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Abstract: The non-Arrhenius behavior of segmental dynamics in glass-forming liquids is one of the
most profound mysteries in soft matter physics. In this article, we propose a dynamically correlated
network (DCN) model to understand the growing behavior of dynamically correlated regions
during cooling, which leads to the viscous slowdown of supercooled liquids. The fundamental
concept of the model is that the cooperative region of collective motions has a network structure that
consists of string-like parts, and networks of various sizes interpenetrate each other. Each segment
undergoes dynamical coupling with its neighboring segments via a finite binding energy. Monte
Carlo simulations showed that the fractal dimension of the DCNs generated at different temperatures
increased and their size distribution became broader with decreasing temperature. The segmental
relaxation time was evaluated based on a power law with four different exponents for the activation
energy of rearrangement with respect to the DCN size. The results of the present DCN model are
consistent with the experimental results for various materials of molecular and polymeric liquids.

Keywords: dynamics; supercooled liquids; dynamically correlated network; relaxation time; simulation

1. Introduction

The mechanism of glass formation in supercooled liquids is one of the most funda-
mental but unsolved issues in soft matter physics [1,2]. Glass-forming liquids generally
exhibit a drastic increase in viscosity upon being cooled, which leads to an apparent freez-
ing of molecular or segmental rearrangements observed as a laboratory glass transition
phenomenon. The temperature dependence of the viscosity does not follow the Arrhenius
law, which is an essential feature for liquids in a supercooled state. The origin of this
non-Arrhenius behavior is still unclear, although extensive studies, including experiments,
theories, and simulations have been conducted so far [3–8]. The glass transition phe-
nomenon observed on the laboratory time scale is not considered a real thermodynamic
transition; quite a few researchers assume that there exists an ideal transition in equilibrium:
the apparent glass transition is a signature of this ideal phase transition [9–11]. The major
theories in this aspect are based on this idea, which accords with the argument that, at
a certain low temperature, some singularity is required to avoid the Kauzmann entropy
crisis [12]. In contrast, other researchers consider the glass transition as a kinetic transition,
i.e., a non-equilibrium phase transition without any singularities in thermodynamics (ki-
netically constrained model) [13–15]. Furthermore, theories of phase transitions based on
dynamic facilitation were developed [16].

Notably, the viscous slowdown was successfully explained by cooperatively rear-
ranging for α-relaxation, as proposed by Adam and Gibbs [9]. The length scale of this
cooperativity (dynamic length scale) increases on cooling in supercooled liquids. The
cooperativity leads to the viscous slowdown, which usually appears well above the ideal
transition temperature (thermodynamic phase transition). In addition, each of the above
cooperative regions generally has different molecular mobilities; thus, there exists spatial

Polymers 2021, 13, 3424. https://doi.org/10.3390/polym13193424 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-8079-532X
https://doi.org/10.3390/polym13193424
https://doi.org/10.3390/polym13193424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13193424
https://www.mdpi.com/journal/polymers
http://www.mdpi.com/2073-4360/13/19/3424?type=check_update&version=2


Polymers 2021, 13, 3424 2 of 14

heterogeneity in dynamics [1,17–19]. Notably, the heterogeneous dynamics do not accom-
pany any heterogeneities in the static structure at the same length scale. Thus, the origin of
the spatial heterogeneity in dynamics is not directly related to the static structural features.
The reason why supercooled liquids are dynamically heterogeneous is likely to be relevant
to their non-Arrhenius behavior, although its origin is not yet elucidated.

A major concept for understanding the dynamics of supercooled liquids is that config-
urational entropy plays a significant role, as in the Adam–Gibbs approach. The random
first-order transition (RFOT) theory, which is also in line with the entropy-based approach,
was developed from the mean field theory of spin glasses, where the collective rearrange-
ments are regarded as the transition between metastable configurational states [10,11,20–23].
The transition barrier is related to the surface and bulk free energies of the cooperative
region, leading to a scaling relationship between the correlation length scale and the con-
figurational entropy. Recent simulation studies have suggested that dynamic cooperative
regions have string-like shapes rather than compact ones [24–26]. This may be inconsistent
with the earlier picture of a mosaic structure for the cooperatively rearranging regions of
the Adam–Gibbs theory. The string-like or non-compact shape may be a promising idea
that can explain the inconsistency between the length scales of the dynamic and static
heterogeneities. Furthermore, some simple phenomenological models were proposed, in
which cooperative regions with non-compact shapes were assumed [27–29]. In addition,
such phenomenological approaches were extended to explain the size-dependent dynamics
in nanosized polymeric materials [30–32]. However, the origin of the anomalous dynamics
and decoupling between quasi-thermodynamic and dynamic observables in nano-confined
systems remains a controversial issue in polymer physics [33–35].

In this paper, we present a simple model that can reproduce the temperature de-
pendence of segmental dynamics in supercooled liquids based on string-like collective
dynamics. Segments undergo cooperative rearrangements via dynamical coupling with
their neighboring segments, resulting in a dynamically correlated network (DCN) com-
posed of string-like parts (strands). It is assumed that the DCN once formed persists
until the cooperative rearrangement in it is completed. The relaxation time relevant to
the rearrangement in the DCN depends on its size (the number of segments included in
the DCN). It is also assumed that the DCN disappears immediately after the rearrange-
ment is completed, i.e., the lifetime of a DCN corresponds to the relaxation time of the
rearrangement. We executed Monte Carlo simulations to generate numerous DCNs based
on the probabilities of dynamical coupling with neighboring segments. The size and size
distribution of the generated DCNs were evaluated with respect to temperature, and the
temperature dependence of the segmental relaxation time was evaluated. The results were
compared with the experimental data for molecular liquids and polymers. The temperature
dependence of the size distribution and geometry of the DCN was also investigated.

2. Modeling of DCN

In the DCN model, we first consider that a glass-forming liquid consists of a collection
of identical segments that can rearrange cooperatively with other segments via dynamical
coupling. A segment corresponds to a molecule in the case of molecular liquids or a
motional unit in the case of polymeric liquids. The segments undergo rearrangement
by forming a cluster with a network structure. The segments are placed at lattice points
such that each segment has z neighboring segments (z is the coordination number). The
neighboring z segments are assigned to be “correlated” or “uncorrelated” according to
energy fluctuations: the “correlated” segments undergo cooperative rearrangements with
the segment of interest, whereas the “uncorrelated” segments do not. Each segment is
adjacent to a different number of “correlated” segments n, which obeys 1 ≤ n ≤ z. Here,
we assume that dynamical coupling between the segments occurs via the coupling energy
ε. The probability that a segment is adjacent to n correlated segments is proportional to the
Boltzmann factor as follows:

Pn = ∝ zCn exp[−(z − n)/T*][1 − exp(−1/T*]n (1)



Polymers 2021, 13, 3424 3 of 14

where zCn = z!/[n! (z − n)!], 0 ≤ n ≤ z, and T* is the reduced temperature that is scaled by
ε as

T* = kT/ε (2)

Here, k is the Boltzmann constant and T is the absolute temperature. The probabilities with
respect to the temperature calculated from Equation (1) with z = 6 are shown in Figure S1
in Supplementary Materials.

To generate DCNs, we performed Monte Carlo simulations, where the segments are
correlated according to the probabilities of Equation (1). Here, we employed a simple
cubic lattice with z = 6. First, a segment with a coupling number n was generated. Next,
the neighboring n segments selected randomly were assigned to be “correlated” and the
remaining z − n segments were assigned to be “uncorrelated”. Then, one of the “correlated”
segments that has unassigned neighbors was selected randomly, and its neighbors were
assigned in the same way as above. The procedure was repeated until there were no
unassigned neighboring segments; thus, a completed DCN composed of N correlated
segments was obtained. The networks thus obtained correspond to lattice animals on a
type of Bethe lattice with z = 6 [36,37] under the condition that their growth is constrained
as loops are allowed on a simple cubic lattice. We performed the simulations by using a
sequential process as described below, which resulted in a distribution of n that differs from
that prescribed by Equation (1). When the neighboring segments were assigned as either
“correlated” or “uncorrelated”, the value of n was determined according to Equation (1) as
a general rule. However, if there were values of n that were inhibited by the geometrical
limitation of the lattice (there was a possibility that the neighbors were already assigned),
the inhibited values of n were excluded from the possible choices. We generated at least
105 DCNs at each temperature. Figure 1 shows examples of the generated DCNs.
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Figure 1. Examples of dynamically correlated networks (DCNs) generated via Monte Carlo simulation. The color of the
segments varies gradually from blue to red in the order of being added to the network.

The generated DCNs in the simulation did not include segments with n = 0. However,
in a real system the possibility of an isolated segment (i.e., DCN with N = 1) should not be
excluded as it has a finite probability according to Equation (1), although the probability is
very low in the deeply supercooled range. Therefore, we took into account the contribution
of the DCNs with N = 1 based on Equation (1) in the statistical analysis presented below.

We assumed that the cooperative rearrangement occurs over the entire DCN. Once this
rearrangement was completed, the network cluster disappears (dissolved), and the lifetime
of the DCN was directly related to the relaxation time (the timescale of the rearrangement).
These assumptions may be consistent with the features of the regions responsible for
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dynamical heterogeneity in supercooled liquids [17]. In addition, the length scale of the
heterogeneity is determined by the size of the network, i.e., the number of segments N
in the DCN. The average size of the DCN was evaluated as the weighted average Nw
defined by

Nw =

∑
i

N2
i

∑
i

Ni
(3)

where Ni is the number of segments included in the ith DCN. The radius of gyration Rg of
each DCN was evaluated from the simulation as follows:

Rg =

N
∑

j=1
[(xj − x0)

2 + (yj − y0)
2 + (zj − z0)

2]
1/2

N
(4)

where (xj, yj, zj) denotes the position of the jth correlated segment, and (x0, y0, z0) denotes
the position of the center of gravity of the network. Rg corresponds to the dynamic length
scale of the network ξ. The fractal dimension d was also evaluated based on the scaling
relation N~Rg

d.

3. Results and Discussion
3.1. Percolation Transition

Figure 2 shows the Nw plotted against the reduced temperature T*. Nw increased
significantly with decreasing temperature, particularly below T* = 3. This behavior suggests
a certain critical temperature that corresponds to the percolation. For an ideal Bethe lattice
without any constraints, percolation occurs with a coupling probability of 1/(z − 1) [36,37].
In the case of z = 6, the percolation temperature Tp is calculated to be 4.481, which is much
higher than that apparently seen in Figure 2. The lower Tp for the present result is due to
the condition that loop formation is allowed in the simple cubic lattice, which collapses the
network architecture. To evaluate the percolation temperature, we assume a typical scaling
law for the critical phenomenon:

Nw ∼ 1
(T* − Tp)

γ (5)

where γ is the critical exponent for the percolation transition. We performed a fitting
analysis for the profile of Nw in Figure 2 by using Equation (5) near Tp and determined the
best-fit parameters as γ = 1.90 and Tp = 2.29. Tp may correspond to the critical temperature
for an ideal glass transition, where any configurational rearrangement is inhibited. The
value of γ for an ideal glass transition is not known, but the RFOT predicts that γ = 2/d,
where d is the fractal dimension of the cooperative cluster [10]. However, this prediction
does not agree well with the present result considering the evaluated d values as shown
later (1.55–2.13). The present result indicates a more prominent increase in the cooperativity
size on cooling than the prediction from γ = 2/d.
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Figure 2. Temperature dependence of the average of the number of segments per DCN. Nw is the
weighted average, Nn is the number average, and T* is the reduced temperature defined as T* = kT/ε.
The solid curve indicates the fitting result based on Equation (5).

3.2. Geometry of DCN

Figure 3 shows the size distribution of the DCNs at different temperatures. P(N) in
Figure 3 is the population of the DCN of size N; thus, the profiles of N P(N) denote weighted
distributions with respect to N. The distribution became broadened with decreasing tem-
perature. This indicates that the distribution of the relaxation times is broadened upon
cooling, and that the dynamic heterogeneity becomes significant at lower temperatures.
In addition, the relative standard deviation σRg/Nn for the radius of gyration (Nn is the
simple number average of the network size N) and the dispersion index Nw/Nn exhibited
consistent behaviors, as shown in Figure 4.
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Nw/Nn plotted against temperature.

As a measure of the geometric feature of the DCN, the fractal dimension d of the
DCN was evaluated based on N~Rg

d. Typical plots of log N vs. log Rg are presented in
Figure S2 in Supplementary Materials. The fractal dimension d varies from 1.55 to 2.13 in
the temperature range from T* = 5.69 to 2.36. Note that the random walk process leads
to d = 2. The increase in d on cooling indicates that the DCN becomes compact, which
is qualitatively consistent with the findings based on the RFOT [38]. As the temperature
decreases, the DCN networks become larger and the frequency of loop formation increases.
As a result, the network becomes densified at low temperatures, which increases the fractal
dimension d.

We further evaluated the interfacial (surface) area of the generated DCNs from the
number of uncorrelated segments Nnc that enclose each DCN. Nnc is the total number of
uncorrelated segments adjacent to the outermost segments belonging to the DCN, and we
assumed that Nnc is roughly proportional to the interfacial area of the DCN. Based on a
power law for the interfacial area S~ξθ and the relation Nnc~ξθ~Rg

θ , the interfacial energy
exponent θ was estimated. Examples of the plot of log Nnc vs. log Rg are shown in Figure
S3 in Supplementary Materials. Similar to d, θ increased with decreasing temperature, as
shown in Figure 5a.

At T* = 2.36, θ became almost identical to d. At low temperatures, densified networks
are formed, but they are largely composed of separated strands whose surface area is
roughly proportional to the contour length, which is proportional to the number of seg-
ments. In this situation, d = θ is anticipated. On the other hand, at higher temperatures, the
majority of DCNs are small clusters, which are not regarded as long strands, resulting in
d > θ. It is expected that at the percolation temperature Tp (= 2.29), where infinite networks
can occur, d = θ holds.
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3.3. Segmental Relaxation Time

According to the description of the cooperatively rearranging regions in the Adam–
Gibbs and RFOT theories, the relationship between the relaxation time τ of the config-
urational rearrangement and the size of the cooperative region ξ is generally expressed
as [10]

τ ∼ exp(∆µ ξψ/kT) (6)

where ∆µ is the potential energy hindering the segmental rearrangement per segment.
Assuming that ξ~Rg~Nw

1/d, we obtain

log τ =
1

ln 10
∆µ

kT
Nα

w + log τ0 (7)

where τ0 is the limiting relaxation time for the high-temperature limit, and α = ψ/d. The
entropy-based theories state that ψ = d (Adam–Gibbs), or ψ = θ (RFOT). Studies were
conducted to explore the values of ψ and θ so far, although no definite conclusion were
reached [24]. For example, a simulation study predicted that ψ = 1 and θ = 2 [39]. Here
we investigate four assumptions for the exponent α: (1) α1 = 1 based on the Adam–Gibbs
theory, (2) α2 = θ/d based on the RFOT theory, (3) α3 = 1/d which is based on the above
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simulation result that ψ = 1, and (4) α4 = (d − 1)/d, which is derived from the maximum
value of ψ as ψ = d − 1 [24,40].

We now compare the temperature-dependent relaxation time calculated from Equa-
tion (7) with the experimental data reproduced from the literature for the following glass
formers: toluene [41], ethylbenzene [42], salol [43], o-terphenyl [44], atactic polystyrene
(PS) [45,46], polydimethylsiloxane (PDMS) [47], 1,2-polybutadiene (PBD) [46,48], poly(vinyl
acetate) (PVAc) [49], and low-molecular-weight poly(methyl methacrylate) (PMMA) [50].
First, we obtained an empirical function for log Nw with respect to T*, and we substituted
it into Equation (7). The details are described in the Supplementary Materials. Then, we
executed non-linear least squares fitting analysis for the experimental data of segmental
relaxation time, where log τ0, ∆µ, and ε were treated as the fitting parameters. Note
that the dynamical coupling energy ε behaves as a temperature-scaling parameter, i.e.,
T = εT*/k. The analysis was executed for the four cases of the exponent α as mentioned
above: α1 = 1, α2 = θ/d, α3 = 1/d, and α4 = (d − 1)/d. Based on the results of d and θ
in Figure 5a, temperature-dependent exponent values of α2, α3, and α4 were obtained as
shown in Figure 5b. These exponents were introduced in the fitting function of Equation (7)
by using empirical functions as described in the Supplementary Materials, and the fitting
results are shown by the solid curves in Figure 5b.

The results of the fitting analysis for the relaxation time of toluene, PS, and PVAc are
shown in Figure 6. The fitted profiles of the other materials are shown in Figure S4 in
Supplementary Materials. The simulation results agreed well with the experimental data
for the materials investigated. The parameters obtained for the four cases of α are listed in
Table 1. Here, the values of the critical temperature Tc were evaluated from the percolation
temperature Tp as Tc = (ε/k)Tp, where Tp = 2.29, as mentioned previously.

It should be noted that the present DCNs were generated through sequential growth
from an initial segment at which the simulation started, and the resulting architecture of
the network developed by occasionally forming loops. Thus, in our model, dynamically
correlated regions were formed sequentially (not instantaneously). In the DCNs generated
via such a sequential process, the actual population of segments P(n) that have n correlated
neighbors differs from the equilibrium population that obeys Equation (1), as mentioned
previously. The size and geometry of the generated DCNs (and, therefore, their dynamics)
reflect the local structural constraint that can inhibit the achievement of the equilibrium
(ideal) population of the segments. It may be reasonably understood that the correlated
regions develop in a finite time duration, which may be related to the relaxation time for
the configurational rearrangements. The agreement with the experimental results shown
in Figure 6 suggests that the sequential formation of the cooperatively rearranging regions
in supercooled liquids is realistic.

The results also show that the difference in the exponent α causes no significant change
in the agreement with the experimental data: the differences among the four curves are not
apparent in Figure 6. The values of the critical temperature Tc listed in Table 1 tend to be
closer to the values of T0 (Vogel temperature) for α3 and α4 than for α1 and α2. Here, T0 was
evaluated from the fitting analysis of the experimental relaxation time τ with the Vogel–
Fulcher–Tammann function τ = τ0 exp[B/(T − T0)], where B is a temperature-independent
constant [51–53]. The above result for Tc suggests that α3 and α4 are more reasonable than
α1 and α2 for all the materials investigated.

Notably, polymeric materials other than PDMS tend to exhibit high ε values (approx-
imately 1 kJ mol−1) compared with molecular liquids. This trend may be explained by
the interactions between the polymeric segments, including strong covalent bonds, which
raise the apparent values of the dynamical coupling energy ε. Another characteristic trend
of polymeric materials is that the energy barrier for the rearrangement ∆µ is relatively
low compared with ε for α1 and α2. In particular, PS and PBD exhibit ∆µ < ε, or ∆µ is
approximately equal to ε for α1 and α2. In contrast, the molecular liquids exhibit ∆µ > ε.
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Table 1. Summary of the obtained parameters.

Material Exponent ∆µ/kJ mol−1 ε/kJ mol−1 log (τ0/s) Tc/K T0/K

Toluene

α1 1.60 0.28 −11.9 77.8

97
α2 2.62 0.28 −12.1 76.7
α3 2.88 0.36 −12.6 98.7
α4 3.89 0.34 −12.2 92.8

Ethylbenzene

α1 1.30 0.30 −11.7 82.0

102
α2 2.08 0.29 −11.8 81.1
α3 2.36 0.37 −12.0 103.0
α4 3.19 0.35 −11.9 97.4

Salol

α1 2.31 0.58 −12.1 159.2

189
α2 4.09 0.56 −12.5 155.1
α3 5.79 0.70 −13.7 192.1
α4 7.00 0.67 −12.9 183.6

o-Terphenyl

α1 3.08 0.63 −12.5 172.5

209
α2 5.20 0.61 −12.7 169.1
α3 6.88 0.76 −13.6 210.7
α4 8.70 0.73 −13.1 200.6

PS

α1 0.65 1.13 −8.1 312.1

335
α2 0.97 1.12 −8.1 308.2
α3 5.11 1.21 −10.5 333.3
α4 4.59 1.19 −9.4 328.6

PDMS

α1 2.86 0.30 −2.9 81.5

101
α2 3.92 0.31 −3.1 86.5
α3 3.85 0.41 −3.3 111.8
α4 6.44 0.36 −3.3 99.7

PBD

α1 0.57 0.83 −8.5 229.9

248
α2 0.85 0.82 −8.3 226.9
α3 4.38 0.89 −11.1 245.9
α4 3.94 0.88 −9.9 242.3

PVAc

α1 5.05 0.71 −11.5 196.8

249
α2 8.38 0.70 −11.8 193.8
α3 8.19 0.93 −12.2 255.6
α4 11.4 0.87 −11.7 238.5

PMMA
(low Mw)

α1 1.14 0.99 −8.1 81.5

298
α2 1.88 0.97 −8.0 86.5
α3 7.43 1.08 −11.3 111.8
α4 6.92 1.06 −9.8 99.7

References of the experimental data used in the analysis are presented in the text.

The fragility parameter m defined by [d log τ/d(Tg/T)]T=Tg is a measure of the de-
viation from the Arrhenius law for the relaxation time τ. m is largely determined by
Tg* = (k/ε) Tg (Tg is the laboratory glass transition temperature): the temperature depen-
dence of Nw becomes strong with decreasing T* (Figure 2), and m is related to the steepness
of Nw. Therefore, m is anticipated to have a positive correlation with ε and a negative
correlation with Tg. This correlation can be verified analytically. From Equation (7), m is
expressed as

m =
∆µ[Nw(Tg

*)]
α

k T ln 10

{
1 −

k Tg

ε

[
ln Nw

dα

dT*

∣∣∣∣
T=Tg

+ α
d ln Nw

dT*

∣∣∣∣
T=Tg

]}
(8)

Note that [Nw(Tg*)]α increases with increasing ε/Tg, and that the two derivatives in
parentheses have a weaker dependence on ε/Tg than Nw(Tg*) in the range of glass transition
temperatures. Figure 7 shows ε/Tg for the four cases of the exponent α plotted against
m. Here, the values of m were evaluated by fitting the experimental data with the Vogel–
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Fulcher–Tammann function τ = τ0 exp[B/(T − T0)] as m = BTg/[ln 10 (T − T0)2] [54]. Tg
was evaluated as the temperature at which τ = 102 s. A positive correlation can be observed
in Figure 7 for α3 and α4. The dispersion of the data is noticeable for α1 and α2 compared
with α3 and α4, which suggests that the assumptions of α3 and α4 are more appropriate
than those of α1 and α2. The above behavior of m may be related to the relationship
between the fragility and the dynamic length scale at Tg [29,55–57]. The coupling energy ε,
which denotes the ability of dynamical coupling between segments, can be regarded as
the cohesive energy [58]. Thus, the cohesive energy raises the dynamic length scale, which
results in a positive correlation between the fragility and the dynamic length scale.
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In the present model, we do not explicitly consider any fluctuations in the static
structure of the material, i.e., a simple cubic lattice (homogeneous structure) is employed.
However, in actual systems, local structural fluctuations may play an important role in
determining the dynamics of supercooled liquids. The resulting distributions in the size of
the DCN and its geometrical structure originate simply from a stochastic process based
on Equation (1), i.e., the fluctuations in energy. Nevertheless, our results are consistent
with the experimental data, which indicates that even the fluctuations from the simple
stochastic assumption for the energy of segments can mimic the effect of local structural
fluctuations on dynamics.

4. Conclusions

We proposed a new model that assumes dynamically correlated regions having net-
work shapes. The present model can successfully explain the experimental data for the
segmental relaxation time of various glass formers despite the simplicity of the model. The
concept of the model is consistent with the notion of cooperative regions with non-compact
shapes, such as strings, proposed by simulation studies.

In the simulation process, we employed a simple cubic lattice with z = 6, but it is
uncertain whether this particular lattice can be applied to a wide variety of glass-forming
materials. The applicability may depend on the materials, although at present, there
is no reasonable perspective that can predict an appropriate lattice structure specific to
individual materials. Nevertheless, the good agreement with the experimental data for
various materials appears to be remarkable, which suggests some universality in the
features of the dynamics for a wide variety of glass-forming liquids. This universality likely
originates from the network-like geometry of the rearranging regions, which penetrate
each other in the system. Such a penetrated structure may be inconsistent with the mosaic
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structure, but it can reasonably explain the mismatch in the length scale between the
dynamic heterogeneity and the static fluctuations.

Furthermore, the present model can be extended to materials with nano-confined
systems such as ultrathin films, nanofibers, and nanospheres of polymers. The present
model has the advantage that the finite-size effects can be easily investigated by changing
the size of the lattice in arbitrary directions. Such an attempt is expected to provide valuable
insights into the dynamics of nano-confined polymeric systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13193424/s1, Figure S1: The probability of dynamical coupling with neighboring
segments, Figure S2: Plot of log N vs. log Rg at T* = 3.063 and 4.376, Figure S3: Plot of log Nnc vs. log
Rg at T* = 3.063 and 4.376, Figure S4: Relaxation time with respect to temperature for ethylbenzene,
salol, o-terphenyl, PDMS, PBD, and low Mw PMMA, Table S1: Obtained fitting parameters in
Equation (S2).
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