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The combination of a cell’s transcriptional profile and location defines its function in a
spatial context. Spatially resolved transcriptomics (SRT) has emerged as the assay of
choice for characterizing cells in situ. SRT methods can resolve gene expression up to
single-molecule resolution. A particular computational problem with single-molecule SRT
methods is the correct aggregation of mRNA molecules into cells. Traditionally,
aggregating mRNA molecules into cell-based features begins with the identification of
cells via segmentation of the nucleus or the cell membrane. However, recently a number of
cell-segmentation-free approaches have emerged. While these methods have been
demonstrated to be more performant than segmentation-based approaches, they are
still not easily accessible since they require specialized knowledge of programming
languages and access to large computational resources. Here we present SSAM-lite,
a tool that provides an easy-to-use graphical interface to perform rapid and segmentation-
free cell-typing of SRT data in a web browser. SSAM-lite runs locally and does not require
computational experts or specialized hardware. Analysis of a tissue slice of the mouse
somatosensory cortex took less than a minute on a laptop with modest hardware.
Parameters can interactively be optimized on small portions of the data before the
entire tissue image is analyzed. A server version of SSAM-lite can be run completely
offline using local infrastructure. Overall, SSAM-lite is portable, lightweight, and easy to
use, thus enabling a broad audience to investigate and analyze single-molecule SRT data.
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1 INTRODUCTION

The biological function of a cell is governed not only by its expression profile but also by its location
(Lee, 2017). A cell’s spatial embedding defines its cellular neighborhood and determines how
intercellular signaling operates to achieve higher-order tissue function. Spatially resolved
transcriptomics (SRT) has emerged as the assay of choice for characterizing cells in a tissue
context (Burgess, 2019; Marx, 2021). There are a number of SRT methods, with each being able
to resolve gene expression to various spatial resolutions, from anatomical features up to sub-cellular
resolution of identifying single mRNA molecules (Asp et al., 2020). Single-molecule SRT methods
usually require the assignment of each decodedmRNA spot to a cell, which first requires the cell to be
identified via segmentation. Cell segmentation is usually performed by identifying cell landmark
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features such as the cell nucleus or protoplasm via DAPI or total
mRNA density (Najman and Schmitt, 1994; Chen et al., 2015; Eng
et al., 2019). However, accurate cell segmentation remains
difficult due to many factors such as staining not covering all
features of a cell, imaging artifacts, and overlapping cells (Thomas
and John, 2017). Inaccurate cell segmentation can lead to
misassignment of mRNA molecules to cells, leading to errors
in downstream analysis such as misclassifying cell types. To
overcome this issue, a number of computational tools have
been developed to improve the assignment of mRNA
molecules to cells (Qian et al., 2020; Prabhakaran et al., 2021),
incorporate cell typing as part of the segmentation process
(Littman et al., 2021), and perform cell-segmentation free
analysis (Petukhov et al., 2020; He et al., 2021; Park et al.,
2021). While these tools improve cell typing, they all share the
problem of being specialized tools that require access to Linux
command line terminals, programming expertise, and high-
performance hardware. This renders them less accessible to a
large proportion of the biomedical research community.

Our prior work (Park et al., 2021) demonstrated improved
accuracy and sensitivity of spatial cell typing over traditional
segmentation-based approaches by applying the SSAM algorithm
to the mouse somatosensory cortex dataset profiled by osmFISH.
In particular, our segmentation-free approach identified many
more astrocyte cell types that were missed due to low signal.
Furthermore, we could reconstruct the ventricle region that was
missed due to high occlusion in the segmentation-based approach
used in the original study of the data.

Here we present SSAM-lite which is an easy-to-use and
lightweight browser-based web application on top of the
segmentation-free SRT algorithm SSAM (Park et al., 2021) to
make spatial cell typing accessible to biomedical researchers.
SSAM-lite runs on modest hardware in any modern browser
with JavaScript support and internet access, thus lowering the
barrier to analyzing high-dimensional SRT data. To ensure

privacy and security, data does not leave the user’s machine.
Furthermore, our tool has an easy-to-use graphical user interface
that provides intuitive visualizations of SRT data. SSAM-lite can
be used on mobile devices to analyze smaller datasets.
Departments or institutes with access restricted to local
networks due to security reasons or which deal with extremely
large datasets can make use of SSAM-lite-server. This is a server-
side implementation of SSAM-lite that can be installed with
minimal effort, providing offline access to SSAM-lite
functionality and without limitations of client-side resources.

2 METHODS

2.1 SSAM-lite
SSAM-lite builds on top of the guided mode of the SSAM algorithm
(Park et al., 2021) (Figure 1). In brief, the algorithm uses Kernel
Density Estimation (KDE) to transform the spatial mRNA
coordinates into gene expression probability densities that are
subsequently cell typed and then projected into the final image of
the cell-type map. SSAM-lite is an integrated pipeline aimed at
simplifying exploratory data analyses of SRT data with only a few
clicks in a web browser. The pipeline workflow combines state-of-
the-art web programming libraries such as Bootstrap, plotly.js, and
TensorFlow.js (Figure 1A). The modern web interface with
convenient interactive elements was generated using the Bootstrap
library, which provides a large body of CSS functions for creating a
state-of-the-art and user-friendly layout. In particular, the layout
scripts for SSAM-lite make use of Bootstrap’s sophisticated scalable
grid layout that optimizes user experience on a range of devices from
handhelds to desktop machines. The data preparation and
presentation routines were implemented using plotly.js, and
TensorFlow.jswas chosen to implement amachine learning backend.

A typical SSAM-lite workflow can be summarized in three
steps: data upload, parameter selection and optimization, and the

FIGURE 1 | Schematic of SSAM-lite. (A) Schematic diagram of SSAM-lite, accessible as a web browser application, and (B) a locally installed SSAM-lite-server. (C)
Schematic of the underlying data processing algorithm proposed by SSAM.
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final analysis phase. Each step has a dedicated area in the web
interface (Figure 2).

2.1.1 Data Upload
Data upload is performed in the Data Center section by either
using drag-and-drop or an interactive file selection window
(Figure 2A). The user needs to provide a file with mRNA
coordinates from an SRT experiment alongside a so-called
signature file that contains gene expression signatures for the
cell types of the tissue of interest. Both input files are plain text csv
files. The mRNA coordinate file contains gene names and the x-
and y-coordinates of all molecules in the analyzed image,
consistent with the DecodedSpot format defined by the Starfish
pipeline (http://github.com/spacetx/starfish). The signature file
contains a gene expressionmatrix with cell types as rows and gene
names as columns. The values can either be binary or be
normalized gene expression.

After loading, the mRNA molecule coordinate data is
displayed in an interactive scatter plot using plotly.js’s scattergl
layout, which is designed explicitly to handle large data sets. The
plot is designed to be interactive, so the user can zoom in to
investigate local mRNA expression or hide parts of the data to
reveal the expression patterns of individual genes. The expression
signature matrix is also displayed in an interactive plot after
loading using plotly.js’s heatmap layout, which provides an
overview of the data through color coding and by displaying
hovering information on each gene-cell type expression indicator.

2.1.2 Parameter Selection and Optimization
In this section, the user can interactively tune the input
parameters for the SSAM spatial modeling algorithm

(Figure 2B; Supplementary Figure S1). The three most
important parameters of the SSAM algorithm are the
bandwidth of the Gaussian KDE function, the pixel width of
the output cell-type map, and the total expression threshold
value. The bandwidth parameter is necessary to accurately
model the local spatial molecular dynamics. To model
expression in a sparse dataset (e.g., 3-5 mRNA molecules per
cell) a larger bandwidth would need to be employed, and in a
dense dataset (e.g., 20–30 mRNA per cell) a smaller bandwidth
should be sufficient. As a guideline, we suggest using values
between 2 and 25 μm based on analysis of dense and sparse
datasets (Figure 3). The pixel width of the cell-type map
determines the memory footprint and the accuracy of the
internal spatial gene expression model. The expression
threshold parameter defines the gene expression signal
threshold for the foreground (i.e., parts of the image with high
gene expression, likely originating from cells) and background
(i.e., parts of the image with low gene expression), hence
discerning actual spatial expression patterns from background
noise. A high number of extracellular, diffused mRNA spots
requires a higher expression threshold, where the optimal value
differs greatly across data sets.

These parameters can be set in numerical input fields and the
analysis of the full data set can be started. However, the user can
also try to optimize the parameters on a small section of the image
before starting the complete image analysis. This will launch an
initial small-scale analysis with instant output to the screen and
will show three figure panels that allow for direct evaluation of the
chosen parameters.

Of these panels, the left figure panel is an interactive plotly.js
scattergl plot of the entire mRNA location data set, which can be

FIGURE 2 | The SSAM-lite interface. The panels display the sections of the SSAM-lite web page demonstrated on osmFISH data of the mouse SSp (Codeluppi
et al., 2018): (A) the data center for uploading data; (B) the parameter selection and optimization section; (C) the first analysis section for displaying the results of the KDE
analysis; and (D) the second analysis section for displaying the final cell-type map image.
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used to define the local sub-section of the overall data set that is
used for optimization. A rectangle displays the currently chosen
sub-section, and the location of the subsection can be changed
interactively by clicking onto the desired new central spot in the
scatterplot.

The middle figure panel shows an intermediate output of the
KDE for the chosen sub-section from the first subfigure using
plotly.js’s heatmap layout. The heatmap is a spatial representation
of SSAM-lite’s internal model of integrated local signal strength,
with the heatmap value indicating the probability for the presence
of a cell at a particular location. The value of the modeled signal
for each pixel is color-coded and shows up when hovering over it
with the mouse pointer. The heatmap is especially useful for
choosing an appropriate expression threshold parameter from

the signal strength landscape. The KDE figure panel also provides
a visual impression of the amount of smoothing produced by the
KDE, which helps the user to set the bandwidth parameter. The
bandwidth parameter should be large enough to smooth out noise
and integrate mRNA signals belonging to the same spatial
structure, but low enough to keep individual spatial structures
separate and retain their shape. The heatmap plot gets updated in
real-time whenever the subsample location or KDE parameters
change, and in practice, the parameters can be set reasonably after
2–3 trials.

The rightmost figure panel shows the final output cell-type
map of the SSAM-lite algorithm for the chosen tissue
subsection. The cell-type map is useful to identify persisting
noise in the output, which can be reduced by adjusting the

FIGURE 3 | SSAM-lite generates accurate cell-type maps. Demonstrative cell-type maps for osmFISH data of the mouse SSp generated by (A) SSAM and (B)
SSAM-lite, and ISS data of human pancreas generated by (C) SSAM and (D) SSAM-lite. Resultant cell-type maps generated by SSAM are similar to previous
publications (Park et al., 2021; Tosti et al., 2021). Cell-type colors of the original SSAM figures were modified to match the SSAM-lite figure.
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bandwidth and/or the expression threshold parameters. The
cell-type map panel is updated whenever the parameters
change.

2.1.3 Analysis and Visualization
The last section is dedicated to data analysis and the visualization
of results. The section provides interfaces to the two more
resource-intensive TensorFlow.js backend functions that
perform the KDE and the correlation analysis.

2.1.3.1 Kernel Density Estimation (KDE)
Once the parameters are optimized, the user can perform the
KDE, which typically takes below a minute to generate SSAM-
lite’s internal, pixel-based spatial model of local signal strength
(Figure 2C). In a pre-processing step, the mRNA coordinates are
rescaled linearly to fit the user-defined pixel width of the spatial
model. The respective height is determined to match the vertical
spread of the coordinate data and the bandwidth parameter is
scaled accordingly to match the new internal unit of computation.
SSAM-lite computes an independent local signal strength pixel
matrix for each type of mRNA defined in the input data. For this, a
large TensorFlow.js buffer is initiated by stacking all empty pixel
matrices. The KDE implementation in SSAM-lite employs two
heuristics to optimize computing performance. The first is to
iterate over all mRNA locations and round them to their closest
output pixel, allowing us to use a pre-calculated Gaussian mass
function for all mRNA spots. The second is to ignore long tails of
the Gaussian mass function by limiting its calculation to two
bandwidths. This heuristics approximates the naive KDE
implementation well, with negligible differences at reasonable
bandwidth (Supplementary Figure S2). This new
implementation results in a 1000-fold performance increase
over the default SSAM implementation of the KDE step
(Supplementary Figure S3).

Further differences to the original SSAM-guided mode
implementation are described in the Supplementary Material.

After KDE computation is completed, the collected sum of
all pixel matrices is displayed using a plotly.js heatmap layout
analogous to the optimization panel. If the results do not
match expectations, parameters can be adapted and the
KDE function can be re-run. Otherwise, the user can move
on to generate the cell-type map.

2.1.3.2 Correlation Analysis and Cell-Type Map Generation
As in the original SSAM algorithm, the last step of analysis
computes the cell-type map through correlation analysis with
known gene expression signatures (Figure 2D). The combined
expression arrays of each x- and y-location in the stacked pixel
matrixes are compared to the expression signature data and
each pixel is assigned the cell type with the highest correlating
signature. All pixels whose sum across matrices are below the
user-defined expression threshold parameter are considered
background and not assigned any cell type. The final result is
displayed as a cell-type map using a modified version of
plotly.js’s heatmap layout. The heatmap element is fed with
a custom generated list of colors and altered to display the x-
and y-coordinates and the assigned cell-type name during

mouse hover events. The plot offers plotly.js’s elementary
functions like zooming, panning, resetting as well as a save
to disk option. Furthermore, a custom scale bar is added that
adapts to the current zoom factor and displays the bar width in
micrometers.

2.1.3.3 Cell-type Localization and Abundance
An important part of the downstream analysis of the cell-type
map is the localization of cell types and the quantification of cell-
type signals in the entire and parts of the tissue (Figure 2D;
Supplementary Figure S4A). We therefore implement an
interactive barplot that quantifies the relative cell-type
abundance based on classified pixels in the current view of the
cell-type map. This quantification is updated when zooming into
or panning over different regions (Supplementary Figures
S4B,C). The user can also provide custom color palettes and
select only certain cell-types to be rendered by double-clicking the
cell-type labels (Supplementary Figure S5).

The code itself is documented and organized according to the
model-view-controller paradigm, which allows the user to easily
adapt the code base to the needs of their own specific project. One
example would be to use an alternative kernel shape, e.g., a
circular Epanechnikov kernel could be achieved by adding a
logical threshold expression to the runKDE function inside
model.js. Any changes are integrated into the code execution
right away and available after a simple browser page refresh.

2.1.4 SSAM-lite-Server
SSAM-lite is an efficient tool that is dependent on client-side
hardware. While we demonstrate that a modest laptop is capable
of processing real-world SRT datasets (Figure 3), we also
recognize possible limitations due to client-side hardware
constraints. To address this issue, we developed a server-side
version called SSAM-lite-server (Figure 1A). SSAM-lite-server
runs the computationally expensive KDE and cell assignment
algorithms at the server-side. SSAM-lite-server preserves the
overall implementation of SSAM-lite in Javascript, HTML,
CSS, and allows a server running a Flask (v0.8) framework to
take over computationally expensive functionalities of SSAM-lite.
Flask was chosen due to its lightweight nature and extensibility.
To further make the backend data structures memory-efficient we
use Python’s numerical libraryNumPy (v1.20.3). Python’s pandas
package (v1.3.2) is used to handle the signature data. For privacy
preservation, the data streamed to the server for processing do not
persist on the server file systems but is only stored in memory for
the duration of the computation.

SSAM-lite-server runs the KDE algorithm by streaming
variables such as coordinates, signature matrix, input and
output image width, bandwidth, gene expression threshold
to the server as an Ajax POST request, which then returns
JSON objects to the user. The server-side computation
includes the computation of KDE and the generation of the
cell-type map.

To enhance the overall security, SSAM-lite-server offers the
option to host all libraries locally, thus enabling SSAM-lite-
server to run in closed networks without an internet
connection.
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2.1.5 Benchmarking
Benchmarking was carried out on a Lenovo X1 Carbon laptop
with Intel Core i7-8565u CPU, 16GB of RAM, and Windows
10. We used Google Chrome (v93.0) to run SSAM-lite (v0.1.0).
The benchmark was performed using the Chrome DevTools
Performance monitor to evaluate the runtime of the
runFullKDE function and the maximum memory heap
while carrying out a complete analysis (not using the
parameter preview) with the pixel width of the cell-type
map set to 500, the kernel bandwidth to five and the
expression threshold for assigning cell types to two.

To simulate different complexities of the mouse brain
primary somatosensory cortex (SSp) data we performed
downscaling and upscaling of the data. A 0.5× dataset was
created by randomly downsampling to 50% of the molecules
present in the coordinate file. A 2× data set was created by
appending the mRNA coordinate locations to itself after
carrying out a pixel shift of 1 μm along both axes to each of
the molecules. A 3× dataset was created by pixel shifting the
original coordinate matrix by -1 μm and appending it to the 2×
coordinate matrix. Finally, a 5× dataset was created by
appending the dataset to itself, the first time pixel-shifting
+1 along x and y, the second time +2, and so on. Each of the
above datasets was then tested in three replicates.

Furthermore, to demonstrate usable performance on modest
hardware we report the runtimes of SSAM-lite on a Lenovo b570e
with 4GB of RAM and a 2.20 GHz Intel dual-core processor
running Windows 10, and a Samsung Galaxy S8+ Android 9
smartphone running Chrome v96 (Supplementary Materials).

3 RESULTS

To demonstrate equivalent cell-type map performance to our
previously published SSAM algorithm, we applied SSAM-lite
to two datasets using a laptop computer (Section 2.1.5 in
Section 2). The first dataset was mouse SSp profiled by
osmFISH (Zeisel et al., 2015; Marques et al., 2016), profiling
1,802,589 mRNA spots for 33 genes and 31 cell-types
signatures derived from scRNAseq (Zeisel et al., 2015;
Marques et al., 2016). The coordinate matrix was uploaded
and rendered in 4 s on average, and the uploading and
rendering time for the signature matrix was negligible in
comparison. The cell-type map width was set to 1,500, KDE
bandwidth to 2.5, and the gene expression threshold to 13. The
resultant image of the cell-type map was very similar to those
previously published (Figures 3A,B). To demonstrate SSAM-
lite’s performance on a sparse dataset, we applied it to human
pancreas profiled by ISS, profiling 461,078 mRNA spots for
138 genes and 16 cell-type signatures (Tosti et al., 2021). The
cell-type map width was set to 750, KDE bandwidth to 22, and
the gene expression threshold to 2.4. The resultant image of the
cell-type map was highly comparable to those previously
published (Figures 3C,D).

To investigate how SSAM-lite's performance scales with
regards to memory requirements and CPU time, we performed
a synthetic benchmark on the mouse brain SSp dataset with

different dataset sizes (Supplementary Figure S6). Overall, the
CPU time for calculating the KDE (Supplementary Figure
S6A) scales linearly with the number of profiled mRNA
molecules. Further, the total memory footprint for a
complete analysis also depends linearly on the dataset size
(Supplementary Figure S6A).

4 DISCUSSION

Analysis of spatial transcriptomics data was so far limited by
excessive hardware requirements and an understanding of
navigation in a terminal window using the Linux command
line. With SSAM-lite we overcome these limitations by
providing an easy-to-use graphical user interface that runs
in any modern web browser on common laptop computers.
Input files are text files that can be loaded by drag-and-drop
into the browser window. This circumvents the need to
provide certain command-line arguments or editing of
configuration files. SSAM-lite makes the analysis of spatial
transcriptomics data accessible to a broad range of researchers
that may not have a high-performance computing cluster or
experience with command-line tools. SSAM-lite was able to
generate similar results to those previously published (Park
et al., 2021; Tosti et al., 2021) in only a few minutes. SSAM-lite
provides an easy-to-use interface to analyze high-dimensional
SRT data to the wider biomedical research community. In
addition, we see the additional utility in SSAM-lite for SRT
data generators to perform rapid quality control of
experiments and to provide customers with an easy-to-use
exploratory tool. We also expect that specialized
computational scientists may want to use SSAM-lite to
rapidly identify optimal parameters for downstream analysis
and to compare the resultant cell-type map of more
parameterized and resource-hungry analysis tools.

In addition, SSAM-lite-server mitigates much of the
computational burden to the server-side, enabling analysis
of very large datasets, and also analysis of datasets on
mobile devices. The stand-alone implementation of SSAM-
lite-server is amenable to networks with limited access to the
internet such as in many university hospitals.

AVAILABILITY AND IMPLEMENTATION

SSAM-lite is an open-source browser-based web application with
source code freely available on Github via https://github.com/
HiDiHlabs/ssam-lite. Stable releases can be accessed via https://
ssam-lite.bihealth.org and https://ssam-lite.netlify.app, and
developmental releases can be accessed via https://dev–ssam-
lite.netlify.app. The source code for a locally deployable server
version, SSAM-lite-server, is available on GitHub via https://
github.com/HiDiHlabs/ssam-lite-server. Both versions require a
modern browser with JavaScript and WebGL support. Detailed
user guides and documentation can be found at https://ssam-lite.
readthedocs.io.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7858776

Tiesmeyer et al. SSAM-lite Spatial Transcriptomics Application

https://github.com/HiDiHlabs/ssam-lite
https://github.com/HiDiHlabs/ssam-lite
https://ssam-lite.bihealth.org
https://ssam-lite.bihealth.org
https://ssam-lite.netlify.app
https://dev--ssam-lite.netlify.app
https://dev--ssam-lite.netlify.app
https://github.com/HiDiHlabs/ssam-lite-server
https://github.com/HiDiHlabs/ssam-lite-server
https://ssam-lite.readthedocs.io/
https://ssam-lite.readthedocs.io/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://zenodo.org/record/5600532.

AUTHOR CONTRIBUTIONS

ST and NI conceived and designed the study. ST programmed the
SSAM-lite and SSAM-lite-server software. SSmade programming
contributions to SSAM-lite-server. ST, SDM, and NI wrote the
manuscript. SS and NM-B tested and documented the software,
made programming contributions to SSAM-lite, wrote the user
guide, and revised the manuscript. RE proofread and corrected
the manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

This research received funding from the Federal Ministry of
Education and Research of Germany in the framework of

SAGE (Project Number 031L0265), the BMBF-funded de.NBI
Cloud within the German Network for Bioinformatics
Infrastructure (de.NBI) (031A532B, 031A533A, 031A533B,
031A534A, 031A535A, 031A537A, 031A537B, 031A537C,
031A537D, 031A538A), and from the European Commission
EU Horizon 2020 research and innovation program (ESPACE,
874710; EASI-Genomics, 824110).

ACKNOWLEDGMENTS

We would like to thank Jeongbin Park and Wonyl Choi for
conceiving the idea of SSAM.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.785877/
full#supplementary-material

REFERENCES

Asp, M., Bergenstråhle, J., and Lundeberg, J. (2020). Spatially Resolved Transcriptomes-
Next Generation Tools for Tissue Exploration. Bioessays 42, e1900221. doi:10.1002/
bies.201900221

Burgess, D. J. (2019). Spatial Transcriptomics Coming of Age. Nat. Rev. Genet. 20, 317.
doi:10.1038/s41576-019-0129-z

Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S., and Zhuang, X. (2015). RNA
Imaging. Spatially Resolved, Highly Multiplexed RNA Profiling in Single Cells.
Science 348, aaa6090. doi:10.1126/science.aaa6090

Codeluppi, S., Borm, L. E., Zeisel, A., La Manno, G., van Lunteren, J. A., Svensson, C. I.,
et al. (2018). Spatial Organization of the Somatosensory Cortex Revealed by
osmFISH. Nat. Methods 15, 932–935. doi:10.1038/s41592-018-0175-z

Eng, C.-H. L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., et al. (2019).
Transcriptome-scale Super-resolved Imaging in Tissues by RNA seqFISH+. Nature
568, 235–239. doi:10.1038/s41586-019-1049-y

He, Y., Tang, X., Huang, J., Zhou, H., Chen, K., Liu, A., et al. (2021). ClusterMap:Multi-
Scale Clustering Analysis of Spatial Gene Expression. bioRxiv, 2021.02.18.431337.
doi:10.1101/2021.02.18.431337

Lee, J. H. (2017). Quantitative Approaches for Investigating the Spatial Context of Gene
Expression. Wires Syst. Biol. Med. 9. doi:10.1002/wsbm.1369

Littman, R., Hemminger, Z., Foreman, R., Arneson, D., Zhang, G., Gómez-Pinilla, F.,
et al. (2021). Joint Cell Segmentation and Cell Type Annotation for Spatial
Transcriptomics. Mol. Syst. Biol. 17, e10108. doi:10.15252/msb.202010108

Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcão, A., Xiao, L.,
et al. (2016). Oligodendrocyte Heterogeneity in the Mouse Juvenile and Adult
central Nervous System. Science 352, 1326–1329. doi:10.1126/science.aaf6463

Marx, V. (2021). Method of the Year: Spatially Resolved Transcriptomics. Nat.
Methods 18, 9–14. doi:10.1038/s41592-020-01033-y

Najman, L., and Schmitt, M. (1994). Watershed of a Continuous Function. Signal.
Process. 38, 99–112. doi:10.1016/0165-1684(94)90059-0

Park, J., Choi, W., Tiesmeyer, S., Long, B., Borm, L. E., Garren, E., et al. (2021). Cell
Segmentation-free Inference of Cell Types from In Situ Transcriptomics Data. Nat.
Commun. 12, 3545. doi:10.1038/s41467-021-23807-4

Petukhov, V., Soldatov, R. A., Khodosevich, K., and Kharchenko, P. V. (2020).
Bayesian Segmentation of Spatially Resolved Transcriptomics Data.
bioRxiv, 2020.10.05.326777. doi:10.1101/2020.10.05.326777

Prabhakaran, S., Nawy, T., and Pe’er’, D. (2021). Sparcle: Assigning
Transcripts to Cells in Multiplexed Images. bioRxiv, 2021.02.13.431099.
doi:10.1101/2021.02.13.431099

Qian, X., Harris, K. D., Hauling, T., Nicoloutsopoulos, D., Muñoz-Manchado,
A. B., Skene, N., et al. (2020). Probabilistic Cell Typing Enables fine
Mapping of Closely Related Cell Types In Situ. Nat. Methods 17,
101–106. doi:10.1038/s41592-019-0631-4

Thomas, R. M., and John, J. (2017). “A Review on Cell Detection and
Segmentation in Microscopic Images,” in 2017 International Conference
on Circuit ,Power and Computing Technologies (ICCPCT) (IEEE) (IEEE).
doi:10.1109/iccpct.2017.8074189

Tosti, L., Hang, Y., Debnath, O., Tiesmeyer, S., Trefzer, T., Steiger, K., et al.
(2021). Single-Nucleus and In Situ RNA-Sequencing Reveal Cell
Topographies in the Human Pancreas. Gastroenterology 160,
1330–1344.e11. doi:10.1053/j.gastro.2020.11.010

Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., La Manno,
G., Juréus, A., et al. (2015). Cell Types in the Mouse Cortex and
hippocampus Revealed by Single-Cell RNA-Seq. Science 347, 1138–1142.
doi:10.1126/science.aaa1934

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Tiesmeyer, Sahay, Müller-Bötticher, Eils, Mackowiak and
Ishaque. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s)
and the copyright owner(s) are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7858777

Tiesmeyer et al. SSAM-lite Spatial Transcriptomics Application

https://zenodo.org/record/5600532
https://www.frontiersin.org/articles/10.3389/fgene.2022.785877/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.785877/full#supplementary-material
https://doi.org/10.1002/bies.201900221
https://doi.org/10.1002/bies.201900221
https://doi.org/10.1038/s41576-019-0129-z
https://doi.org/10.1126/science.aaa6090
https://doi.org/10.1038/s41592-018-0175-z
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1101/2021.02.18.431337
https://doi.org/10.1002/wsbm.1369
https://doi.org/10.15252/msb.202010108
https://doi.org/10.1126/science.aaf6463
https://doi.org/10.1038/s41592-020-01033-y
https://doi.org/10.1016/0165-1684(94)90059-0
https://doi.org/10.1038/s41467-021-23807-4
https://doi.org/10.1101/2020.10.05.326777
https://doi.org/10.1101/2021.02.13.431099
https://doi.org/10.1038/s41592-019-0631-4
https://doi.org/10.1109/iccpct.2017.8074189
https://doi.org/10.1053/j.gastro.2020.11.010
https://doi.org/10.1126/science.aaa1934
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	SSAM-lite: A Light-Weight Web App for Rapid Analysis of Spatially Resolved Transcriptomics Data
	1 Introduction
	2 Methods
	2.1 SSAM-lite
	2.1.1 Data Upload
	2.1.2 Parameter Selection and Optimization
	2.1.3.1 Kernel Density Estimation (KDE)
	2.1.3.2 Correlation Analysis and Cell-Type Map Generation
	2.1.3.3 Cell-type Localization and Abundance

	2.1.4 SSAM-lite-Server
	2.1.5 Benchmarking


	3 Results
	4 Discussion
	Availability and Implementation
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


