
in the energy prediction, eq 15. The threshold is designed to be
a factor (formally of length dimensions) times the largest
Cartesian gradient component for the last iteration, and no
lower than a minimal value. The minimal value was set very
small, at 10−10Eh, while the factor was optimized by minimizing
the iteration count in some “difficult” cases (especially #21 in
DFT e-Baker and #3, #8 and #25 in Baker-TS), while at the
same time avoiding convergence problems related to trans-
formation from internal coordinates to Cartesians, which can
occur for large displacements. The final value was 0.3a0.
The initial step restriction for the microiterations (Figure 1,

bottom right) is set to the larger of the default value (0.3 au)
and 103 times the gradient norm (in atomic units). The
microiterations are stopped if the predicted variance is within
0.1% of the threshold, or if the step size is below 10−5 times the

initial one. The maximum microiteration count (never reached
in our final calculations) was set to 50.

5. RESULTS AND DISCUSSION
In analyzing the character and robustness of the GEK-
supported molecular geometry optimization, three different
test suites were employed, the e-Baker, Baker-TS, and S22 test
suitesresults are listed in Tables 1, 2, and 3. These test suites

will measure the performance for optimizations of covalently
bonded systems, cases when starting structures are far from the
equilibrium structures, and cases of dispersion- and hydrogen-
bonded systems. The three different cases are discussed
separately below.
However, before we commence with this, a brief statement

on the additional timing accrued due to the use of GEK rather
than RS-RFO is in order. It is our experience that with the
limited number of sample points used in our test, 10, that
additional CPU time is insignificant compared to the timing of
computing energies and gradients. As an example, for the
histamine−H+ molecule (#32 in the e-Baker set), performing a
DFT calculation of the energy and gradient evaluation took
little more than 6 min, whereas at the 10th iteration both the
RVO and RS-RFO required less than 1 s of CPU time.

5.1. e-Baker Test Suite. In the HF/6-31G run, all systems
converge smoothly with both RS-RFO and RVO methods. We
remind that these calculations were done with no effective step
restriction. The total number of iterations was reduced from
316 with RS-RFO to 270 with RVO (Table 1), a 15%

Table 3. Number of Macroiterations to Converge the
Molecular Geometry Optimization of the Dimers of the S22
Test Suite Using Conventional Restricted-Step Rational-
Function (RS-RFO) and RVO Supported by GEKa

complex RS-RFO RVO rmsd

Hydrogen-bonded Complexes
1: (NH3)2 5 6 0.000
2: (H2O)2 6 6 0.001
3: formic acid dimer 7 6 0.000
4: formamide dimer 7 6 0.000
5: uracil dimer HB 7 6 0.000
6: 2-pyridoxine·2-aminopyridine 15 16 0.001
7: adenine·thymine WC 18 14 0.001

Dispersion Dominated Complexes
8: (CH4)2 20 16 0.004
9: (C2H4)2 5 3 0.000
10: benzene·CH4 4 3 0.010
11: PD benzene dimer 7 15 0.000
12: pyrazine dimer 8 11 0.002
13: stacked uracil dimer 24 20 0.001
14: stacked indole·benzene 61 122 0.044
15: stacked adenine·thymine 29 23 0.002

Mixed Complexes
16: ethene·ethyne 6 6 0.000
17: benzene·H2O 35 29 0.002
18: benzene·NH3 33 29 0.002
19: benzene·HCN 31 7 0.027
20: T-shaped benzene dimer 5 7 0.000
21: T-shaped indole benzene 4 7 0.001
22: phenol dimer 21 17 0.003

aHighlighted in bold are cases where the difference between the two
methods is larger than 1 iteration.
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reduction, mostly due to a better performance in the more
difficult cases (#27 and later). Although the value of the trend
function was optimized to the performance in this test suite,
we did not find a great dependence on the exact value. Values
from 1.0Eh to 100.0Eh above the maximum energy give results,
with total number of iterations ranging from 290 to 275,
respectively. This shows that the choice of the trend function
value is not critical for a successful optimization, and setting
the l values in a consistent manner as in eq 17 compensates for
the scale changes. Nevertheless, we observe that the low end of
trend function values results in too small l values, too small
step sizes, and larger number of iterations (e.g., 386 iterations
with 0.1Eh).
In the B3LYP/def2-SVP run, normal step restrictions are

applied to both RS-RFO and RVO, although the only cases
where they were effective for more than one step were #6, #20,
and #33 with RS-RFO and #33 with RVO. The value of the
trend function was not further optimized for this run, and we
see a similar behavior, with RVO in general outperforming RS-
RFO, especially for the cases with more iterations. The only
case where RVO is significantly (more than 1 iteration) worse
than RS-RFO is #28, which is also the case where the final
geometries differ the most (rmsd 0.015 Å), and RVO reaches
an energy 0.0017 kcal/mol lower. The gradient is converged
after four iterations with both methods, and the rest of the
iterations are spent in converging the step size, it could be
argued that RS-RFO reaches a spurious early convergence. The
total number of iterations is reduced from 357 with RS-RFO to
291 with RVO, almost a 20% reduction.
Our expectations for the e-Baker test suite were that GEK-

supported optimization would be at best on par with standard
methodsthe latter having been developed over the last 40
years since Pulay suggested the direct use of analytic gradient
to investigate molecular potential energy surfaces.43 In
particular, enormous progress on this matter was attributed
to the development of the use of internal coordinates, Hessian-
update methods, and restricted-step second-order optimization
methods. Hence, it is a pleasant surprise that the GEK-
supported optimization procedure in most cases equals or
outperforms a state-of-the-art standard optimization method.
5.2. Baker-TS Test Suite. For the Baker-TS test suite, a

more significant difference between conventional and GEK-
supported optimization is expected. Indeed this is observed
(see Table 2). However, the comparison with the results of
Denzel and Kas̈tner20 offers first the following observation:
while their GPR implementation outperforms the L-BFGS
option, both are remarkably inferior to the conventional RS-
RFO implementation in the OpenMolcas package. This is
most likely a manifestation of the importance of using internal
coordinates, as already shown in other works,23,29,44,45 and a
reasonable estimate for the initial approximate Hessian, but
can also be affected by the differences in optimization method
and convergence criteria. When comparing the results obtained
for this work (RS-RFO vs RVO), it is seen that RVO in general
excels over the conventional RS-RFO procedure. In particular,
excluding #3, #5, and #25, which converge to different final
geometries and should not be directly compared, the total
number of iterations is reduced from 459 to 343, a 25%
reduction. In practically all cases, the number of iterations is
reduced by two or more.
Because the initial structures are close to a transition state, it

should not be surprising that we find some cases where
different methods converge to different structures. However, it

is only in #5 that the differences are due to converging to
different sides of a saddle pointRVO converges to
cyclopropyl, RS-RFO, and GPR converge to allyl, and changing
the step or variance restriction can change the outcome. In the
other starred cases in Table 2 (#3, #9, #25), the final structures
are weakly bound complexes and different local minima are
found. In #3, RS-RFO converges to O−C···H−H, RVO
converges to C−O···H−H, and GPR converges to a bent C−
O···H−H structure. In #25, RS-RFO and RVO converge to
H−CN···H−H but differ in the orientation of the H2
molecule, whose H atoms are not equivalent in the initial
structure; GPR converges to HCN + H2 with no discernible
intermolecular bonding pattern. In #9, RS-RFO and RVO
converge to practically the same structure; the differences with
GPR are displayed in Figure 2. The surface is very flat and the
gradient for RS-RFO and RVO is already converged after
around 20 iterations.

5.3. S22 Test Suite. The results for the S22 test suite are
presented in Table 3. We expect this set to show differences
due to the different ability of second-order and GEK surrogate
models for describing anharmonicities. However, this effect is
probably obscured by the fact that the initial structures are
relatively close to the final minimum and that the PES is in
most cases very flat.
This suite is divided in three sections according to the

dominant character of the intramolecular interactions. The first
section, dominated by hydrogen bonds, is characterized by
relatively strong interactions and we see a similar behavior as in
most of the e-Baker test suite: RS-RFO does good job and
RVO is of about the same or slightly better quality. The second
section contains cases where the interactions are mostly due to
dispersion. Here the differences are larger, and more mixed; in
cases #15, #11 and #14 RVO performs worse than RS-RFO. In
the third section, mixed complexes, results are mixed too; in
cases #20 and #21 RVO performs slightly worse, and in #19,
the large difference in iteration count can be attributed to a
spurious early convergence of RVO, to a structure 0.0066 kcal/
mol higher in energy than RS-RFO. We notice that in the cases

Figure 2. Structures of the butadiene + ethylene complex. Color
coding: cyan & white (framed)the starting structure in the Baker-
TS test suite (#9) (ref 41); greenthe optimized structure with RS-
RFO and with RVO; redthe GPR optimized structure (ref 20);
bluethe RVO optimized structure starting from the red one.
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where RVO performs worse, and particularly in #14, the PES is
extremely flat and RVO takes very many iterations (from
iteration 50 to 122, the energy descends monotonously less
than 0.01 kcal/mol). Overall, the total iteration count is 358
with RS-RFO and 375 with RVO or, excluding #14 and #19
(where the geometry differences are the largest), 266 and 246,
respectively.
Although we did not see the expected improvement with

RVO for the S22 suite, we believe these results are satisfactory,
considering that these systems were in no way included in the
optimization of the GEK parameters and RVO procedure, and
that the observed deficiencies can probably be overcome either
by a further improvement of the settings (e.g., the minimal
force constant of 0.025Eha0

−2 could be too large for these
systems, which would benefit from longer characteristic
distances) or by implementing specific overshooting proce-
dures as in ref 20.
5.4. Global Results. As examples, in Figure 3 we represent

the convergence behavior of four selected cases, comparing the
evolution of the gradient and the change in geometry with RS-
RFO and RVO. The first case corresponds to #21 in the e-
Baker suite (with DFT), for which RVO converges some 13
iterations earlier than RS-RFO. In the second half of the
optimization, RS-RFO fails to significantly reduce the gradient,
possibly due to taking too large steps (dashed blue line). The
second example is #9 in the Baker-TS suite, which takes many
iterations with both methods, with RVO again outperforming
RS-RFO. After some 40 iterations, RS-RFO more or less
consistently but slowly reduces the gradient and step size,
while the rate of decrease of RVO is faster, and it shows some
punctual increases in the gradient that are compensated after a

few iterations. The third example is #17 in the Baker-TS suite,
displaying a qualitatively similar behavior with both opti-
mization methods, but again somewhat faster with RVO.
Finally, the last plot corresponds to the worst case for RVO,
#14 in the S22 suite. Here, RVO needs twice as many
iterations as RS-RFO, and the roles are practically inverted
with respect to Baker-TS #9. It is evident that the gradient is
below the convergence threshold (compare with the RS-RFO
gradient at the last iteration) since very early, and it is only the
reduction of the step size that requires more iterations, which
for RVO results in a painfully slow process. It is, in fact, a
general observation that the gradient tends to converge faster
than the step size.
To summarize the results, we show in Figure 4 the total

iteration count of the different test sets. The large difference
between RS-RFO/RVO and L-BFGS/GPR can mostly be
attributed to the use of internal coordinates in the former
methods. It can nevertheless be noted that the improvement
from RS-RFO to RVO is larger than from L-BFGS to GPR,
both in absolute and relative terms, although it could be that
the L-BFGS results include cases where it converges to a
different structure from GPR.

6. SUMMARY

In this paper we report a gradient-enhanced-Kriging-supported
algorithm for molecular geometry optimizations. The imple-
mentation uses the standard tools that have marked the success
of state-of-the-art molecular geometry optimizations, in
particular the use of internal coordinates and approximate
Hessian. The approximate Hessian provided by the HMF is
first used to define a nonredundant set of internal coordinates

Figure 3. Evolution of the Euclidean norm of the gradient (solid lines) and step size (dashed lines), in Cartesian coordinates and atomic units,
during the optimization for 4 selected cases. Data for RS-RFO in blue and for RVO in black.
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to describe molecular geometries, and the surrogate model is
therefore invariant to translations and rotations. In addition,
the approximate Hessian’s eigenvalues are used to determine
the characteristic lengths of the different dimensions, avoiding
a costly hyperparameter optimization while including a
discrimination between the different degrees of freedom.
Once the surrogate model is built, the minimum is found via
microiterations, with the constraint that the predicted variance
or uncertainty must be below a dynamic threshold, propor-
tional to the last computed gradient.
The proposed method has been tested on three different sets

of systems, comparing in most cases favorably to a conven-
tional optimization algorithm. In cases where the geometry
changes are large (Baker-TS), the new method yields a
significant reduction of iteration count, and even when the
initial geometry is close to the converged structure (e-Baker,
S22) the performance is usually at least on par with a standard
second-order optimization. The only cases where we noticed a
performance degradation are characterized by very weak forces
and slow convergence, further optimization of the method or
specific actions may be needed for these cases.
To conclude, a new method for geometry optimization has

been presented. Although in its infancy it is robust and
efficient. Besides its advantage in terms of number of iterations,
the new method removes the need for ad hoc update
procedures for trust radius or approximate Hessian, commonly
found in conventional quasi-Newton methods.
To comment, finally, on another quote from Meyer and

Hauser:23 “The latter [well-established optimizer packages as
they are implemented in most computational chemistry
program packages] are still outperforming Gaussian process
regression, even if formulated in internal coordinates, but take
large advantage of hard-coded physical knowledge, which has
been gathered through decades of research and continuous
fine-tuning”. In this work we propose a simple way of
incorporating this “hard-coded physical knowledge” into the
GEK model, and our results confirm that this results in a
method capable of competing with “well-established optimizer
packages” (at least one, as implemented in one quantum
chemistry program package).
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