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Abstract

Biomarkers predict World Trade Center-Lung Injury (WTC-LI); however, there remains
unaddressed multicollinearity in our serum cytokines, chemokines, and high-throughput
platform datasets used to phenotype WTC-disease. To address this concern, we used
automated, machine-learning, high-dimensional data pruning, and validated identified bio-
markers. The parent cohort consisted of male, never-smoking firefighters with WTC-LI
(FEV+, 9prea< lower limit of normal (LLN); n = 100) and controls (n = 127) and had their bio-
markers assessed. Cases and controls (n = 15/group) underwent untargeted metabolomics,
then feature selection performed on metabolites, cytokines, chemokines, and clinical data.
Cytokines, chemokines, and clinical biomarkers were validated in the non-overlapping par-
ent-cohort via binary logistic regression with 5-fold cross validation. Random forests of
metabolites (n = 580), clinical biomarkers (n = 5), and previously assayed cytokines, chemo-
kines (n = 106) identified that the top 5% of biomarkers important to class separation
included pigment epithelium-derived factor (PEDF), macrophage derived chemokine
(MDC), systolic blood pressure, macrophage inflammatory protein-4 (MIP-4), growth-regu-
lated oncogene protein (GRO), monocyte chemoattractant protein-1 (MCP-1), apolipopro-
tein-All (Apo-All), cell membrane metabolites (sphingolipids, phospholipids), and branched-
chain amino acids. Validated models via confounder-adjusted (age on 9/11, BMI, exposure,
and pre-9/11 FEV1, o,preq) binary logistic regression had AUCgoc [0.90(0.84—0.96)].
Decreased PEDF and MIP-4, and increased Apo-All were associated with increased odds
of WTC-LI. Increased GRO, MCP-1, and simultaneously decreased MDC were associated
with decreased odds of WTC-LI. In conclusion, automated data pruning identified novel
WTC-LI biomarkers; performance was validated in an independent cohort. One biomarker
—PEDF, an antiangiogenic agent—is a novel, predictive biomarker of particulate-matter-
related lung disease. Other biomarkers—GRO, MCP-1, MDC, MIP-4—reveal immune cell
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involvement in WTC-LI pathogenesis. Findings of our automated biomarker identification
warrant further investigation into these potential pharmacotherapy targets.

Author summary

Disease related to air pollution causes millions of deaths annually. Large swathes of the
general population, as well as certain occupations such as 1* responders and military per-
sonnel, are exposed to particulate matter (PM)—a major component of air pollution. Our
longitudinal cohort of FDNY firefighters exposed to the World Trade Center dust cloud
on 9/11 is a unique research opportunity to characterize the impact of a single, intense
PM exposure by looking at pre- and post-exposure phenotype; however, PM-related lung
disease and PM’s systemic effects are complex and call for a systems biological approach
coupled with novel computational modelling techniques to fully understand pathogenesis.
In the present study, we integrate clinical and environmental biomarkers with the serum
metabolome, cytokines, and chemokines to develop a model for early disease detection
and identification of potential signaling cascades of PM-related chronic lung disease.

Introduction

Globally, air pollution (of which particulate matter [PM] is a significant component) contrib-
utes to pulmonary and vascular disease yielding a devastating 7 million annual deaths.[1-9]
Lung injury due to inhalational exposure is a major health concern not only for 1 responders
and military personnel but also for large swaths of the population.[10,11] PM is a significant
component of ambient air pollution and prominent in WT'C-PM exposure.[12] The destruc-
tion of the World Trade Center (WTC) complex pulverized 1.2 million tons of construction
material.[13,14] Particulate analysis showed that metals, such as chromium, nickel, and iron,
powdered concrete, calcium carbonate, fibrous glass, asbestos, components of jet fuel, fire
retardants, dioxins and silicates were components of WTC-PM.[13,14] Therefore, our findings
in the WTC-exposed FDNY cohort fit into a larger set of studies demonstrating the association
of lipids, inflammation, and pulmonary injury and repair after toxin exposure.[1-3]

The Fire Department of New York (FDNY) rescue/recovery workers exposed to WTC-PM
have developed obstructive airways disease (OAD).[15-19] The role of classic cardiovascular
risk factors in the development of pulmonary disease has been a topic of considerable interest.
[19-22] In a WTC-exposed case-cohort study, pulmonary artery to aorta diameter (PA/A) was
also associated with early serum biomarkers of vascular disease and predictive of lung disease
known as WTC-lung injury (WTC-LI).[23] Metabolic syndrome (MetSyn) phenotypic charac-
teristics also predicted WT'C-LI and airway hyperreactivity (AHR).[19,21,22,24-28]

Recently, we focused on discovering metabolic and vascular disease-associated bioactive
pathways associated with WTC-LIL Through the use of high-throughput omics technologies,
our group has assessed the metabolome of WTC-LI patients.[27] We explored methods to
identify a metabolic signature unique to WTC-LI. Automated machine learning techniques
exceled in their ability to address potential multicollinearity, and their robustness to false posi-
tive and negative discoveries compared to traditional analyses that are based on significance
testing. We identified several bioactive classes of lipid and amino acid metabolites.[27,29]

The objective of this study was to develop and validate a multivariate predictive model of
WTC-LI by integrating the metabolome with clinical, cytokine, chemokine, and
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environmental data to improve early identification of disease compared to single-platform
models. This process is key to identification of significant biologically active pathways. In this
investigation, we have implemented a machine learning approach to first identify and then val-
idate analytes, such as Pigment epithelium-derived factor (PEDF), and their associated path-
ways that most accurately classify future WTC-LI. While PEDF has been identified as a
biomarker of OAD, we have now identified PEDF as a novel, predictive biomarker of the nega-
tive health effects of PM exposure.[30]

Methods
Ethics statement

Subjects provided written consent to research including biomarker analysis at enrollment
(Institutional Review Board approved protocols at Montefiore Medical Center (#07-09-320)
and New York University (#16-01412)).

Study design

The baseline cohort (N = 801) was obtained from symptomatic subjects referred for subspecialty
pulmonary examination (SPE) between 10/1/2001 and 3/10/2008, and underwent pulmonary
function testing as previously described.[19,31,32] The parent cohort consisted of subjects who
were male never-smokers with normal pre-9/11/2001 (9/11) lung function, reliable NHANES-
predicted FEV, and pulmonary function tests available within 200 days after 9/11, with WTC-LI
(n = 96; defined as FEV o;p,q< the lower limit of normal (LLN) at SPE) and randomly selected
controls (n = 127) selected as previously described, with the additional criterion of having serum
available for analysis.[19,31,32] Subjects (n = 15/group) in the metabolomics cohort were chosen
from the parent cohort for untargeted metabolome assessment if they maintained stable case
assignment as previously described, Fig 1.[27] This cohort functions as a training set.

The clinical biomarkers and serum cytokines and chemokines identified in the metabolo-
mics cohort were fully available for validation in (n = 43/96) cases of WTC-LI and (n = 71/
127) controls that did not overlap with the metabolomics cohort. For clarity, we will refer to
this subset of the parent cohort as the validation cohort. [31] Note that the metabolomics and
validation cohorts are disjoint subsets of the parent cohort by design, Fig 1.

Demographics and clinical data were obtained from the WTC-Health Program
(WTC-HP). Exposure intensity is categorized as per the FDNY-WTC Exposure Intensity
Index and is based on first arrival time at the WTC site, as described.[15,33,34] Specifically,
subjects are considered highly exposed if they arrived the morning of 9/11, intermediate expo-
sure if they arrived the afternoon of 9/11, and low exposure if they arrived on or after Septem-
ber 12, 2001.[28]

Analytical methods of high throughput OMICs platforms

Biomarkers. Serum collected within 200 days after 9/11 was processed and stored as pre-
viously described.[19,23,31,32,35] Serum was thawed once and assayed on the following com-
mercially available multiplexed kits (Millipore and R&D) according to manufacturer’s
instructions on a Luminex 200IS (Luminex Corporation, TX): cardiovascular (HCVD1-67AK,
Millipore), neurodegenerative (HNDG2-36K, Millipore), metabolic (HMH-34K, Millipore),
39-plex (MPXHCYTO-60K, Millipore), soluble receptors (HSCR-32K, Millipore), TIMP
(R&D Systems), and Apolipoprotein (APO-62K, Millipore).[19,20,31,36] Samples were pro-
cessed in approximately 2:1 ratio of controls to cases to avoid batch bias, and analyzed with
MasterPlex QT (Version: 1.2; MiraiBio). Serum was quantified in the parent cohort.
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Exposed Rescue and

Recovery Workers

Enrolled in WTC-HP
N=12,781

Baseline Cohort

Inclusion Criteria
1. Never-smoking, male firefighters
2. FEV=LLN prior to 9/11
3. Arrived at WTC site by 9/13
4. Accurate NHANES PFT normative data

N=801

Parent Cohort

Randomly selected from
Baseline Cohort
Inclusion Criteria
1. Serum available for stud
WTC-LI
N=96

Control
N=127

Metabolomics Cohort Validation Cohort

Inclusion Criteria
1. Stable WTC-LI or control assignment
2. No chronic sinusitis diagnosis

Inclusion Criteria
1. Not in Metabolomics Cohort
2. All serum biomarkers available

WTC-LI Control WTC-LI Control
N=15 N=15 N=43 N=71
Training Validation

Fig 1. Study Design. From a parent cohort of WTC-LI cases (n = 96) and controls (n = 127), a metabolomics
subcohort (n = 15/group) and a validation cohort (n = 114) were drawn as described.

https://doi.org/10.1371/journal.pcbi.1009144.g001

Metabolomics. Serum aliquots were at -80°C until metabolite quantification. Compounds
were matched to corresponding library entries of retention index, mass, and spectral data as
previously described.[37-40] Qualified metabolites were detected in 80% or more of subjects
per group with a relative standard deviation of 15% or greater.[41] In qualified metabolites,
missing data was imputed by using the minimum observed value of each compound, as previ-
ously described.[27]

Analysis pipeline. Global metabolomic profiling was performed on the metabolomics
cohort (n = 15/group). Curated data of the qualified profile (n = 580 metabolites) incorporated
with serum analytes quantified via Luminex (n = 106 cytokines, chemokines) and clinical bio-
markers (n = 5) into random forests (RF) models consisting of 5,000-500,000 trees in incre-
ments of 5,000 trees to determine the minimal amount of trees required to achieve rank
stability, defined as zero pairwise differences in prospective refined profile membership
among 10 replicate random forests (randomForest 4.6.14, R-Project) similar to previously
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described, S1A Fig.[27] Variables ranking within the top 5% of mean decrease accuracy scores
were included in the refined profile. Of the 10 replicate models, we report the mean decrease
accuracy of the model with the lowest out-of-bag classification error rate. To account for the
potential confounding effects of multicollinearity on classical permutation importance, we
measured the permutation importance of each variable conditioned on all other variables in
this random forest (i.e. the Conditional Permutation Importance) using a version of the R
package permimp 1.0.1 that was customized in-house to support parallel processing.[42-45]
To assess the classification accuracy of the refined profile as the out-of-bag error rate, a second
iteration of RF was run. The number of trees ranged from 500-15,000 in increments of 500; 10
replicate forests were grown at each increment.[46] Furthermore, we measured variable
importance in forests trained using only the refined profile to gain insight into individual bio-
marker contribution in a lower-dimensional setting. For all random forests, at each node, the
square root of the number of total model variables were sampled with replacement. The R
packages doParallel 1.0.16, doRNG 1.8.2, and foreach 1.5.1 assisted with parallel processing.

Principal component analysis (PCA) (SPSS 23, IBM) of the correlation matrix of mean-cen-
tered, normalized attributes was employed to visualize potential mechanistic relationships
between metabolites and other data. The number of components retained was determined
based on analysis of the scree plot. Unsupervised two-way hierarchical clustering was per-
formed on the refined profile’s data matrix using Spearman correlation and average linkage
(Matlab R2018a). Linkage thresholds of 0.78 and 1.10 were used to define clusters of metabo-
lites and subjects, respectively.

Validation. Cytokines, chemokines, and clinical biomarkers identified in the refined pro-
file of the metabolomics cohort were fully available for validation of a multivariate predictive
model of WTC-LI in the non-overlapping parent cohort via binary logistic regression. There
are several ways to build predictive models of disease based on a subset of important features.
These include support vector machines which allow flexible modelling of nonlinear effects and
interactions among biomarkers. We chose binary logistic regression to construct a linear com-
binator of identified biomarkers for differentiating cases from controls that would be inter-
pretable.[31] Least absolute shrinkage and selection operator (LASSO) was used to identify an
optimal subset of serum analytes in a binary logistic regression (R package glmnet 4.1).[47,48]
Additional variables were included based on high mean decrease accuracy in the RF of the
metabolomics cohort. Variables were dichotomized using Youden’s index. Multicollinearity
was assessed on continuous variables via Pearson correlation, and, where significant (p<0.05),
handled via generation of composite variables post-dichotomization. Performance of logistic
regressions was assessed via AUCroc (R package pROC 1.16.2). We have opted to construct
receiver-operator characteristic (ROC) curves and report AUCRoc as the main criteria of the
model because ROC curves and AUCgq( are appropriate in the setting of balanced classes.
The final model underwent 5-fold cross-validation to assess generalizability (R package boot
1.3.25).[49] All logistic regressions were confounder-adjusted for age on 9/11, BMI at SPE,
exposure, and Pre-9/11 FEV ¢p eq.

Statistics, database management and multivariate model development

SPSS 23 (IBM) was utilized for data storage and handling. Data analysis was performed in R
(3.6.0 and 4.0.3, R-Project). Continuous and ordinal variables were expressed as median and
inter-quartile range. Wilcox test was used to compare continuous and ordinal data. For cate-
gorical data, count and proportions were used to summarize and Pearson-y” was used for
comparison. For all tests, p<0.05 was considered significant. Correlations were calculated
using the R package Hmisc 4.4.2. SPSS file formats were read and written in R haven 2.3.1.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009144  July 21, 2021 5/19


https://cran.r-project.org/
https://doi.org/10.1371/journal.pcbi.1009144

PLOS COMPUTATIONAL BIOLOGY

PEDF, a Pleiotropic WTC-LI Biomarker

Additionally, the R package matrixStats 0.57.0 was used to perform some row- and column-
wise computations. Finally, ggplot2 3.3.2 was used for tune result visualizations.

Computing resources

Big Purple (https://hpcmed.org/resources) was used for computing and includes Cray CS500,
Skylake 6148, 20-core, 2.4GHz, 150W processors, 32GB DDR4-2666 DIMMs (DUAL
RANKED), 384 GB/node, 9.6 GB/core, 2TB SATA disk, 2TB NVMe SSD and an EDR 100Gb/s
Infiniband network interface for MPI and Data traffic. Additional, hardware details can be
found at (https://hpcmed.org/resources/bigpurple/hardware).

Results

Demographics

The metabolomics cohort has been previously comprehensively described in terms of clinically
available lipids, leukocyte differentials, and metabolic biomarkers.[27] The parent cohort has
also been previously described in terms of its available clinical characteristics.[20] In the pres-
ent study, we did not consider differential expression of serum cytokines and chemokines in
the parent cohort. We additionally provide clinical characteristics and serum cytokines and
chemokines of the metabolomics and validation cohorts used in this paper, Table 1.

Table 1. Clinical measures for primary endpoint.

WTC-LI (N = 43)

Control (N =71)

WTC-LI (N = 15)

Control (N = 15)

Age on 9/11 (y) 41 (36-46) 41 (37-44) 39 (37-46) 42 (38-46)
Race Caucasian 39 (91%) 70 (99%) 15 (100%) 15 (100%)
African American 4(9%) 1 (1%) 0 (0%) 0 (0%)

BMI at SPE (kg/m?)
BMI at WTC-HP (kg/m?)

29.41 (27.47-34.20)
28.97 (27.26-32.45)

29.74 (26.90-31.57)
28.59 (26.97-30.85)

30.28 (27.80-31.42)
29.29 (25.82-31.24)

25.66 (24.40-27.98)
25.84 (25.10-27.37)

Pre-9/11 FEV o,pred 95 (83-105) 104 (94-113) 85 (83-90) 97 (92-105)
SBP (mmHg) 120 (110-132) 120 (110-128) 119 (108-129) 110 (100-112)
Exposure Low 7 (16%) 8 (11%) 4(27%) 1 (7%)
Intermediate 24 (56%) 49 (69%) 8 (53%) 11 (73%)
High 12 (28%) 14 (20%) 3 (20%) 3 (20%)
PEDF (pg/cL) 1.70 (1.12-3.86) 4.03 (1.41-5.03) 1.14 (0.71-4.24) 5.29 (4.39-5.73)
MDC 1517.59 (1254.37-1988.01) 1428.08 (1074.94-1837.64) 1899.30 (1649.77-2312.16) 1334.72 (892.12-1395.58)
MIP-4 (ng/mL) 155.65 (105.07-201.04) 198.08 (123.85-1036.74) 137.74 (106.58-283.08) 1207.36 (194.90-1674.58)
GRO 707.87 (460.34-1094.75) 708.49 (567.38-929.57) 811.81 (671.70-1143.64) 485.20 (412.83-615.32)
MCP-1 543.18 (366.42-765.20) 544.07 (403.57-654.20) 589.41 (495.64-1087.35) 398.23 (314.11-493.11)
sIL-2Ra 555.01 (462.04-741.69) 535.63 (390.08-787.68) 573.39 (534.55-736.32) 419.91 (273.28-580.45)
Amylin 53.45 (35.40-67.48) 58.39 (46.37-147.64) 53.45 (46.20-55.12) 63.25 (55.12-153.36)
sCD40L 9032.94 (5223.64-16242.28) 8306.12 (4893.05-15116.64) 15834.16 (8255.89-28494.18) 5070.92 (712.82-9163.09)
MMP-1 402.79 (141.08-767.15) 861.41 (337.84-1441.27) 130.70 (75.64-633.73) 647.26 (286.43-1368.21)
sVEGFR1 457.86 (343.76-626.35) 457.86 (343.76-627.62) 480.31 (249.97-749.74) 377.41 (292.12-420.08)
EGF 64.14 (29.11-125.71) 64.88 (43.50-132.55) 117.37 (33.49-246.65) 47.23 (23.42-74.38)
Leptin 7756.10 (4638.00-13557.20) 6428.99 (4021.21-10479.97) 8377.03 (5583.98-18744.24) 4344.83 (1964.47-6250.28)
Apo All (ug/mL) 1818.81 (632.93-2479.78) 780.70 (418.96-1594.96) 913.40 (319.21-4298.69) 673.30 (538.10-1554.70)
MMP-13 61.89 (9.98-117.47) 74.65 (8.94-133.06) 12.65 (8.93-101.87) 113.16 (2.00-177.31)

Values are in Median (IQR) or N (%) as indicated; p calculated by Wilcox test or Chi-Square as appropriate; Apo AlI available for 14 controls in metabolomics cohort.
Analytes are pg/mL unless otherwise stated. Apo AlI is shown in units pg/mL for readability but analyzed in ng/mL.

https://doi.org/10.1371/journal.pchi.1009144.t001
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In the metabolomics cohort, cases of WT'C-LI had significantly elevated SBP, BMI at
WTC-HP and SPE, MDC, GRO, MCP-1, sIL-2Ra,, sCD40L, EGF, and Leptin, and significantly
decreased Amylin compared to controls. Additionally, cases of WTC-LI and controls were not
significantly different in Apo-AIl.

In the validation cohort, cases of WTC-LI had significantly elevated Apo AIl compared to
controls; however, cases of WTC-LI and controls were not significantly different in BMI at
WTC-HP or SPE, systolic blood pressure (SBP), MDC, GRO, MCP-1, sIL-2Ro,, Amylin,
sCD40L, EGF, or Leptin. Finally, there were no observed differences in clinical biomarkers or
serum analytes between controls in the validation cohort and those in the parent cohort, nor
were there differences in clinical biomarkers or serum cytokines and chemokines between
cases of WTC-LI in parent and validation cohorts.

In both the metabolomics and validation cohorts, cases of WTC-LI had significantly
decreased pre-9/11 FEV opreq, PEDF, MIP-4, and MMP-1 compared to controls; however,
there were no significant differences in age on 9/11, race, exposure, sVEGFR1, and MMP-13
between cases of WTC-LI and controls in either cohort.

Finally, controls in the validation cohort significantly differed from controls in the metabo-
lomics cohort in BMI at WTC-HP and SPE, SBP, PEDF, MDC, GRO, MCP-1, sIL-2Ra,
sCD40L, and Leptin; however, cases of WT'C-LI in the validation cohort did not differ from
cases of WT'C-LI in the metabolomics cohort in clinical biomarkers or serum cytokines and
chemokines. Furthermore, relative expression of cases of WT'C-LI compared to controls were
preserved for these biomarkers across both cohorts, with the exceptions of BMI at SPE, SBP,
GRO, and MCP-1, which were elevated in cases of WTC-LI compared to controls in the meta-
bolomics cohort, but had a fold change of approximately 1 in cases of WTC-LI compared to
controls in the validation cohort.

Metabolomics

We have previously characterized 765 detected and 580 qualified metabolites.[27] We included
the qualified metabolites in RF with serum, clinical, and environmental biomarkers to assess
the most discriminative variables as those with a mean decrease accuracy score within the top
5% of scores. The tuning process determined the minimum number of trees (n = 345,000) that
resulted in 0 average pairwise unique elements among prospective refined profiles of 10 repli-
cate random forests, S1A Fig. This yielded a refined profile of 19 metabolites (largely sphingo-
lipids, phospholipids, fatty acids, and amino acids), 14 serum biomarkers (including protease/
antiprotease, metabolic inflammatory, innate immunity inflammatory, and soluble receptor
biomarkers), and 2 clinical biomarkers (BMI at WTC-HP entry and SBP), Fig 2A. Member-
ship in the refined profile was identical using the variable importance ranking produced by
conditional permutation importance, S1B Fig. A second RF trained on only the refined profile
achieved a 0% estimated out-of-bag error rate with 1,500 trees, S2A Fig. Furthermore, an addi-
tional analysis of variable importance was performed using the smallest forest (1,500 trees) to
achieve the minimal error rate. Variable importance ranking derived from both classical and
conditional permutation importance were similar to each other (Spearman’s rank correlation
0f 0.942, p<0.001) and to the variable importance ranking derived using the qualified profile
(Spearman’s rank correlations of 0.812, p<0.001 and 0.770, p<0.001, respectively), S2B and
S2C Fig.

Clustering of the data matrix of the refined profile identified 5 clusters (C1-5) reflective of
potential mechanistic relations, Fig 2B. C1—elevated in controls—contained vascular bio-
markers, as well as amino acids and peptides. In C2, amino acids predominated and were
decreased in WTC-LI. Fatty acids primarily comprised C3, many of which were elevated in

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009144  July 21, 2021 7/19


https://doi.org/10.1371/journal.pcbi.1009144

PLOS COMPUTATIONAL

BIOLOGY

PEDF, a Pleiotropic WTC-LI Biomarker

N-acetylasparagine
PEDF Q Prolina
1 MMP-1
MDC| -~ Q@ \PEDE
SBP Y L
ie4 i 2 Spmiie
feTo]| TR oo o s o nthionine
MCP-1 A:rahqna e/xylo‘r[ale o
Arachidonate (20:4n6) PUFA (n3 and n6) otz wschtoroy S (10304]
Sphingosine Sphingolipid 3 /\fgarfia'uﬁé'.?’(i'nz:n(l 4no)
BMI, WTC-HP linginePn ae
N2-acetyllysine Lysine §§§%naixme
siL-2Ra| - - Sphingosine
- ICP-1
Amylin | S
Arabonate/xylonate Pentose D
2-hydroxypalmitate Fatty Acid, Monohydroxy B, Wrc-HP
sCD40L ot
Uridine Pyrimidine Metabolism, Uracil containing 5 Scerri
SVEGFR1 :
MMP-1 c -1.0— |
EGF . !
Leptin N-acalylasparagine |
Serotonin (<) Tryptophan 5] }
1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) (<) Phospholipid Q L oot
N-acetylglutamine| - - - - - : """""""""""""""""""" Glutamate 3 P"m"“"edw EWTCEEL I
Lanthioninef -----@----- - - Chemical S - !
Sofingani P4 @Amino Acid Sohinalinid 0-F Noweubne . L
phinganine Catbohyaiat phingolipi 2 proine @ 1 Q@ e
Proline| - -~ - - o Qo -arbohydrate -|Urea cycle; Arginine and Proline 1 Provienyiamitine ) Sphingosine @
1-arachidonoyl-GPE (20:4n6)| - - - @ - - - Q@Lipid {Lysolipid B g " @9 | oo
1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) (<] @Nucleotide Phospholipid 5% Mm’;"aw% SAmyin SPhinganine smmn‘nfc} %
Prolylglycinel -~ @~~~ Q@Peptide ‘|Dipeptide & (* B o : si2Ra
N-acetylasp;r agl:f 8 @ Xenobiotic Alanine and Aspartate - . | 1-araah\duney\-GPEo(20:4n6) sep
po All Protease/antiprotease 1.0 N-acabyigiuamine SVEGFR1 N
Dimethylglycine] - @ - - o : P | Glycine, Serine and Threonine ’ fcioneto (20:4r6)- ,%ﬂl"y"z’”m‘“““s"c Vsl
Methylsuccinate o Q@Metabolic Inflammatory Leucine, Isoleucine and Valine O o Q .
) s 5. 2-hydroxypalmitate N N
Propionylcarnitine| - - - @ - -~ - @Innate Immunity Inflammatory| | Fatty Acid (also BCAA) @ 2 f,?% Uridine N
MMP-13}---- @ ----- - @Soluble Receptor - "\V/qo}"o% 1-paimitoyl-2-arachidonoyk-GPC (16:0/20:4n6) \\
e 3.7%) N
o ent 1 (2 |
.000 .001 .002 .003 .004 .005 .006 o R e o
1.0 S :

Mean Decrease Accuracy

Fig 2. Random Forests Variable Importance. A. Mean decrease accuracy was used to determine and rank the top 5% of important metabolites, cytokines, chemokines,
and clinical biomarkers. B. Agglomerative, Hierarchical Clustering identified 5 clusters of variables in the refined profile with similar patterns of expression in the
metabolomics subcohort. C. PCA Loading Weights Plot visualizes clusters of variables based on intervariable correlations and provides an alternative-but-similar view
of variable relationships in the metabolomics subcohort. Points are colored according to cluster membership.

https://doi.org/10.1371/journal.pcbi.1009144.9002

cases of WT'C-LI, and in controls. Variables in C4 were also generally elevated in WT'C-LI,
and included vascular biomarkers (sphingolipids, SBP). Finally, C5 contained sVEGFRI and
GRO, which were elevated in cases of WTC-LI.

PCA of the refined metabolite profile captured 73.3% of variance in the 7 components
retained based on examination of the scree plot. The PCA loading weights plot provides an
alternative, low-dimensional view of the variables in C1-5, and the clustering patterns observed
in the loading weights plot are reflective of the structure of C1-5.

Validation of serum and clinical biomarkers in WTC-LI vs. controls

RF analysis uncovered several previously unidentified serum biomarkers in the metabolomics
cohort. Using binary logistic regression, we aimed to validate these serum biomarkers in the
validation cohort.

Biomarkers identified by integrated MultiOMICs approach

To analyze the relationship between all cytokines, chemokines, and clinical biomarkers identi-
fied in RF as continuous variables and potential confounders, we transformed exposure into
dummy variables and determined an optimal model using LASSO set to maximize 5-fold
cross-validated AUCRroc. Metabolites were not fully available in the validation cohort and so
were not included in the use of LASSO. MIP-4, MMP-1, Apo AIl, MDC, Amylin, Pre-9/11

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009144  July 21, 2021 8/19


https://doi.org/10.1371/journal.pcbi.1009144.g002
https://doi.org/10.1371/journal.pcbi.1009144

PLOS COMPUTATIONAL BIOLOGY PEDF, a Pleiotropic WTC-LI Biomarker

Table 2. LASSO regression.

Coefficient

MIP-4 -1.427 e-04

MMP-1 -3.168 e-04

Apo AIl 1.498 e-08

MDC 1.659 e-04

Amylin -9.477 e-04

Pre-9/11 FEV opreq -3.010 e-02

Exposure Intermediate -8.066 e-02

Analyte units: MIP-4 and Apo AIl ng/mL; MMP-1 pg/mL.

https://doi.org/10.1371/journal.pchi.1009144.t002

FEV | opred> and intermediate exposure remained in the model with AUCgoc (Standard
Error) of 0.728(0.066), Table 2 and S3 Fig.

To handle potential multicollinearity, we then included other variables that were important
predictors in the metabolomics cohort, but were significantly correlated (p<0.05) with other
variables in the initial regression, Fig 2. Here, we considered the top 6 variables by mean
decrease accuracy in the refined profile—there was appreciable drop in mean decrease accu-
racy after these variables.

Univariate regression analysis was conducted to characterize the relationship between
WTC-LI and the analytes of interest identified via LASSO or the refined biomarker profile—
PEDF, MDC, MCP-1, MIP-4, GRO, SBP, MMP-1, and Apo AlI, Table 3.

This process provides insight into the contribution and performance of single biomarkers
as measured by OR and AUCRqc, Table 3. MMP-1 and MIP-4 were significant in univariate,
confounder-adjusted models.

In building the final model, we optimized biomarker cutpoints via Youden’s Index. To
account for significant correlations observed in Fig 2B, we created composite variables.

The relationship between these variables and WTC-LI was analyzed in confounder-adjusted
binary logistic regressions, which are summarized along with AUCro as a performance
measure, Table 3. Apo AII>1794.22pug/mL, MMP-1>832.48pg/mL, (PEDF<3.94pg/cL and

Table 3. Univariate and composite models.

Univariate OR (95% CI) Univariate p AUCRoc (95% CI)

GRO 1.000 (0.999-1.001) 0.495 0.711 (0.608-0.815)

SBP (mmHg) 0.991 (0.957-1.026) 0.612 0.719 (0.616-0.822)

MCP-1 1.000 (0.998-1.002) 0.776 0.710 (0.607-0.812)

MDC 1.001 (1.000-1.001) 0.100 0.717 (0.615-0.819)

Apo AII (ng/mL) 1.000 (1.000-1.000) 0.077 0.741 (0.644-0.837)

MMP-1 0.999 (0.998-1.000) 0.012 0.755 (0.661-0.849)

MIP-4 (ng/mL) 0.998 (0.996-0.999) 0.017 0.783 (0.697-0.869)

PEDF (pg/cL) 0.824 (0.665-0.978) 0.058 0.743 (0.647-0.838)

Apo AII > 1794.22 (ug/mL) 8.044 (3.086-22.931) <0.001 0.812 (0.729-0.895)

MMP-1 > 832.48 0.173 (0.062-0.440) <0.001 0.799 (0.713-0.884)

SBP > 127.5 (mmHg) 1.280 (0.460-3.539) 0.633 0.714 (0.610-0.817)

GRO > 580.28, MCP-1 > 279.07, and MDC < 1756.99 0.327 (0.127-0.787) 0.015 0.760 (0.665-0.854)
PEDF < 3.94 (pg/cL) and MIP-4 < 368.70 (ng/mL) 5.252 (2.150-13.900) <0.001 0.797 (0.712-0.882)

Analytes are pg/mL unless otherwise stated. All models were adjusted for the potential confounders age on 9/11, BMI at SPE, pre-9/11 FEV o,preq> and exposure.

https://doi.org/10.1371/journal.pchi.1009144.t003

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009144  July 21, 2021 9/19


https://doi.org/10.1371/journal.pcbi.1009144.t002
https://doi.org/10.1371/journal.pcbi.1009144.t003
https://doi.org/10.1371/journal.pcbi.1009144

PLOS COMPUTATIONAL BIOLOGY PEDF, a Pleiotropic WTC-LI Biomarker

Table 4. Final multivariate model.

OR (95% CI) p
PEDF < 3.94 (pg/cL) and MIP-4 < 368.70 (ng/mL) 8.874 (2.112-47.363) 0.005
SBP > 127.5 (mmHg) 2.122 (0.567-8.481) 0.270
Apo AII > 1794.22 (ug/mL) 15.445 (4.566-66.932) <0.001
MMP-1 > 832.48 0.375 (0.083-1.569) 0.185
GRO > 580.28, MCP-1 > 279.07, and 0.299 (0.085-0.951) 0.047
MDC < 1756.99
Age on 9/11 (y) 1.010 (0.922-1.104) 0.823
BMI at SPE (kg/m?) 0.936 (0.828-1.055) 0.268
Pre-9/11 FEV, opred 0.946 (0.902-0.983) 0.010
Exposure Low Reference
Intermediate 0.235 (0.042-1.151) 0.082
High 0.551 (0.076-3.689) 0.540

Analytes are pg/mL unless otherwise stated.

https://doi.org/10.1371/journal.pchi.1009144.t004

MIP-4<368.70ng/mL), and (GRO>580.28pg/mL, MCP-1>279.07pg/mL, and
MDC<1756.99pg/mL) were significant in univariate, confounder-adjusted models, while
SBP>127.5mmHg was not significant.

The variables initially identified via LASSO were then transformed to dichotomous variables
using Youden’s index. These variables, along with dichotomous and composite variables corre-
sponding to those with the highest mean decrease accuracy score within the refined profile,
were included in a final, confounder-adjusted, binary logistic regression, Table 4 and Fig 3.

PEDF<3.94pg/cL and MIP-4<368.70ng/mL, (GRO>580.28pg/mL, MCP-1>279.07pg/mL,
MDC<1756.99pg/mL), and Apo AII>1794.22ug/mL, were significant in this model, which
achieved an AUCgroc of 0.902 (95% CI 0.842-0.961), Fig 3. Furthermore, we validated the
final multivariate model using 5-fold cross-validation. The estimated bias-corrected prediction
error was 0.160.

Discussion

Lung injury is heterogeneous in cause, process, and outcome. The biomarkers found to be
important to the development of WTC-LI similarly are heterogenous.[19,20,22-28,31,32,34—
36,50-54] The integration of high-throughput platforms with classical clinical measurements,
serum cytokines, and chemokines represent a promising avenue to characterization of disease
and identification of therapeutic targets for lung injury; however, approaching such a high-
dimensional dataset may be restrictively complex. In this paper, we presented an automated
data pruning method and successfully integrated metabolomics data with a longitudinal data-
set of serum cytokines and chemokines, and other clinical measures in 9/11 FDNY rescue and
recovery workers exposed to WTC-PM.

We discovered several novel biomarkers of WTC-LI—including PEDF—in a cohort with
untargeted metabolomics, and analyzed biomarker relationships in a hypothesis-generating
fashion to identify potential cellular signaling cascades. We then validated the predictive ability
of the cytokines, chemokines and clinical biomarkers in a broader cohort.

PEDF—the most important variable in RF of the metabolomics subcohort and one of the
most predictive in univariate, confounder-adjusted binary logistic regressions—is a pleiotropic
glycoprotein that belongs to the serpin superfamily of serine protease inhibitors.[55] PEDF is a
multifunctional protein with important roles in regulation of inflammation and angiogenesis,
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Fig 3. Predictive performance of Final Model. ROC,yc of the final, confounder-adjusted, multivariate binary logistic regression shows its predictive
performance as well as that of its constituents when entered separately in confounder-adjusted binary logistic regressions.

https://doi.org/10.1371/journal.pchi.1009144.9003

and has been implicated in several lung injury patterns. It is produced by various cell types,
including endothelial cells. In pulmonary fibrosis, PEDF is an angiostatic factor.[56] Further-
more, PEDF expression contributes to modulation of the inflammatory and angiogenic pheno-
type of the lung endothelium, which is key to several conditions such as pulmonary
hypertension.[57] This non-inhibitory protein plays critical roles in many physiological and
pathological processes by acting through multiple high affinity ligands and cell receptors.
[55,58] PEDF is notably involved in organogenesis and the homeostatic maintenance of adult
tissues/organs. The mRNA that encodes PEDF (SERPINFI mRNA) is expressed in most tis-
sues/organs. In addition to regulating fibrosis in the lung, PEDF regulates angiogenesis in the
lung, pancreas, kidney, and eye, as well as lipid metabolism in the liver. PEDF also plays a role
in bone cell differentiation. Deficiencies or defects of PEDF protein expression can lead to
abnormal organ development and are closely associated with the progression of angiogenic
diseases.[58] Because of PEDF’s abundance and variety of functions in the body, PM-associ-
ated PEDF alterations could be a mediator of systemic effects secondary to oropharyngeal aspi-
ration of or inhalational exposure to PM. Clinical studies have shown that PEDF is correlated
with idiopathic pulmonary fibrosis (IPF), COPD, lung cancer, MetSyn, and diabetes.[58,59]
Specifically, elevated PEDF levels are involved in the pathogenesis of COPD and IPF.[30,56] In
a study by Li et al., PEDF expression levels were upregulated in both cigarette smoke extract-
stimulated epithelial cells and cigarette smoke-exposed rat lung.[30] Additionally, a significant,
negative correlation between PEDF levels and lung function was shown, with plasma PEDF
levels in COPD patients significantly higher than those in both the healthy nonsmoking and
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smoking subjects. These results indicate the elevation of PEDF plays a role in the pathogenesis
of COPD by mediating inflammatory signaling processes.[30]

Reduced PEDF expression facilitates the progression of lung cancer due to the loss of
PEDF-related suppression of tumor growth and motility.[60] PEDF is an adipocyte-secreted
protein that acts as a pro-inflammatory factor by activating inflammatory signaling in several
cell types. Therefore, PEDF contributes to the onset and maintenance of chronic inflammation
in obesity and obesity-induced insulin resistance, and related complications such as MetSyn
and type 2 diabetes mellitus.[61,62] Serum levels of PEDF are higher in patients with MetSyn
and type 2 diabetes.[62,63] PEDF expression is elevated in proportion to the accumulation of
the number of components of MetSyn in the general population. Nakamura et al. demon-
strated that waist circumference, triglycerides, and creatinine were significant independent
determinants of serum PEDF levels in diabetics; [63] however, strong, well-known risk factors
such as age, blood pressure, and smoking were not related to PEDF.[63] PEDF has been
shown to have neurotrophic and neuroprotective effects, and has been implicated in the patho-
genesis of Alzheimer’s Disease.[64]

Additionally MMP-1, a protease which has been implicated in lung fibrosis, interstitial
pneumonia, and cancer, was found to be important in our model.[65,66] Proteases have a
prominent role in cancer, coronary disease, and OAD.[67-71] Increased protease activity is a
component of many diseases, including cigarette-induced chronic lung disease and other
causes of accelerated lung function decline.[67-70] MMPs’ central role in lung remodeling
and pathogenesis of OAD has been of particular interest. MMPs are a family of Zn**-depen-
dent proteases that can catabolize and degrade the extracellular matrix. Levels of MMPs are
affected by environmental factors such as hypoxia, inflammation, and oxidative stress; MMPs
as biomarkers of lung disease severity and prognostic indicators have been investigated in sev-
eral studies.[67,72-74]

A metabolic hotspot

In C4, sphingolipids (sphinganine, sphingosine) displayed similar expression as other regula-
tors of vascular proliferation and metabolic indicators (BMIL, Leptin) and several immune-cell
signaling molecules (IL-2Ra, sCD40L, MCP-1, and MDC). Biomarkers of inflammation such
as MDC and of MetSyn, were observed in serum drawn within 6 months of WTC exposure,
and predicted the post-9/11 loss in FEV in this cohort of WTC-exposed FDNY firefighters.
[19,31] The proximity of drivers of vascular proliferation to markers of metabolic dysregula-
tion in this cluster is interesting in the context of the potential interaction between angiogene-
sis and adipogenesis.[75] Furthermore, the presence of immune-cell signaling molecules in
this cluster could be reflective of a phenotype of chronic inflammation concomitant with obe-
sity that has been observed in this cohort. Our prior works have found that triglyceri-
des>150mg/dL and BMI>30kg/m? impart more risk on development of WTC-LI than
smoking or exposure alone. We also know that there is a dose-response with increasing num-
ber of MetSyn characteristics and risk of WTC-LI.[19,22,24-28] Many of these mediators are
also important in acute lung injury and fibrosis.[76,77]

In contrast to C4, C1 displayed an opposite elevation pattern. Containing PEDF, the
decreased expression of C1 further supports a claim of potentially excessive angiogenesis that
has been associated with lung diseases, including asthma, as well as PEDF’s previously dis-
cussed myriad consequences of dysregulation. Furthermore, in C5, sVEGR1’s moderate eleva-
tion in WTC-LI is consistent with this picture.

C2 was the most similar cluster to C1 and contained Amylin and MIP-4. These biomarkers
are metabolically active (Amylin) and mediators of inflammation in adaptive immunity (MIP-
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4). Therefore, their clustering proximity is of interest in the context of the interaction of meta-
bolic heath, inflammation, and pulmonary health. MIP-4 is a chemokine and involved in both
innate and adaptive immunity. MIP-4 (CCL18) is an early promoter of Treg differentiation
and may generate an anti-inflammatory counter-regulatory response.[20,78,79]

Additional biomarkers were identified as being associated with WTC-LI. Similar to MCP-1,
MDC, and MIP-4, GRO was also found to be important in our WTC-LI model and further
revealed immune cell involvement in WTC-LI pathogenesis.[80] GRO—also relevant in acute
and chronic lung inflammation such as fibrosis—is part of a chemokine receptor system that
mediates neutrophil recruitment.[81-84] In addition, lipids are a diverse group of bioactive
compounds that have been implicated in the development of lung disease. Elevated levels of
Apo AII were associated with pulmonary arterial hypertension in Sickle cell disease, suggest-
ing a role in pulmonary vascular injury.[85] This is in line with our prior observation that dys-
lipidemia predicts poor outcome after WTC dust exposure.[19,20]

In light of the integrated metabolomics and the added granularity in phenotyping, the find-
ings of our final multivariate binary logistic regression show the strength of early-identification
of disease that may predict a non-resolving pathology. In comparison to prior work, the inte-
grated multiplatform model developed here had 6.7% improved performance compared to a
metabolomics-only model of disease in this cohort.[27] Furthermore, the final model based on
serum and clinical biomarkers identified by the data analysis pipeline in the present study had
higher AUCgoc (0.858 vs. 0.902) compared to previous work in a similar cohort.[20] Future
investigation will include contemporary assessment of the metabolome, and should also
include additional assessment of serum cytokines and chemokines. Such research could deter-
mine the degree to which present-day omics displays features predicted by early-disease bio-
markers, and the potential these features have as therapeutic targets both proximal to exposure
and years later.

This study has several limitations

The metabolome is only assessed at a single time point, and therefore limits our ability to
understand how longitudinal metabolomic variations relate to the development of WTC-LL
Given the size of the metabolomics analysis cohort, we attempted to minimize confounding
effects by selection from a homogeneous subject pool; cases of WT'C-LI and controls in the
metabolomics cohort only differed in BMI, SBP, and HR, but were no different in other meta-
bolic and inflammatory biomarkers. In our metabolomics cohort, we controlled for baseline
effects due to BMI variations via percent-predicted-based case definitions.

Finally, the limitations of the present analysis pipeline have been previously described.
[27,29] Briefly, any machine learning model is specific to its training data. Given the size of the
metabolomics cohort, we have used machine learning methods that avoid overfitting. We can-
not support claims of causality from the present analysis, but we can identify potentially
important associations and support our findings with relevant literature. While we lack an
external validation cohort for the trends observed in metabolomics, we have validated the
serum, clinical, and environmental biomarkers via the binary logistic regression model built
on the validation cohort. Note that the metabolomics and validation cohorts are subject to the
same pre-analytical and analytical biases, and thus our biomarkers have yet to be evaluated in
a truly independent test cohort. To address multicollinearity in the high-dimensional inte-
grated dataset of metabolites, clinical, and other serum biomarkers, we assessed variable
importance via conditional permutation importance, but found no differences in refined pro-
file membership compared to classical permutation importance. To handle multicollinearity
in the final model, we used dichotomous and composite variables. Dichotomization can
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reduce statistical power. So, we assessed generalizability of our model using 5-fold cross valida-
tion.[86]

Conclusion

Automated data pruning successfully identified a set of maximally discriminative biomarkers
in a high-dimensional systems biology dataset and validated these biomarkers in an indepen-
dent cohort using standard regression techniques. Additionally, we have used pattern recogni-
tion methods to visualize associations between maximally predictive metabolites and
biomarkers, and potentially elucidate mechanistic relations. PEDF may be an important medi-
ator in WTC-LI and OAD. Future research to discover PEDF’s role in pathogenesis will
include targeted molecular imaging and transcriptional quantification to determine PEDF’s
activity at relevant tissues and organs.
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