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Predict ACL Strain and Identify Those at High
Risk for Sports-Related ACL Injury
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Background: Knee abduction moment during landing has been associated with anterior cruciate ligament (ACL) injury. However,
accurately capturing this measurement is expensive and technically rigorous. Less complex variables that lend themselves to
easier clinical integration are desirable.

Purpose: To corroborate in vitro cadaveric simulation and in vivo knee abduction angles from landing tasks to allow for estimation
of ACL strain in live participants during a landing task.

Study Design: Descriptive laboratory study.

Methods: A total of 205 female high school athletes previously underwent prospective 3-dimensional motion analysis and sub-
sequent injury tracking. Differences in knee abduction angle between those who went on to develop ACL injury and healthy
controls were assessed using Student t tests and receiver operating characteristic analysis. A total of 11 cadaveric specimens
underwent mechanical impact simulation while instrumented to record ACL strain and knee abduction angle. Pearson correlation
coefficients were calculated between these variables. The resultant linear regression model was used to estimate ACL strain in the
205 high school athletes based on their knee abduction angles.

Results: Knee abduction angle was greater for athletes who went on to develop injury than for healthy controls (P < .01). Knee
abduction angle at initial contact predicted ACL injury status with 78% sensitivity and 83% specificity, with a threshold of 4.6� of
knee abduction. ACL strain was significantly correlated with knee abduction angle during cadaveric simulation (P < .01). Sub-
sequent estimates of peak ACL strain in the high school athletes were greater for those who went on to injury (7.7-8.1% ± 1.5%)
than for healthy controls (4.1-4.5% ± 3.6%) (P < .01).

Conclusion: Knee abduction angle exhibited comparable reliability with knee abduction moment for ACL injury risk identification.
Cadaveric simulation data can be extrapolated to estimate in vivo ACL strain. Athletes who went on to ACL injury exhibited greater
knee abduction and greater ACL strain than did healthy controls during landing.

Clinical Relevance: These important associations between the in vivo and cadaveric environments allow clinicians to estimate
peak ACL strain from observed knee abduction angles. Neuromuscular control of knee abduction angle during dynamic tasks is
imperative for knee joint health. The present associations are an important step toward the establishment of a minimal clinically
important difference value for ACL strain during landing.
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Frontal plane loading during landing has been demonstra-
bly associated with anterior cruciate ligament (ACL) injury
and injury risk in athletes.19,39,41,46,51,71 The influence of
these loads is likely magnitude dependent, given that 0 to
15 N�m of isolated knee abduction moment (KAM) applied
to the knee at 20� of flexion has exhibited limited effect on
ACL strain in live participants.27 However, 0 to 15 N�m of
valgus underrepresents physiologic loading during
dynamic athletic tasks, given that during a laboratory-

controlled drop from a 31-cm box, mean KAM exceeds
20 N�m,28,30 classification for high injury risk exceeds KAM
of 25.3 N�m,51 and individual peak KAM can exceed
57 N�m.16 The higher loads are likely to have greater influ-
ence on ligament strain, a concept that is supported by
cadaveric impact simulations, because only the highest risk
and rupture loading profiles have exhibited statistically
significant increases in ACL strain compared with baseline
trials.13,15 These large KAMs play a critical role in ACL
strain and subsequent injury onset, given that ACL rup-
tures can be reliably generated on lower extremity speci-
mens during landing simulations that incorporate frontal
plane loading.15-17,44,47 Specifically, KAM applied to the
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knee during multiple simulations of athletic tasks has been
shown to induce greater increases in peak ACL strain than
has either anterior tibial translation or internal tibial rota-
tion torque.7,9-12,14,15,48,63

Along with KAM, knee abduction angle (KAA) is also
associated with dynamic athletic tasks and poor neuromus-
cular control, especially in female athletes.29,31 Indeed,
female athletes who have gone on to develop ACL injury
have exhibited greater KAA at initial contact (IC) during
landing than have healthy controls.41 Video analysis of
actual ACL ruptures further confirms the presence of KAA
deviation and frontal plane collapse of the knee during
injury events.42,45 In addition, controlled laboratory simu-
lation of KAA rotations on cadaveric lower extremities ori-
ented to represent the mean IC position at landing has
induced greater increases in ACL strain than have equal
magnitude rotations applied in the transverse plane.9 How-
ever, despite the identification and modeling of these fron-
tal plane contributions to ACL strain, a gap in the
literature remains. Specifically, the quantified relationship
between KAA and intra-articular ACL mechanics during
landing tasks and the subsequent potential to use KAA as
a predictor for injury risk in vivo remain underexplored.

To evaluate factors associated with increased ACL injury
in both male and female populations, biomechanical para-
meters have been widely examined in the literature.1,2,40 In
particular, peak KAM has been used to identify ACL injury
risk status within an in vivo cohort with a high sensitivity
and specificity.41 Unfortunately, kinetic measures, such as
KAM, require rigorous laboratory protocols and expensive
3-dimensional (3D) motion analysis equipment to capture
and calculate data with precision and reliability.24,28,49 Due
to this limitation, researchers and clinicians have extrapo-
lated surrogate clinical measures, often based on kinematic
joint position and angles, such as KAA, to identify patients
at high risk for injury in the clinic with similar accuracy to
a 3D inverse dynamics analysis.52-55 As such, there remains
significant interest in the association between kinematic
measurements, such as KAA, and ACL injury risk iden-
tification. Subsequent correlation between KAA and
intra-articular ligament mechanics would amplify the
importance of such an association because it would then
allow clinician researchers to make quantifiable

estimates of mechanical function through visually
observable kinematics during landing tasks.

This investigation had 2 primary objectives: to (1) deter-
mine whether KAA exhibits similar capacity for ACL injury
risk classification to KAM across an in vivo cohort and
(2) corroborate data from in vitro cadaveric simulations
with in vivo kinematics to estimate ACL strain in live par-
ticipants during a landing task. Specifically, we aimed to
associate KAA from cadaveric and in vivo cohorts. In vivo
kinematics were then used in combination with cadaveric
measured ACL strain to derive in vivo ACL strain. The
hypothesis tested was that KAA would be a significant
identifier of ACL injury incidence in the in vivo participants
and of ACL strain in the cadaveric specimens. In addition,
we tested whether the ACL strain estimates derived for
in vivo participants would be higher in those who went on
to develop injury than in healthy controls.

METHODS

In Vivo Kinematic Analysis

As reported in the literature, 3D motion analysis data were
previously collected on a cohort of 205 female team sport
athletes.41 This cohort from high schools local to Cincin-
nati, Ohio, (mean ± SD age, 16.1 ± 1.7 years; height, 164.4
± 6.1 cm; mass, 59.2 ± 8.1 kg) was previously used to pro-
spectively examine the role of KAM relative to ACL injury
risk and consisted of soccer, volleyball, and basketball
players. In brief, 25 retroreflective markers were placed
on each participant in a modified Helen Hayes format.
These markers were then tracked for position at 240 Hz
using an 8-camera motion analysis system (Eagle Cameras;
Motion Analysis Corp) while ground-reaction forces were
simultaneously collected at 1200 Hz using dual in-ground
force platforms (AMTI). Ground-reaction force and marker
position data were synched through an electronic trigger,
and data were collected continuously throughout the per-
formance of a drop vertical jump task (DVJ) from a 31-cm
box. Data were filtered through a low-pass Butterworth
digital filter with a cutoff frequency of 9 Hz for positional
coordinates and 50 Hz for ground-reaction forces. Data
were then submitted to custom software that calculated
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kinematic and kinetic values for the knee joint. After
motion capture analysis, each participant was prospec-
tively tracked for ACL injury for 2 years. At the end of the
2-year tracking period, all participants were separated into
2 groups: an ACL injury group (n¼ 9) and a healthy control
group (n ¼ 196). All 9 participants in the ACL injury group
had sustained a noncontact ACL injury during participa-
tion in high school sporting activity (8 soccer, 1 basketball).
Of the 9 injured participants, 4 exhibited family history of
knee injury, 6 exhibited knee laxity, and 8 were postpuber-
tal. Previous injury history was not controlled for in this
in vivo cohort. Further, 12 participants had a previous his-
tory of knee injury, 2 of whom had ACL injuries. Both par-
ticipants with a previous history of ACL injury had
sustained additional ACL injury to the contralateral limb.
Before data collection, informed consent/assent was
obtained for each participant. All methods were reviewed
and approved by the Cincinnati Children’s Hospital Insti-
tutional Review Board.

In Vitro Cadaveric Impact Simulation

In total, 46 cadaveric lower extremity specimens were set
up in the custom-designed mechanical impact simulator
and examined through simulated drop landings (Figure 1).
Of these 46 specimens, 19 specimens completed the full
range of prescribed impact simulations before any struc-
tural failure. Of these, 11 specimens (8 male, 3 female;
mean ± SD age, 38.2 ± 9.5 years; mass, 94.1 ± 25.6 kg;
height, 175 ± 10 cm; body mass index, 31 ± 9) were assessed
using continuous 3D kinematic data and used for analysis
in the present investigation. Details of the method have
been previously reported in the literature.16,17 In brief, spe-
cimens were resected of all soft tissue superior to the knee

joint with the exception of the quadriceps and hamstrings
tendons. The femur was transected 20 cm superior to the
patella, and the specimen was then inverted and potted in a
custom fixture such that the long axis of the femur aligned
with the vertical axis of a 6-axis load cell (Omega160 IP65/
IP68; ATI Industrial Automation). A custom fixture was
mounted to the tibia and attached to pneumatic cylinders
that applied external loads of KAM, anterior tibial shear
(ATS), and internal tibial rotation (ITR) to the knee joint.
These external loads were derived from a separate in vivo
cohort of 44 healthy participants (mean ± SD age, 23.3 ± 4.1
years; mass, 72.6 ± 13.9 kg; height, 172 ± 10 cm) who were
active in recreational or organized sports. These athletes
performed DVJ tasks under 3D motion analysis as
described above. Consent/assent was obtained before test-
ing of these individuals, and all methods were approved by
The Ohio State University Institutional Review Board. The
subsequent KAM, ATS, and ITR kinetic data from these
DVJ tasks were subdivided into relative risk levels as indi-
cated by existing literature.8,13-15 These in vivo–based
external loads were individually randomized by risk level
and applied to the joint immediately before the delivery of
an impulse force to the sole of the foot. After this paradigm,
each specimen went through repeated-measures testing
that consisted of 26 simulations, each with a unique profile
of external knee kinetics.15 These external forces and
impulse deliveries emulated the dynamic knee environ-
ment experienced when athletes land from a jump and pro-
duced clinical representations of ACL injuries in 88% of
specimens tested.17 Testing was ceased once a soft or hard
tissue injury was identified. Specimen integrity was evalu-
ated before and after simulation by a board-certified ortho-
paedic surgeon. All 11 specimens included for analysis in
this investigation experienced ACL failure.

Figure 1. (A) Meta-view of custom-designed mechanical impact simulator for creation of anterior cruciate ligament ruptures. (B)
Cable pulley system used to deliver pneumatically actuated loads to the quadriceps and hamstrings tendons. (C) External fixation
frame attached to the tibia and used to deliver pneumatically actuated knee abduction moment, anterior tibial shear, and internal
tibial rotation loads to each specimen. KAM, knee abduction moment; ATS, anterior tibial shear; ITR, internal tibialrotation.
Reprinted with permission from Bates NA, Schilaty ND, Nagelli CV, Krych AJ, Hewett TE. Validation of non-contact anterior
cruciate ligament tears produced by a mechanical impact simulator against the clinical presentation of injury. Am J Sports Med.
2018;46(9):2113-2121.
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Throughout impact simulations, ACL strain was
recorded using a differential variance reluctance
transducer strain gauge (Lord MicroStrain) implanted in
the distal third of the anteromedial bundle of the
ligament,16-18,26,47,58 knee joint forces and torques were
recorded using the 6-axis load cell and extrapolated to the
knee joint center point,16,17,47,58,61 and 3D kinematic data
between the tibia and femur were determined based on
Optotrak (Northern Digital Inc) triads that were mounted
directly to the femur and tibia. Kinematic data were deter-
mined as tibial motion with respect to the femur. Data
were sampled at 10,000 Hz, with the exception of the Opto-
trak system, which sampled at 100 Hz. All data were fil-
tered through a low-pass Butterworth digital filter with
cutoff frequency of 50 Hz62 and then interpolated to 901
points across a 3.0-second trial (100 points per second).
Cadaveric kinematic data were calculated as the tibia with
respect to the femur coordinate system using Visual 3D (C-
Motion). KAA was represented as a negative value. Posi-
tive values reported along the same axis were indicative of
knee adduction angles (varus). All methods were reviewed
and approved as not human subjects research by the Mayo
Clinic Institutional Review Board.

Statistical Analysis

Statistical means and standard deviations were calculated
for KAA for in vivo injured and uninjured participant
groups. Relative to the orientation of our coordinate axes
and to maintain consistency with previous literature,41,51

Student t tests were used to compare values between
groups, with significance at a < .05. Logistic regression
models were used to create receiver operating characteris-
tic (ROC) curves and obtain sensitivity and specificity
between the injured and uninjured groups. Maximum sen-
sitivity and specificity for status prediction were captured
from the ROC curves. These analyses were individually

performed for peak KAA and KAA at IC. Student t tests
were used to compare values between peak KAA and KAA
at IC.

Pearson correlation coefficients were calculated between
ACL strain (peak magnitude and change from initial value)
and frontal plane knee measures (change in KAA from ini-
tial value and magnitude of external KAM applied). Signif-
icance was set at a < .05, and the predictive threshold was
set at r2 � 0.2.41,43 Although r2 > 0.2 is considered a low to
moderate statistical correlation, no single biomechanical
factor is known to exist that can precisely predict future
ACL injury events. Instead, multifactorial models are used
to predict relative injury risk as a surrogate for likelihood of
sustaining ACL injury. Literature has previously presented
a 5-factor paradigm for injury prediction models.29 Follow-
ing this 5-factor paradigm, an r2 threshold of�0.2 would be
a minimal inclusion criterion for any given individual fac-
tor. A net benefit analysis3,67 was used to assess the clinical
applicability of this predictive model.

Peak KAA and KAA at IC from the in vivo kinematic data
were applied to the resultant cadaveric simulation linear
regression equations that were significant and predictive in
order estimate in vivo ACL strain. Means and standard
deviations were calculated for both in vivo participant
groups, and Student t tests were again used to test for sig-
nificance (a < .05).

RESULTS

In Vivo Kinematic Analysis

Magnitude of peak KAA during landing was significantly
different between the ACL-injured group and the uninjured
referent group (P < .01) (Figure 2). The mean peak KAA
was significantly more deviated from a vertical tibiofemoral
alignment in athletes who went on to develop ACL injury

Figure 2. Scatterplot of knee abduction angle (KAA) at initial contact and peak KAA during landing from a drop vertical jump.
Participants who had anterior cruciate ligament injury are marked with a red X. Cutoff thresholds for each respective condition are
represented by the horizontal dashed lines.
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(–9.0� ± 3.2�) than their uninjured counterparts (–1.4� ±
7.7�; P < .01) (Figure 3). Timing to peak KAA from IC was
not a significantly different factor between groups (P¼ .30).
Logistic regression analysis demonstrated that peak KAA
during landing was a significant predictor of ACL injury
status (P < .01) in the ACL injured group compared with
healthy controls, with a sensitivity of 100% and specificity
of 65% (threshold, –6.3�; area under the curve, 0.804). Net
benefit analysis using a probability of 4.3% (9 injuries from
205 athletes) yielded a score of 0.020, which indicated that
for 100 individuals with a diagnosis of high ACL injury risk
by the KAA threshold, 2 individuals would be likely to ben-
efit from interventional treatment.

The magnitude of KAA at IC was also significant
between those who went on to experience ACL injury and
the referent uninjured cohort (P < .01) (Figure 3). KAA at
IC was significantly more prevalent in athletes who went
on to sustain ACL injury (–5.0� ± 2.0�) than their uninjured
counterparts (3.4� ± 7.6�; P < .01). For both groups, KAA
expressed reduced magnitude at IC compared with at its
peak value (P � .01). Mean knee orientation at IC was in
adduction for uninjured athletes and abduction for athletes
who had ACL injury. Logistic regression analysis demon-
strated that KAA at IC significantly identified ACL injury
status (P < .01) in the ACL-injured group compared with
healthy controls, with a sensitivity of 78% and specificity of
83% (threshold, –4.6�; area under the curve, 0.843).

In Vitro Cadaveric Simulation

During simulated landings on the cadaveric specimens,
KAA was directly correlated with peak absolute ACL strain
(P < .01; r2 ¼ 0.24) (Figure 4) and change in ACL strain

from the initial limb position (P < .01; r2 ¼ 0.25). Absolute
ACL strain increased 0.47% ± 0.05% per degree of KAA.
Similarly, the change in ACL strain from initial position
increased by 0.44% ± 0.04% per degree of KAA. Peak abso-
lute ACL strain (P < .01; r2 ¼ 0.27) and change in ACL
strain from initial position (P< .01; r2¼ 0.22) were likewise
directly correlated with applied KAM. Peak absolute ACL
strain increased by 0.030% ± 0.003% per N�m of KAM
applied. Similarly, the change in ACL strain from initial
position increased by 0.025% ± 0.002% per Newton-meter
of KAM applied.

Derivation of In Vivo ACL Strain

When the specimen did not have external loads applied to
the knee, the intercept values from the linear regression
models indicated that baseline (y-intercept) ACL strain
ranged between 3.4% and 3.8%. When used as the intercept
value in the linear strain model derived above, these base-
line strains along with in vivo KAA measurements esti-
mated that athletes who went on to develop ACL injury
achieved mean peak ACL strains of 7.7%-8.1% ± 1.5% while
landing from a DVJ (Figure 5). The uninjured cohort
achieved mean peak ACL strains of 4.1%-4.5% ± 3.6%. At
IC, the estimated mean ACL strain was 5.7%-6.2% ± 0.9%
for participants with ACL injury and 1.8%-2.2% ± 3.6% for
uninjured participants. ACL strain estimates from our
model were greater for participants who went on to ACL
injury than for uninjured participants. This was observed
at both peak strain and IC (P < .01).

DISCUSSION

The present investigation was designed to synthesize
in vivo kinematics and cadaveric simulation data from
landing tasks in order to quantify the role of KAA as a
predictor of both ACL strain and future ACL injury. Our
results supported the primary hypothesis that KAA would
be a significant predictor of ACL injury risk via retrospec-
tive calculation from in vivo motion analysis data. Peak
KAA predicted ACL injury status with 100% sensitivity and
65% specificity, whereas KAA at IC predicted ACL injury
status with a sensitivity of 78% and specificity of 83%.
These data further corroborate the findings of multiple ear-
lier studies that frontal plane knee dynamics are essential
to the screening and identification of athletes at high
risk for ACL injuries, as KAA presented greater sensitivity
and only slightly lower specificity than did KAM, which
has long been used to project relative ACL injury
risk.34,41,51,53-55 Specifically, previous literature has estab-
lished that athletes who exceeded a threshold of 25.3 N�m
KAM during landing had a 6.8% risk for subsequent ACL
injury compared with a 0.4% risk in athletes who were
below this threshold.51 The present results established that
KAA thresholds of 4.6� at IC or 6.3� at peak magnitude
similarly demonstrate greater risk for subsequent ACL
injury. This KAA model demonstrated that athletes who
went on to sustain subsequent ACL injury were once again
clustered at the cohort’s outermost quartile of frontal plane

Figure 3. Boxplot of median peak knee abduction angle (KAA)
(blue), KAA at initial contact (IC) (red), and DKAA (green) dur-
ing landing from a drop vertical jump. *Significant difference in
KAA magnitudes between injury groups. KAA is represented
as a negative value in our coordinate axis. The horizontal
dashed line indicates no frontal plane rotation between the
femoral and tibial axes. **Significant difference in peak KAA
and KAA at IC within injury group. ACL, anterior cruciate lig-
ament.
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deviation when landing from a drop (Figure 2), which
emphasizes that this subset of the athletic population is
at elevated risk for noncontact knee injuries. Because the
athletes who did not experience subsequent ACL injury
presented mean frontal plane angles with slight knee
varus, athletes who exhibit knee valgus angles during con-
trolled athletic tasks should be considered at higher risk for
injury than should those who do not exhibit valgus angles.

The evidence of prospective KAM measures as a predic-
tor of an underlying injury risk factor has led to extensive
research into the reduction of KAM through targeted neu-
romuscular intervention, which has subsequently been
shown to reduce risk of all ACL injuries by 50% and non-
contact ACL injuries in female participants by
67%.6,38,41,49,65,66,70 The present in vivo motion analysis
data indicate that KAA is as strong a predictor as KAM for
ACL injury risk. Because KAA is easier to observe clinically
than is KAM, this measure offers the potential for more sim-
plified clinical assessment of successful injury risk reduction
through interventional training. Athletes at the highest risk

for injury also have demonstrated the greatest biomechanical
changes after neuromuscular training.36 The optimal ROC
sensitivity and specificity for ACL injured versus uninjured
groups in the present study provided a threshold cutoff for
high-risk athletes as discerned using KAA.

The additional primary hypothesis that KAA would be a
significant predictor of ACL strain during cadaveric simu-
lations of landing was also supported. As the change in
KAA from baseline increased, so did both peak ACL strain
and change in ACL strain during simulated landings.
Because each of the cadaveric KAA versus ACL strain cor-
relations expressed r2 � 0.24, inclusion of KAA in a predic-
tive model related to ACL loading and injury risk would
subscribe to the 5-factor maximum systematic selection of
logistic regression.43 This theory indicates that screening
models should limit the collection burden on clinicians
through the inclusion of only those independent factors
that account for �20% of the variance in the dependent
factor.6,41,43 As with the in vivo kinematic data, cadaveric
simulation of KAA and KAM presented similarly robust

Figure 4. Scatterplots showing the linear correlations from the impact simulations between (A) peak absolute anterior cruciate
ligament (ACL) strain and change in knee abduction angle (KAA), (B) peak absolute ACL strain and applied knee abduction moment
(KAM), (C) change in ACL strain and change in KAA, and (D) change in ACL strain and applied KAM. Increased change in KAA
during landing was correlated with increased peak ACL strain (A, C). Likewise, increased KAM applied to the joint also produced
increased peak ACL strain during landing (B, D).

6 Bates et al The Orthopaedic Journal of Sports Medicine



models relative to ACL dynamics, as r2 values were
between 0.22 and 0.27. Similarly, when cadaveric simula-
tion KAA and KAM values were applied to their respective
regression models, they produced comparable changes in
ACL strain. Peak cadaveric change in KAA ranged from
0.0� to 15.6�, which, based on the linear equation derived
in this investigation, estimated an increase of 8.3% in peak
ACL strain. Meanwhile, peak cadaveric change in KAM
ranged from 2.4 to 229.2 N�m for an estimated increase of
7.8% in peak ACL strain. Previous experiments have dem-
onstrated that KAM magnitude directly alters ACL strain
during cadaveric simulations of landing and has a greater
influence than do internal tibial rotation moments.9,15 The
present data corroborate that frontal plane knee kinemat-
ics are similarly predictive of ACL loading and strain.

ACL injuries remain multifactorial events, the combina-
tion of multiplanar biomechanical loading, anatomic geom-
etry, and physiological factors.19,20,40 Consequently, it may
be presumptuous to expect a single factor to account for the
majority of variance in predictive modeling of injury risk or
strain. Indeed, the present KAA factor accounted for *30%
of the variance in ACL strain. However, accounting for only
a portion of the variance in a model does not preclude single
factors from clinical relevance. In the present study, KAA
accounted for sufficient variance to be designated for inclu-
sion in predictive models.43 In the clinical setting, reduction
of factors is essential for speed and ease of analysis. Indeed,
clinical surrogates are able to predict KAM and ACL injury
risk with 84% sensitivity and 67% specificity through the
use of several less rigorous factors.54,55 Similarly, a robust
single factor could be used to power a clinically relevant
predictive model. Net benefit analysis of the current KAA
data indicated that of 100 participants diagnosed as hav-
ing high risk for ACL injury, 2 participants would benefit
from interventions. This relates to literature reporting
that the number needed to treat to prevent an ACL injury
is 108; however, the previous literature study did not

isolate high-risk participants before intervention.66

Therefore, although use of a single factor increases the
variance in a predictive model, the findings may still be
generalizable to the clinical setting.

Finally, our results supported the experimental hypoth-
esis that linearly estimated change in ACL strain derived
in vivo would be higher in those participants who went on to
develop injury than in healthy controls. The ACL strain
estimates for the injured group that were derived from our
model were greater than those for the uninjured group.
During robotically controlled simulations of DVJ landings
and sidestep cutting tasks, peak ACL strain in both a male
and a female model ranged from 6.1% to 7.0%.11 These
robotic models were constrained by 3D kinematics recorded
in vivo from a pair of high-risk athletes (as determined
using KAM) who performed the prescribed athletic tasks.10

The congruency of the present data with these previous
cadaveric simulation data is a validation of consistency
across 3 unique models (in vivo 3D motion capture, cadav-
eric robotic articulation, and cadaveric impact simulation)
that have been developed within our laboratory.10,16,41

These current findings demonstrate potential for cadaveric
simulation results to be generalized relative to dynamic
in vivo environments. The subsequent application of an in
sim approach provides the potential to further enhance
injury prevention, surgical intervention, and rehabilitation
techniques.59

Techniques for the rapid identification of injury risk in
athletes from clinical measures are important because the
literature has shown that interventional techniques can
effectively alter high-risk biomechanics.35,36,65 Specifically,
athletes who are classified as having the highest risk for
ACL injury based on latent profile analysis are subse-
quently the most susceptible to risk reduction through a
targeted neuromuscular intervention focused on the proxi-
mal leg and trunk.36,37 Such intervention has been shown
to increase hip external rotation moments and impulses,

Figure 5. Bar plot depicting the lower and upper ranges of estimated peak anterior cruciate ligament (ACL) strain achieved in both
participant groups during a laboratory drop vertical jump task that was performed from a 31-cm drop height. IC, initial contact.

The Orthopaedic Journal of Sports Medicine Use of Frontal Plane Angles to Predict ACL Strain 7



increase peak trunk flexion, and decrease peak trunk
extension during landing. In addition, preventive interven-
tional training that is inclusive of strengthening exercises
and proximal control exercises has been found to reduce
ACL injury incidence, whereas training that includes bal-
ance exercises has not.65 Biomechanical alterations from
training interventions are such that 1 ACL injury is esti-
mated to be prevented for every 108 to 120 athletes who are
trained.66 In addition, athletes who demonstrate increased
frontal plane mechanics are more responsive to targeted
neuromuscular training.50,56,64 More simple clinical iden-
tification of high-risk athletes through a KAA measure-
ment may further increase this ratio of responsiveness
by parsing out individuals who are most apt to have poor
biomechanics altered from a neuromuscular intervention.

Ultimate strain to failure in the ACL is between 15% and
18%.17,21,47,72 Based on this range, the mean predicted
strain values for the ACL injury group in this report
accounted for between 43% and 54% of this ultimate failure
range. Accordingly, even those athletes who eventually
went on to injury did not approach the threshold of injury
during a controlled, unobstructed, unperturbed landing in
a laboratory. The safety factor of a laboratory landing task,
as estimated using the current linear equation, was approx-
imately double the value of strain that was calculated. This
is empirically supported, as no adverse events have been
reported during thousands of DVJ screening tasks per-
formed in our laboratories. The peak ACL strain presented
contradicts some existing literature that indicates that
peak ACL strain during gait approaches 12.5%.25 Because
gait generates significantly less ground-reaction force than
do landing tasks,4,23 it remains controversial that gait
would produce greater ligament strain than has been mea-
sured in more dynamic athletic tasks.11,13,15 Furthermore,
in vivo implantation of strain gauges on the ACL has shown
baseline strain of 2% to 3% for weightbearing individuals at
20� of knee flexion.27 Because high-risk external knee loads
generate *3% ACL strain and impulse delivery likewise
contributes *3% strain,14 the *8% peak ACL strain dur-
ing landing that was estimated from the present linear
model is better aligned with data collected from sensors
directly implanted in tissue in vivo and in vitro. However,
the post-IC change in ACL strain estimated for live athletes
in the current study was approximately 1% less than what
has previously been observed in cadaveric simulation.15

A first limitation of the current investigation was the
inability to directly instrument the ACL of in vivo partici-
pants with miniature strain gauges. Such a procedure
would provide for the easiest direct assessment of correla-
tion between KAA and ACL strain; however, it would also
be highly invasive and introduce unnecessary risk to the
participant. Further, in a clinical or athletic setting, direct
evaluation of ACL strain will likewise not be available, so
the surrogate cadaveric simulation measurements used
presently remain appropriate. A second limitation was that
the participants in the in vivo cohort and cadaveric limb
cohort were different people. Care was taken to minimize
the age difference between participants in the in vivo kine-
matic and cadaveric simulation by exclusion of cadaveric
specimens from individuals who were outside the fifth

decade of life, had undergone chemotherapy treatments,
and were either sedentary or restricted to bedrest.16,17 A
third limitation to this investigation was that the in vivo
kinematic cohort consisted of female participants, whereas
the cadaveric simulation cohort included both male and
female specimens. The female ACL has decreased mechan-
ical failure properties compared with those of the male ACL
and on average expressed 3.2% more strain during impact
simulations than that of the male ACL, although this value
was not statistically significant.22,32,33,60 The present
in vivo kinematic cohort was entirely composed of female
participants. Thus, based on the 8:3 male-to-female ratio of
cadavers, it is possible that the cadaveric-simulation-
derived linear model underestimated the peak in vivo ACL
strain by as much as 2.3%. Application of this increase
would raise the mean ACL strain in the ACL injury group
to 9.5% to 10.0% and account for 53% to 67% of the ultimate
failure strain. These values would leave a safety factor for
injury avoidance during the performance of DVJ tasks but
would indicate that high-risk athletes are significantly
closer to injury during controlled tasks than anticipated.
A fourth limitation exists in that all in vitro simulations
were restricted to 25� of knee flexion. Although this repre-
sents the mean knee flexion at IC during in vivo landings
for an athletic population,5 future investigations should
explore the role of varied IC flexion angles and passive knee
flexion during landing relative to intra-articular ligament
mechanics. A fifth limitation as pertains to the in vivo
cohort is that neither playing time nor previous injury his-
tory was controlled. Playing time affects athletic exposures,
which relates to injury incidence. We noted that 2 athletes
had previous ACL reconstruction and went on to further
ACL injury during the study. It is known that athletes
with previous history of ACL injury are significantly
more likely to experience subsequent injury than is the
general population.57,68,69 Sixth, the possibility for
sampling bias exists because the current cadaveric popula-
tion expressed greater age, mass, and body mass index
than did either in vivo cohort. Unfortunately, this reality
is unavoidable when working with cadaveric specimens
because young and healthy specimens are painstakingly
difficult to acquire. Larger specimens may be indicative
of larger ligaments with greater cross-sectional area that
can sustain high ultimate failure forces. However, our pri-
mary cadaveric outcome measure was ligament strain,
which is, by definition, normalized to specimen size. Given
that the literature had not associated ultimate ligament
strain with specimen characteristics, the expectation of
bias influence on the current data is not warranted at
present.

CONCLUSION

KAA identified relative ACL injury risk in vivo and ACL
strain during cadaveric simulation. The association
between these environments allows clinicians to make an
in vivo estimate of peak ACL strain of 0.5% per degree of
KAA observed during landing. KAA proved to be similarly
robust in prediction of ACL injury risk as a KAM-driven
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model. Because KAA is simpler to observe clinically than is
KAM, the implementation of this factor in neuromuscular
interventions could lead to less arduous assessment of
training effectiveness in at-risk populations.
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