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Cell-based assays are an attractive option to measure gene expression response to
exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to
the use of gene expression profiling for in vitro toxicity screening. In addition, standard
RNA sequencing adds variability due to variable transcript length and amplification.
Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic
representation that can vary from hundreds of genes to the entire transcriptome, may
reduce some components of variation. Analyses of high-throughput toxicogenomics
data require renewed attention to read-calling algorithms and simplified dose–response
modeling for datasets with relatively few samples. Using data from induced pluripotent
stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we
describe here and make available a pipeline for handling expression data generated by
TempO-Seq to align reads, clean and normalize raw count data, identify differentially
expressed genes, and calculate transcriptomic concentration–response points of
departure. The methods are extensible to other forms of concentration–response gene-
expression data, and we discuss the utility of the methods for assessing variation in
susceptibility and the diseased cellular state.

Keywords: expression-based dose–response modeling, dose–response modeling, bioinformatics-pipeline,
toxicogenomics, bioinformatics & computational biology, iPSCs, cardiomyocytes, expression profiling

INTRODUCTION

Among the key challenges in contemporary toxicity testing is addressing increasing numbers of
commodity chemicals with insufficient toxicity characterization, a trend that is at least partially
attributable to the limitations associated with in vivo testing strategies. Additional challenges are
associated with animal to human extrapolation, as well as concerns over the ethics and expense
of animal testing. These challenges were described in the National Toxicology Program’s (NTP)
2004 Vision and Roadmap for the 21st Century, and the National Research Council’s (NRC) report
on Toxicity Testing in the 21st Century (National Research Council, 2007), which envisioned
a strategic shift from exclusive reliance on animal-derived data in chemical regulation to the
implementation of novel data streams, including high-throughput in vitro testing, omics data,
and computational modeling. More recently the NRC report, A Framework to Guide Selection
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of Chemical Alternatives (National Research Council, 2014) and
the National Academies report, Using 21st Century Science to
Improve Risk-Related Evaluations (National Academies, 2017),
articulated the need to transition from expensive and incomplete
animal testing to high-throughput exposure assessment of new
and existing chemicals. Thus, the use of novel data sources to
conduct human and animal health risk assessment, including
genomic, epigenomic, cell, and in silico-based streams, has
become imperative.

Gene-expression data are also important in evaluating effects
of chemicals on cells and tissues. The Library of Integrated
Network-Based Cellular Signatures (LINCS) is a database of
over 1 million gene expression signatures, or perturbations,
generated using a targeted hybridized bead-base flow sorter
(Peck et al., 2006; Duan et al., 2014) from either drug/chemical
exposure or biological knockdown/knockout with 50 different
cell types (Campillos et al., 2008) on a ∼1,000 gene-set with full-
transcriptome imputation. The related Connectivity Map (Lamb
et al., 2006), a database of transcriptional multiplexed microarray
technology from multiple cancer cell lines exposed to ∼5,000
drugs and small-molecule compounds, has since been combined
into the NIH LINCS database. Further, the DrugMatrix R© database
contains, in addition to a myriad of phenotypic endpoints,
microarray gene-expression data in the rat for over 600 different
compounds in multiple tissues. Lastly, the Toxicogenomics
Project-Genomics Assisted Toxicity Evaluation Systems (TG-
GATEs) database has compiled toxicological endpoints and
gene expression data from rats (in vivo and in vitro primary
hepatocytes) and humans (in vitro primary hepatocytes) on 170
hepato- and renal-toxicants at multiple doses and time points
(Uehara et al., 2010; Igarashi et al., 2015).

The advent of next-generation sequencing (NGS) technology
has allowed for dramatic advances in the characterization of
genomic, epigenomic, and gene expression endpoints. In contrast
to reverse transcriptase PCR and microarrays, NGS results
in reduction or elimination of numerous sources of variation
(Okoniewski and Miller, 2006; Klebanov et al., 2007; Royce
et al., 2007). Anticipating a reduced cost in interrogating only
a portion of the transcriptome, phase III of the Tox21 initiative
has included the development of the S1500 human gene-set
(Merrick et al., 2015) to use for chemical and drug screening.
This S1500 gene-set was designed to be representative of the
human transcriptome, inclusive of the original L1000 (LINCS)
gene-set, and optimized for pathway coverage and co-expression
information. The main goal is to represent diversity of expression
response to disease and chemical exposure in a cost-effective
manner.

RNA-Seq, although considered the gold standard for gene
expression (Ellis et al., 2013), does have shortcomings. These
include bias introduced during mRNA enrichment and library
preparation (Han et al., 2015), as well as substantial monetary,
computing hardware, and bioinformatics costs. Targeted
sequencing technology, such as TempO-SeqTM (Templated
Oligo assay with Sequencing readout), which was originally
adapted from RASL-seq (Li et al., 2012), specifically targets
unpurified RNA in cellular lysates. Two detector oligos are used
that can only be ligated when hybridized next to each other

on RNA, and confer specificity and eliminate positional bias
introduced by poly-(A)+ selection. Sequencing and sample-
specific adapters are then hybridized to the original probes
for sequencing (Yeakley et al., 2017), allowing for assessment
of differentially expressed transcripts in a high-throughput
manner while alleviating some of the shortcomings of untargeted
RNA-seq. These potential improvements in cost and reduction
in sources of variation are attractive for high-throughput
concentration–response transcriptomic profiling.

To date, much of the effort to characterize toxicity
transcriptomic endpoints has focused on individual
concentration–responses from drugs and a small number
of environmental chemicals. Targeted sequencing allows for
more economical interrogation of the transcriptome and opens
the door for high-quantity, high-throughput assessment of
drug/chemical concentration–response. We report here a
pipeline for utilizing TempO-Seq (BioSpyder Technologies,
Inc., Carlsbad, CA, United States), a targeted RNA sequencing
technology, to assess gene-transcript concentration–response
relationships to chemical exposure. Much of the pipeline
is extensible to any transcriptional profiling of chemical
response, where sample sizes are likely to be modest. For
proof of principle, we illustrate using 2,982 selected genes that
include the “S1500+”1 gene-set. Induced pluripotent stem cells
(iPSC)-cardiomyocytes were treated with three different doses
of four chemicals to assess their effects on gene expression
and concentration–response point of departure (POD) (GEO
accession number GSE105050).

MATERIALS AND METHODS

Chemicals and Biologicals
iCell cardiomyocytes (cat. no.: CMC-100-010-001), and
cardiomyocyte plating and maintenance media were purchased
from Cellular Dynamics International (Madison, WI,
United States). Reference chemicals isoproterenol (CAS:
7683-59-2) and propranolol (CAS: 525-66-6) were purchased as
part of EarlyTox Cardiotoxicity Screening kits (cat. no.: R8211)
from Molecular Devices LLC (Sunnyvale, CA, United States).
Nifedipine (CAS: 21829-25-4) and dofetilide (CAS: 115256-11-6)
were purchased from APEXBio (Houston, TX, united States).
Dimethyl sulfoxide (DMSO, cat. no.: sc-358801, CAS: 67-68-5)
was purchased from Santa Cruz Biotechnology (Dallas, TX,
United States). Penicillin/streptomycin solution (cat. no.:
10378016) and 0.4% Trypan Blue solution (cat. no.: 15250061)
were obtained from Life Technologies (Grand Island, NY,
United States).

Cardiomyocyte Cell Culture
iCell cardiomyocytes were plated and maintained according
to the manufacturer’s recommendations (Cellular Dynamics
International, Madison, WI, United States) and in accordance
with previously published protocols with minor adjustments
(Sirenko et al., 2013a,b, 2017; Grimm et al., 2015, 2016).

1https://federalregister.gov/a/2015-08529

Frontiers in Genetics | www.frontiersin.org 2 November 2017 | Volume 8 | Article 168

https://federalregister.gov/a/2015-08529
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-08-00168 October 31, 2017 Time: 16:9 # 3

House et al. Expression-Based Concentration–Response Pipeline

Individual units of cardiomyocytes were thawed for 4 min
in a 37◦C water bath and subsequently resuspended in
10 ml of cardiomyocyte plating medium containing 1:500
penicillin/streptomycin solution. Following microscopic cell
counting using the trypan blue exclusion method, the cell density
was adjusted to a final plating density of 2× 105 cells/ml. Twenty-
five microliters of cell suspension was then transferred per well to
a 384-well microplate, yielding a final cell density of 5,000/well.
Tissue-culture treated microplates (cat. no.: 353962, Corning Life
Sciences, Corning, NY, United States) were gelatinized for 2 h
at 37◦C with 25 µl 0.1% gelatin in water before cardiomyocytes
were plated. After disposal of the gelatin solution and addition of
the cell suspension, microplates were kept at room temperature
for 30 min. Cells were then incubated at 37◦C and 5% CO2 for
48 h. The plating medium was then exchanged with 40 µl of
maintenance medium containing 1:500 penicillin/streptomycin
solution per well. Maintenance medium was replaced every
48–72 h until day 13 post-plating. The maintenance medium was
then exchanged with 50 µl fresh medium per well and incubated
overnight. Cells were treated the next morning (day 14 post-
plating) with 12.5 µl 5× chemical solutions in 0.5% DMSO (v/v)
in media (vehicle) in addition to untreated or vehicle-treated
negative control wells, and incubated at 37◦C and 5% CO2.
Following 24 h of incubation, the cell medium was discarded,
and cardiomyocytes were lysed with 10 µl 1× lysis buffer
provided in the TempO-Seq assay kit (BioSpyder Technologies,
Inc., Carlsbad, CA, United States). Lysate-containing microplates
were agitated at 300 rpm using a benchtop microplate shaker and
stored at−80◦C until further use.

TempO-Seq Library Preparation and
Sequencing
Differential gene expression patterns and concentration–
response relationships were analyzed using TempO-SeqTM

(BioSpyder Technologies, Inc., Carlsbad, CA, United States)
(Yeakley et al., 2017), a targeted RNA sequencing technology
focused on a surrogate transcriptome panel comprising 2,982
transcripts, as described previously (Biopyder Toxpanel Library
DO-01-096) (Grimm et al., 2016). The sequencing library
was prepared according to the manufacturer’s guidelines and
as previously described (Grimm et al., 2015). In brief, RNA
in 2 µl of each cell lysate was hybridized with the provided
detector oligo pool mix (2 µl per sample) using the following
thermocycler settings: 10 min at 70◦C, followed by gradual
decrease to 45◦C over 49 min, and ending with 45◦C for 1 min.
Subsequent steps included nuclease digestion (90 min at 37◦C)
ligation step (60 min at 37◦C, followed by heat denaturation
at 80◦C for 30 min) following addition of 24 µl nuclease mix
and 24 µl ligation mix. Ten microliters of each ligation product
was then transferred to a 96-well amplification microplate
containing 10 µl of PCR mix per well. The ligation products
were then uniquely labeled during product amplification,
when well-specific, “barcoded” primer pairs were introduced to
templates. Sequence-based barcoding is an essential step allowing
for correct identification and recognition of transcript-specific
sequencing counts. Five microliters of sample amplicons from

each well was subsequently pooled into a single sequencing
library. The TempO-Seq library was further processed using a
PCR clean-up kit (Clontech, Mountain View, CA, United States)
prior to sequencing at Texas A&M University Genomics &
Bioinformatics Services. Sequencing was achieved using a 50
single-end read mode in a rapid flow cell (two sequencing lanes
for increased sequencing depth; mean reads per gene = 212)
on a HiSeq 2500 Ultra-High-Throughput Sequencing System
(Illumina, San Diego, CA, united States). The high-expression
genes listed in Supplementary Table 1 were attenuated to allow
for more sequencing depth. Sequence cluster identification,
quality pre-filtering, base calling, and uncertainty assessment
were conducted in real time using Illumina’s HCS 2.2.68 and RTA
1.18.66.3 software with default parameter settings. Sequencing
readouts were demultiplexed to generate FASTQ files, and
passed all internal quality controls (GEO accession number
GSE105050).

Temposeqcount Application: Availability
and Implementation
Temposeqcount installs all dependencies in a Python virtual
environment. It is released as an open-source software under
the GNU General Public License and available from https:
//github.com/demis001/temposeqcount. Complete installation
instructions are provided. Note that a unix operating system is
required for this portion only.

Pathway Analysis
The log2(fold change) (l2fc) and p-values from DESeq2 for
dofetilide and nifedipine were analyzed through the use of IPA
(Ingenuity R© Systems2). A core analysis was run using: User
Dataset as reference, cutoff of p < 0.05, and all other values
as default. The cardiac-related pathways (with p-value < 0.05)
for Tox Functions under Diseases and Functions were chosen for
Supplementary Figure 2.

Differential Gene Expression and
Concentration Response
Sample dataset, hash file, figures, and R Scripts for generating
all figures and processes are available from https://github.com/
jshousephd/HT-CBA.

RESULTS AND DISCUSSION

Process Overview
The transcriptomic analysis methods discussed here focus
on assessment of differentially expressed genes (DEGs) and
concentration–response assessment using counts from TempO-
Seq experiments. However, the methods and processes described
herein are extensible to most types of count data. The sample
dataset used and provided for illustration consists of 2 sets
of 12 vehicle controls and 4 chemical treatments at three
concentration levels (0.1, 1.0, and 10 µM). Two inotropic agents,

2www.ingenuity.com
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the β-adrenergic receptor agonist and antagonist isoproterenol
and propranolol, are known negative controls for cardiac QT
prolongation. Nifedipine is a calcium channel blocker used to
treat hypertension and dofetilide is an antiarrhythmic.

As shown in Figure 1, the analysis pipeline can be broken
into four major steps: (1) generation of the count matrix from
sequenced reads (coded in python), (2) quality control and count
normalization, (3) identification and visualization of DEGs,
and (4) concentration–response modeling and POD assessment.
POD assessment combines output from tcpl (Filer et al., 2017)
augmented with additional model fitting as described below.

TempO-Seq Count Matrix Generation
Prior to assessment of DEGs and concentration response
modeling, raw sequenced reads are aligned to probe sequences
and counted. TempO-Seq is a high-throughput targeted
sequencing technology that uses template-dependent oligo
ligation on a multi-well plate. Generation of a count matrix
from TempO-Seq data requires far less computing resources

than traditional whole-transcriptome RNA-seq. Since the reads
are generated from targeted probes, the reference file is several
orders of magnitude smaller than a genome reference. For
this application, sequencing reads were de-multiplexed by the
sequencing facility. After de-multiplexing, a single experimental
layout can result in up to 384 or 1,536 fastq files (depending on
plate format), each file with reads resulting from an experimental
condition. In traditional RNA-seq, individual fastq files are each
aligned to a reference sequence individually using a short read
aligner such as STAR, BWA, or bowtie (Langmead et al., 2009; Li
and Durbin, 2010; Dobin et al., 2013) and then counted using a
different command line utility. However, these routines are less
useful in a TempO-Seq experiment due to the large number of
fastq files generated in a single Tempo-Seq run and the provision
of reference sequences.

Accordingly, we developed an application called
temposeqcount to facilitate this process using a Ruffus framework
in Python (Goodstadt, 2010) which is illustrated in Figure 2.
Briefly, the application accepts the manufacturer provided probe

FIGURE 1 | Pipeline overview. The pipeline consists of four major parts: I. Generation of the count matrix from sequenced reads, II. Quality-control and generation of
normalized counts, III. Identification of differentially expressed genes (DEGs), and IV. Assessment of point of departure (POD) from count data.
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FIGURE 2 | temposeqcount overview. Self-contained and implemented in a Ruffus framework. A directory of fastq files and the probe manifest are the only inputs to
generate the count matrix required for the remainder of the pipeline.

manifest CSV and a directory of fastq files as input. Initially, the
probe sequence is parsed from the manifest file which generates
the probe fasta and pseudo-gtf annotation files. The probe fasta
file is indexed using genomeGenerate function in the STAR
aligner (Dobin et al., 2013) and STAR aligner is used to align
a fastq file to indexed probe sequences. Lastly, htseq-count in
the HTSeq (Anders et al., 2015) application is used to count
probe-aligned reads. The temposeqcount application accepts
STAR aligned bam and pseudo annotation-gtf files internally
to generate a count for each sample. As output, an alignment
summary is generated and count files are merged and formatted
into a single count matrix (K) consisting of genei rows and
treatmentj columns for downstream analysis.

QC and Normalization of Counts
The remainder of the pipeline (Figure 1; steps II, III, and IV)
consists of R scripts that are publicly available3. The inputs to
the rest of the pipeline consist of the count matrix (K) generated

3https://github.com/jshousephd/HT-CBA

in step I, and an experimental layout file (hereafter referred to
as hash file) from the experimenter. Although we are using this
process for counts from the TempO-Seq assay, the pipeline here
can be applied to other types of high-throughput sequencing
data. Multiple attributes can be included in the hash file for each
treatment, but column names of the count matrix must have
a corresponding column entry in the hash file. Gene features
are filtered for >1 count per row across the experimental count
matrix, which resulted in 100 genes removed, leaving 2,882 for
subsequent analyses (Figure 3D). Prior to normalization, sample
count totals are evaluated graphically (Figure 3A) and samples
(columns) failing to exceed a user defined minimum count
threshold (we used 100,000 per sample for the library of 2,982
features in the TempO-seq kits used in these experiments) are
removed from subsequent analyses. The design of concentration–
response experiments for multiple compounds often uses shared
controls. For the data examined herein, there were 24 vehicle
controls. In the pipeline, controls are examined by principal
component analysis (PCA; Figure 3B). In addition, we examine
the average correlations of each control sample with the

Frontiers in Genetics | www.frontiersin.org 5 November 2017 | Volume 8 | Article 168

https://github.com/jshousephd/HT-CBA
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-08-00168 October 31, 2017 Time: 16:9 # 6

House et al. Expression-Based Concentration–Response Pipeline

FIGURE 3 | Raw count quality control assessment. (A) Simulated raw counts for a full 384-well TempO-Seq experiment. (B) First two principal components of
vehicle controls. (C) Histogram of sample correlations for all vehicle controls. Black bar is the mean of sample correlations across all genes. Red bar represents 3
standard deviations from mean. (D) Summary of QC changes to the analysis matrix. 100 features were dropped due to <2 counts across all columns (2982–2882)
and one control was dropped (leaving 23) due to low correlation with other control samples. No samples had <100 k counts.

remaining samples (Figure 3C), an approach termed the “D
statistic” and similar to that used by the GTEx Consortium
(Consortium, 2015) to filter low-quality samples. In this analysis,
we removed control samples for which the average correlation
with remaining control samples was 3 standard deviations lower
than a mean computed for all controls (Figure 3C, red line).
Pairwise correlations and scatterplots were also examined for
controls prior to normalization (Supplementary Figure 1). The
final analysis count matrix (Figure 3D) was then normalized
experiment-wide at the treatment level with DESeq2, which
models read counts using a negative binomial distribution and
normalizes based on a model that uses dispersion estimates for
each gene across all treatments (Love et al., 2014).

Analysis of Differential Gene Expression
Differentially expressed genes were determined using DESeq2
prior to concentration response modeling. DEGs were first
identified for the maximum concentration of each treatment,

with log2 fold change (l2fc) values, p-values, and adjusted
p-values computed for each gene and combined into a single
dataset for each chemical. For the sample data, as seen in the
summary plot of the number of DEGs per treatment (Figure 4A),
nifedipine was the most transcriptionally active treatment with
identified differential gene expression for nearly a third of
interrogated transcripts (918/2,882). Dofetilide affected 425
transcripts, while isoproterenol and propranolol had little effect
on transcription, with 32 and 29 identified DEGs, respectively
(Figure 4A).

A typical TempO-Seq experiment may have 50–75 unique
concentration-chemical combinations making it important to
examine how they group together regarding differential gene
expression. There are several ways to do this, and we have
illustrated some of them in Figure 4 with the sample dataset.
Using all l2fc values for each chemical, the first three principal
components were plotted (Figure 4B). In the sample data,
the two drugs with effects on the heart rhythm (isoproterenol
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and propranolol) clustered together while the others (nifedipine
and dofetilide) were quite distinct. A heatmap of l2fc values
further illustrates the similarities between the isoproterenol
and propranolol, while highlighting how both nifedipine and
dofetilide are each different from these QT-prolongation controls
and from each other (Figure 4C). The overall magnitude of
transcription effects from each chemical is shown in the boxplot
of absolute l2fc values (Figure 4D).

Concentration–Response Modeling
Decision Logic
A critical step in human health assessment for a chemical
compound is the determination of the POD from a
dose/concentration–response relationship. In the sample data,
iPSC cardiomyocytes were exposed to either vehicle or three
increasing drug concentrations (0.1, 1.0, and 10 µM). Vehicle
controls were assigned a dose value on the log10 scale that is one
average dose distance below the lowest treatment concentration
(Figure 5B). Our dataset contained 24 vehicle controls and
a single treatment at each of the three concentrations. Thus,
since one control was removed in QC, the dosing vector for this
experiment consists of 23 values of −2, followed by −1, 0, and
1, while the response vector consists of normalized counts data
at each control/treatment. To allow for zero counts, normalized

counts were log2(counts + 0.5) transformed and mean-centered
to vehicle controls. An example plot of the data is shown in
Figure 5B.

To facilitate decision-making accompanying our
concentration–response modeling, we created a process tree that
utilizes statistical flags (Figures 5A,B). The q-values (FDR values
for each p-value threshold), are calculated for: (1) the moment-
corrected correlation (MCC) trend test (Zhou and Wright, 2015)
for the entire concentration–response range (Figure 5B, purple
oval), (2) MCC for treatment doses only (Figure 5B, green oval),
and (3) Wilcoxon’s statistic for a difference between vehicle
control values vs. treatments (Figure 5B green oval vs. orange
oval). MCC is a trend procedure that is intended to be powerful
while retaining robustness to a wide variety of distributional
forms of the data test (Zhou and Wright, 2015). These flags
were used to decide which gene/treatment combinations should
be fit for a concentration–response (Figure 5A). If the overall
trend (Figure 5B, purple) in the concentration–response is not
significant, the experimental maximum dose is assigned as the
POD. For those genes where the overall trend is significant,
control counts are compared to treatment counts using a
Wilcoxon Rank Sum test. If these two groups are different from
each other (Figure 5B, green vs. orange), the gene/treatment is
selected for concentration–response modeling. If controls are not

FIGURE 4 | Differential gene expression assessment. Cleaned count data are normalized and assessed for DEGs (at max treatment dose) by treatment using
DESeq2. Magnitude of transcriptomic effects and comparison of chemicals are illustrated in: (A) number of DEGs in each treatment, (B) PCA of the log2(fold
changes), (C) heatmap of the log2(fold changes), and (D) mean magnitudes and dispersions of the absolute log2(fold changes).
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FIGURE 5 | Statistical flag generation for concentration-response modeling.
(A) Flowchart of decision logic used in determining the gene-treatment
combinations to assess for concentration response. (B) Example
concentration–response curve used for statistical flag generation.
Concentration–response relationships where overall ρ (purple circle) is
significant, and controls not equal to treatments (green vs. orange), are
chosen for subsequent concentration response modeling, as are relationships
where ρ for treatments only (green circle) are significant.

different from treatments but did pass the overall trend test for
significance, we then assess whether a trend exists in treatments
only (Figure 5B, green). If the treatment-only trend is significant,
it is also selected for POD modeling. For those remaining genes
that are not significant for the treatment only trend test, a report
is generated for the remaining items for manual experimenter
follow-up.

Concentration–Response Modeling and
Point of Departure Calculation
As seen in Figure 5B, our data had only a single replicate at
each of three concentrations of a given chemical. To illustrate
clearly dose response modeling we show simulated data for 12

control replicates and three concentrations with three replicates
each (Figures 6A,B). For those gene/treatments identified for
concentration–response modeling, “dose” vectors and response
counts are first fit with tcpl functions (Filer et al., 2017) with
a constant model that represents a null fit, a gain-loss model,
and a three-parameter hill model with the “floor” set to zero
(Figure 6A). We also assess a four-parameter hill function
fit using the R-DRM package (Ritz et al., 2015) where the
“floor” is not set to zero, and assess the best-fitting model
by the smallest Akaike information criterion (AIC) which
penalizes model over-fitting. Following selection of the best
model, the POD is assessed by determining the concentration
that elicits a 1 standard deviation departure from the control
mean (Figures 6A,B; dotted purple line), although other POD
approaches or benchmark dose (Sirenko et al., 2013b; Wignall
et al., 2014; Filer et al., 2017) could be used. For the sample
with only three treatment concentrations, the three-parameter
hill function was the predominant “winner” in terms of minimum
AIC, although a four-parameter hill function provides the
best fit in 28% of the fitted curves (Figure 6C). Although
nifedipine caused more than twice the number of differentially
expressed genes as dofetilide (Figure 4A), dofetilide actually had
a smaller mean POD (Figure 6D). Propranolol is not shown in
Figure 6D as it had no genes exhibiting concentration–response
relationships.

TempO-seq is a new technology with few
publications to date and no standard pipeline for
analysis. A recent study by Yeakley et al. (2017) (GEO
GSE91395_Dose_Response_Read_Counts.xlsx) also followed a
concentration–response study design. We thus used their data
as another highlight speed and utility of our pipeline. First,
using our pipeline we found 4,178 genes that were differentially
expressed in MCF-7 cells treated with 1 µM Trichostatin A, while
Yeakley et al. (2017) had reported 4,154 differentially expressed
genes. We then used our concentration–response pipeline to
calculate POD estimates for several top upregulated genes and
two of the novel genes they reported for Trichostatin A response.
These are graphically represented in Supplementary Figure 2.

CONCLUSION AND SUMMARY

As sequencing has become more affordable, the number of
experiments with sequencing (expression) data has grown
exponentially, and multiple computational tools are available for
different steps in the analysis. Similarly, many dose–response
modeling tools are available (Wignall et al., 2014; Filer et al., 2017;
Sirenko et al., 2017), including for gene expression data at the
level of genes and pathways (Yang et al., 2007).

Gene expression data have been an important contributor to
the mechanistic studies in toxicology and other biomolecular
fields (Luo et al., 2017). Toxicogenomics is a valuable tool
for predictive modeling (Uehara et al., 2008; De Abrew et al.,
2015) and read-across (Low et al., 2011; Grimm et al., 2016).
However, the high cost of gene expression studies has largely
precluded the use of toxicogenomics as a standard tool for dose–
response assessment in studies of adverse effects of drugs and
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FIGURE 6 | Concentration–response modeling and POD calculation. (A) Baseline deviation (BSD) is set to 1 SD from mean of controls (dotted purple line). The tcpl
package is used to fit (1) constant, (2) gain loss, and (3) three-parameter hill models. (B) The DRC package in R is used to fit a four-parameter hill function and the
model with the smallest AIC is chosen as “best” with corresponding POD used where fitted model crosses BSD. (C) Distribution of the winning model for these data.
(D) Evaluation of the dispersion, mean, and median of calculated POD deviations by chemical treatment.

chemicals. While some databases do include dose- and time-
dependent profiling of hundreds of drugs and chemicals (Luo
et al., 2017), the potential power of dose–response expression
profiling has not been fully harnessed. The potential of dose–
response toxicogenomics data as a truly predictive tool was
first demonstrated by Thomas et al. (2011, 2013), who showed
that gene expression data-based PODs derived from short-
term studies are well-correlated with the PODs for the apical
endpoints from 90-day and 2-year animal studies (Farmahin
et al., 2017). A recent study demonstrated the value of dose–
response genomics in a comparative analysis of chlorinated
solvents in liver and kidney (Zhou et al., 2017). Thus, with
the advent of lower cost and higher throughput platforms for
gene expression profiling, dose–response modeling will become
a major output of these experiments, including in in vitro studies.

The methods outlined in this manuscript provide a
framework for highly automated assessment of transcriptomic
concentration–response POD estimates. Although we have used
targeted sequencing data, these methods are extensible to any
kind of concentration–response count data, including whole-
transcriptome RNA sequencing. Probe-based targeted RNA-seq
technology does have many advantages. These procedures are
extremely fast and can be run on desktop computers instead of
computing clusters. The biases associated with the purification
and library creation in RNA-seq are not applicable with this
technology. However, it is important to note that this targeted
RNA-seq technology does not capture underlying genetic

variation in a region of interest. The probes are highly specific to
the 50-mer being interrogated. The methods described here have
been made freely available, to provide tools to characterize the
transcriptomic dose response and concentration response effects
of drugs and chemicals in novel targeted-probe high-throughput
formats.

The gene expression response signatures identified by our
pipeline can be used for hazard assessment, drug repurposing,
and disease characterization (Stegmaier et al., 2004; Hieronymus
et al., 2006; Wei et al., 2006; Sirota et al., 2011). We note that
agonism is the characterized mode of action for isoproterenol
and propranolol, and antagonism of the β-adrenergic receptor
for positive and negative inotropic effects. We report few
transcriptional effects from treatment with either of these drugs.
One possible interpretation is the presence of very little non-
receptor-mediated mode of action. In contrast, treatment of
iPSC cardiomyocytes with nifedipine, a calcium channel blocker
used to treat hypertension, resulted in substantial transcriptional
changes. Dofetilide, an antiarrhythmic agent that increases the
QT interval by selectively blocking the rapid component of
the cardiac ion channel delayed rectifier current (Roukoz and
Saliba, 2007), also resulted in substantial transcriptional changes.
Further extension of these results into pathway analysis and
biological read across will facilitate additional decision-making
processes for hazard and risk characterization, drug repurposing,
and hypothesis formation. Although our sample data provided
contained few replicates at each dose, we still were able to
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identify DEGs and calculate POD estimates. As a proof of
principle, we examined DEGs for dofetilide and nifedipine
using Ingenuity’s Pathway Analysis. The top identified toxicology
pathways were heart and liver related for dofetilide, and more
diverse for nifedipine. The statistically significant overlapping
cardiac-related pathways are shown in Supplementary Figure 3.

In summary, with the advent of cheaper sequencing
technology and targeted sequencing technology, it has become
feasible and necessary to utilize the value of gene expression
data in high-throughput experiments, for dose response
characterization, for perturbation signature identification, and
for biological read-across assessment. The methods herein
provide a reproducible, largely automated framework to utilize
such sequencing data to identify treatment-induced DEGs and
concentration response estimates.

AUTHOR CONTRIBUTIONS

JH: experimental design, methodology development,
programming, writing and editing, and submitting. FG:
experimental design, all wet-lab work, and writing and
editing. DJ: experimental design, methodology development,
programming, and writing and editing. Y-HZ: methodology
development. IR: study conception, experimental design,
support, and writing and editing. FW: study conception,
experimental design, support, writing and editing.

FUNDING

This work was supported by EPA STAR grants RD83516602
and RD83580201, in part by NIH grant P42 ES027704, and by
a research contract from Concawe, a division of the European
Petroleum Refiners Association. FG is the recipient of the
2017 Society of Toxicology Syngenta Fellowship Award in
Human Health Applications of New Technologies. This work’s
contents are solely the responsibility of the authors and do
not necessarily represent the official views of the EPA or
NIH. Further, the EPA and NIH do not endorse the purchase
of any commercial products or services mentioned in this
publication.

ACKNOWLEDGMENT

The authors appreciate useful discussions and technical support
from Peter Shepard (BioSpyder Technologies Inc., Carlsbad, CA,
United States).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2017.00168/full#supplementary-material

REFERENCES
Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq–a python framework

to work with high-throughput sequencing data. Bioinformatics 31, 166–169.
doi: 10.1093/bioinformatics/btu638

Campillos, M., Kuhn, M., Gavin, A. C., Jensen, L. J., and Bork, P. (2008).
Drug target identification using side-effect similarity. Science 321, 263–266.
doi: 10.1126/science.1158140

Consortium, G. T. (2015). Human genomics. The genotype-tissue expression
(GTEx) pilot analysis: multitissue gene regulation in humans. Science 348,
648–660. doi: 10.1126/science.1262110

De Abrew, K. N., Overmann, G. J., Adams, R. L., Tiesman, J. P., Dunavent, J., Shan,
Y. K., et al. (2015). A novel transcriptomics based in vitro method to compare
and predict hepatotoxicity based on mode of action. Toxicology 328, 29–39.
doi: 10.1016/j.tox.2014.11.008

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al.
(2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.
doi: 10.1093/bioinformatics/bts635

Duan, Q., Flynn, C., Niepel, M., Hafner, M., Muhlich, J. L., Fernandez,
N. F., et al. (2014). LINCS canvas browser: interactive web app
to query, browse and interrogate LINCS L1000 gene expression
signatures. Nucleic Acids Res. 42, W449–W460. doi: 10.1093/nar/
gku476

Ellis, S. E., Gupta, S., Ashar, F. N., Bader, J. S., West, A. B., and Arking, D. E. (2013).
RNA-Seq optimization with eQTL gold standards. BMC Genomics 14:892.
doi: 10.1186/1471-2164-14-892

Farmahin, R., Williams, A., Kuo, B., Chepelev, N. L., Thomas, R. S.,
Barton-Maclaren, T. S., et al. (2017). Recommended approaches in the
application of toxicogenomics to derive points of departure for chemical
risk assessment. Arch. Toxicol. 91, 2045–2065. doi: 10.1007/s00204-016-
1886-5

Filer, D. L., Kothiya, P., Setzer, R. W., Judson, R. S., and Martin, M. T. (2017).
tcpl: the ToxCast pipeline for high-throughput screening data. Bioinformatics
33, 618–620. doi: 10.1093/bioinformatics/btw680

Goodstadt, L. (2010). Ruffus: a lightweight Python library for computational
pipelines. Bioinformatics 26, 2778–2779. doi: 10.1093/bioinformatics/btq524

Grimm, F. A., Iwata, Y., Sirenko, O., Bittner, M., and Rusyn, I. (2015). High-
content assay multiplexing for toxicity screening in induced pluripotent stem
cell-derived cardiomyocytes and hepatocytes. Assay Drug Dev. Technol. 13,
529–546. doi: 10.1089/adt.2015.659

Grimm, F. A., Iwata, Y., Sirenko, O., Chappell, G. A., Wright, F. A.,
Reif, D. M., et al. (2016). A chemical-biological similarity-based
grouping of complex substances as a prototype approach for evaluating
chemical alternatives. Green Chem. 18, 4407–4419. doi: 10.1039/c6gc
01147k

Han, Y., Gao, S., Muegge, K., Zhang, W., and Zhou, B. (2015). Advanced
applications of RNA sequencing and challenges. Bioinform. Biol. Insights
9(Suppl. 1), 29–46. doi: 10.4137/BBI.S28991

Hieronymus, H., Lamb, J., Ross, K. N., Peng, X. P., Clement, C., Rodina, A.,
et al. (2006). Gene expression signature-based chemical genomic prediction
identifies a novel class of HSP90 pathway modulators. Cancer Cell 10, 321–330.
doi: 10.1016/j.ccr.2006.09.005

Igarashi, Y., Nakatsu, N., Yamashita, T., Ono, A., Ohno, Y., Urushidani, T., et al.
(2015). Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids
Res. 43, D921–D927. doi: 10.1093/nar/gku955

Klebanov, L., Chen, L., and Yakovlev, A. (2007). Revisiting adverse effects of cross-
hybridization in Affymetrix gene expression data: do they matter for correlation
analysis? Biol. Direct 2:28. doi: 10.1186/1745-6150-2-28

Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., et al.
(2006). The connectivity map: using gene-expression signatures to connect
small molecules, genes, and disease. Science 313, 1929–1935. doi: 10.1126/
science.1132939

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 10:R25. doi: 10.1186/gb-2009-10-3-r25

Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics 26, 589–595. doi: 10.1093/bioinformatics/
btp698

Frontiers in Genetics | www.frontiersin.org 10 November 2017 | Volume 8 | Article 168

https://www.frontiersin.org/articles/10.3389/fgene.2017.00168/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2017.00168/full#supplementary-material
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1126/science.1158140
https://doi.org/10.1126/science.1262110
https://doi.org/10.1016/j.tox.2014.11.008
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/nar/gku476
https://doi.org/10.1093/nar/gku476
https://doi.org/10.1186/1471-2164-14-892
https://doi.org/10.1007/s00204-016-1886-5
https://doi.org/10.1007/s00204-016-1886-5
https://doi.org/10.1093/bioinformatics/btw680
https://doi.org/10.1093/bioinformatics/btq524
https://doi.org/10.1089/adt.2015.659
https://doi.org/10.1039/c6gc01147k
https://doi.org/10.1039/c6gc01147k
https://doi.org/10.4137/BBI.S28991
https://doi.org/10.1016/j.ccr.2006.09.005
https://doi.org/10.1093/nar/gku955
https://doi.org/10.1186/1745-6150-2-28
https://doi.org/10.1126/science.1132939
https://doi.org/10.1126/science.1132939
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-08-00168 October 31, 2017 Time: 16:9 # 11

House et al. Expression-Based Concentration–Response Pipeline

Li, H., Qiu, J., and Fu, X. D. (2012). RASL-seq for massively parallel and
quantitative analysis of gene expression. Curr. Protoc. Mol. Biol. Chapter 4:Unit
4.13.1–9. doi: 10.1002/0471142727.mb0413s98

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
doi: 10.1186/s13059-014-0550-8

Low, Y., Uehara, T., Minowa, Y., Yamada, H., Ohno, Y., Urushidani, T.,
et al. (2011). Predicting drug-induced hepatotoxicity using QSAR and
toxicogenomics approaches. Chem. Res. Toxicol. 24, 1251–1262. doi: 10.1021/
tx200148a

Luo, G., Shen, Y., Yang, L., Lu, A., and Xiang, Z. (2017). A review of drug-induced
liver injury databases. Arch. Toxicol. doi: 10.1007/s00204-017-2024-8 [Epub
ahead of print].

Merrick, B. A., Paules, R. S., and Tice, R. R. (2015). Intersection of toxicogenomics
and high throughput screening in the Tox21 program: an NIEHS perspective.
Int. J. Biotechnol. 14, 7–27. doi: 10.1504/IJBT.2015.074797

National Academies (2017). Using 21st Century Science to Improve Risk-Related
Evaluations. Washington, DC: The National Academies Press.

National Research Council (2014). A Framework to Guide Selection of Chemical
Alternatives. Washington, DC: The National Academies Press.

National Research Council (2007). Toxicity Testing in the 21st Century.
Washington, DC: The National Academies Press.

Okoniewski, M. J., and Miller, C. J. (2006). Hybridization interactions between
probesets in short oligo microarrays lead to spurious correlations. BMC
Bioinformatics 7:276. doi: 10.1186/1471-2105-7-276

Peck, D., Crawford, E. D., Ross, K. N., Stegmaier, K., Golub, T. R., and Lamb, J.
(2006). A method for high-throughput gene expression signature analysis.
Genome Biol. 7:R61. doi: 10.1186/gb-2006-7-7-r61

Ritz, C., Baty, F., Streibig, J. C., and Gerhard, D. (2015). Dose-response analysis
using R. PLOS ONE 10:e0146021. doi: 10.1371/journal.pone.0146021

Roukoz, H., and Saliba, W. (2007). Dofetilide: a new class III antiarrhythmic agent.
Exp. Rev. Cardiovasc. Ther. 5, 9–19. doi: 10.1586/14779072.5.1.9

Royce, T. E., Rozowsky, J. S., and Gerstein, M. B. (2007). Toward a
universal microarray: prediction of gene expression through nearest-neighbor
probe sequence identification. Nucleic Acids Res. 35:e99. doi: 10.1093/nar/
gkm549

Sirenko, O., Crittenden, C., Callamaras, N., Hesley, J., Chen, Y. W., Funes, C.,
et al. (2013a). Multiparameter in vitro assessment of compound effects on
cardiomyocyte physiology using iPSC cells. J. Biomol. Screen. 18, 39–53.
doi: 10.1177/1087057112457590

Sirenko, O., Cromwell, E. F., Crittenden, C., Wignall, J. A., Wright, F. A.,
and Rusyn, I. (2013b). Assessment of beating parameters in human
induced pluripotent stem cells enables quantitative in vitro screening for
cardiotoxicity.Toxicol. Appl. Pharmacol. 273, 500–507. doi: 10.1016/j.taap.2013.
09.017

Sirenko, O., Grimm, F. A., Ryan, K. R., Iwata, Y., Chiu, W. A., Parham, F., et al.
(2017). In vitro cardiotoxicity assessment of environmental chemicals
using an organotypic human induced pluripotent stem cell-derived
model. Toxicol. Appl. Pharmacol. 322, 60–74. doi: 10.1016/j.taap.2017.
02.020

Sirota, M., Dudley, J. T., Kim, J., Chiang, A. P., Morgan, A. A., Sweet-Cordero, A.,
et al. (2011). Discovery and preclinical validation of drug indications using
compendia of public gene expression data. Sci. Transl. Med. 3:96ra77.
doi: 10.1126/scitranslmed.3001318

Stegmaier, K., Ross, K. N., Colavito, S. A., O’Malley, S., Stockwell, B. R., and
Golub, T. R. (2004). Gene expression-based high-throughput screening(GE-
HTS) and application to leukemia differentiation. Nat. Genet. 36, 257–263.
doi: 10.1038/ng1305

Thomas, R. S., Clewell, H. J., Allen, B. C., Wesselkamper, S. C., Wang, N. C.,
Lambert, J. C., et al. (2011). Application of transcriptional benchmark dose
values in quantitative cancer and noncancer risk assessment. Toxicol. Sci. 120,
194–205. doi: 10.1093/toxsci/kfq355

Thomas, R. S., Wesselkamper, S. C., Wang, N. C., Zhao, Q. J., Petersen, D. D.,
Lambert, J. C., et al. (2013). Temporal concordance between apical and
transcriptional points of departure for chemical risk assessment. Toxicol. Sci.
134, 180–194. doi: 10.1093/toxsci/kft094

Uehara, T., Hirode, M., Ono, A., Kiyosawa, N., Omura, K., Shimizu, T., et al.
(2008). A toxicogenomics approach for early assessment of potential non-
genotoxic hepatocarcinogenicity of chemicals in rats. Toxicology 250, 15–26.
doi: 10.1016/j.tox.2008.05.013

Uehara, T., Ono, A., Maruyama, T., Kato, I., Yamada, H., Ohno, Y.,
et al. (2010). The Japanese toxicogenomics project: application of
toxicogenomics. Mol. Nutr. Food Res. 54, 218–227. doi: 10.1002/mnfr.
200900169

Wei, G., Twomey, D., Lamb, J., Schlis, K., Agarwal, J., Stam, R. W., et al. (2006).
Gene expression-based chemical genomics identifies rapamycin as a modulator
of MCL1 and glucocorticoid resistance. Cancer Cell 10, 331–342. doi: 10.1016/j.
ccr.2006.09.006

Wignall, J. A., Shapiro, A. J., Wright, F. A., Woodruff, T. J., Chiu, W. A., Guyton,
K. Z., et al. (2014). Standardizing benchmark dose calculations to improve
science-based decisions in human health assessments. Environ. Health Perspect.
122, 499–505. doi: 10.1289/ehp.1307539

Yang, L., Allen, B. C., and Thomas, R. S. (2007). BMDExpress: a software tool
for the benchmark dose analyses of genomic data. BMC Genomics 8:387.
doi: 10.1186/1471-2164-8-387

Yeakley, J. M., Shepard, P. J., Goyena, D. E., VanSteenhouse, H. C., McComb, J. D.,
and Seligmann, B. E. (2017). A trichostatin A expression signature identified by
TempO-Seq targeted whole transcriptome profiling. PLOS ONE 12:e0178302.
doi: 10.1371/journal.pone.0178302

Zhou, Y. H., Cichocki, J. A., Soldatow, V. Y., Scholl, E., Gallins, P., Jima, D., et al.
(2017). Comparative dose-response analysis of liver and kidney transcriptomic
effects of trichloroethylene and tetrachloroethylene in B6C3F1 mouse. Toxicol.
Sci. doi: 10.1093/toxsci/kfx165 [Epub ahead of print].

Zhou, Y. H., and Wright, F. A. (2015). Hypothesis testing at the extremes: fast
and robust association for high-throughput data. Biostatistics 16, 611–625.
doi: 10.1093/biostatistics/kxv007

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 House, Grimm, Jima, Zhou, Rusyn and Wright. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Genetics | www.frontiersin.org 11 November 2017 | Volume 8 | Article 168

https://doi.org/10.1002/0471142727.mb0413s98
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1021/tx200148a
https://doi.org/10.1021/tx200148a
https://doi.org/10.1007/s00204-017-2024-8
https://doi.org/10.1504/IJBT.2015.074797
https://doi.org/10.1186/1471-2105-7-276
https://doi.org/10.1186/gb-2006-7-7-r61
https://doi.org/10.1371/journal.pone.0146021
https://doi.org/10.1586/14779072.5.1.9
https://doi.org/10.1093/nar/gkm549
https://doi.org/10.1093/nar/gkm549
https://doi.org/10.1177/1087057112457590
https://doi.org/10.1016/j.taap.2013.09.017
https://doi.org/10.1016/j.taap.2013.09.017
https://doi.org/10.1016/j.taap.2017.02.020
https://doi.org/10.1016/j.taap.2017.02.020
https://doi.org/10.1126/scitranslmed.3001318
https://doi.org/10.1038/ng1305
https://doi.org/10.1093/toxsci/kfq355
https://doi.org/10.1093/toxsci/kft094
https://doi.org/10.1016/j.tox.2008.05.013
https://doi.org/10.1002/mnfr.200900169
https://doi.org/10.1002/mnfr.200900169
https://doi.org/10.1016/j.ccr.2006.09.006
https://doi.org/10.1016/j.ccr.2006.09.006
https://doi.org/10.1289/ehp.1307539
https://doi.org/10.1186/1471-2164-8-387
https://doi.org/10.1371/journal.pone.0178302
https://doi.org/10.1093/toxsci/kfx165
https://doi.org/10.1093/biostatistics/kxv007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics
	Introduction
	Materials And Methods
	Chemicals and Biologicals
	Cardiomyocyte Cell Culture
	TempO-Seq Library Preparation and Sequencing
	Temposeqcount Application: Availability and Implementation
	Pathway Analysis
	Differential Gene Expression and Concentration Response

	Results And Discussion
	Process Overview
	TempO-Seq Count Matrix Generation

	QC and Normalization of Counts
	Analysis of Differential Gene Expression
	Concentration–Response Modeling Decision Logic
	Concentration–Response Modeling and Point of Departure Calculation

	Conclusion And Summary
	Author Contributions
	Funding
	Acknowledgment
	Supplementary Material
	References


