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The G protein-coupled estrogen receptor (GPER), also known as GPR30, is a widely
conserved 7-transmembrane-domain protein which has been identified as a novel 17b-
estradiol-binding protein that is structurally distinct from the classic oestrogen receptors
(ERa and ERb). There are still conflicting data regarding the exact role and the natural
ligand of GPER/GPR30 in reproductive tracts as both male and female knock-out mice
are fertile and have no abnormalities of reproductive organs. Testicular germ cell cancers
(TGCCs) are the most common malignancy in young males and the most frequent cause
of death from solid tumors in this age group. Clinical and experimental studies suggested
that estrogens participate in the physiological and pathological control of male germ cell
proliferation. In human seminoma cell line, while 17b-estradiol (E2) inhibits in vitro cell
proliferation through an ERb-dependent mechanism, an impermeable E2 conjugate (E2
coupled to BSA), in vitro cell proliferation is stimulated by activating ERK1/2 and protein
kinase A through a membrane GPCR that we further identified as GPER/GPR30. The
same effect was observed with low but environmentally relevant doses of BPA, an
estrogenic endocrine disrupting compound. Furthermore, GPER/GPR30 is specifically
overexpressed in seminomas but not in non-seminomas and this overexpression is
correlated with an ERb-downregulation. This GPER/GPR30 overexpression could be
linked to some genetic variations, as single nucleotide polymorphisms, which was also
reported in other hormone-dependent cancers. We will review here the implication of
GPER/GPR30 in TGCCs pathophysiology and the arguments to consider GPER/GPR30
as a potential therapeutic target in humans.

Keywords: testicular germ cell cancer, estrogen receptors, GPR30/GPER, endocrine disrupting compounds, fetal
exposure, bisphenol A
INTRODUCTION

Although relatively rare, testicular germ cell cancers (TGCC) are the most frequent solid cancer in
young people (1, 2). Seminomas represent the most frequent histological form, occurring alone or
associated with non-seminoma forms in 50-75% of cases (1, 2). Incidence rates of TGCC have been
increasing worldwide for several decades (3, 4).

Risk factors for TGCC are described in Table 1 and are mainly genetic. Indeed, incidence of
TGCC is significantly increased in brothers and sons of TGCC patients (5, 7). Consistent with many
epidemiological studies, gene variants that might predispose an individual to TGCC were identified
n.org January 2021 | Volume 11 | Article 6004041
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by genome-wide association studies (GWAS) (8, 9). These
variants included common variations on 12q22 in the KITLG
gene, but also on PDE11A, BAK1, SPRY, DMRT1, DAZL, and
PRDM14 [reviewed in (10)]. Other classical risk factors are
cryptorchidism (or undescended testis), inguinal hernia, and all
sexual differentiation disorders (6, 11) (Table 1).

TGCC are considered to derive from a precursor lesion
named “carcinoma in situ of the testis” or “germ cell neoplasia
in situ” (GCNIS) (12). This lesion is present before birth, arising
from the fetal germ cells (i.e. the gonocytes), and is reactivated
after puberty under physiological hormonal stimulation (13).
Epidemiological and clinical data have suggested that the
increase of TGCC incidence could be related to environmental
factors such as fetal exposure to endocrine disruptors (EDCs)
with anti-androgenic and/or estrogenic effects (14, 15). However,
this hypothesis supposes that TGCCs are estrogen-dependent
tumors. In this review, we analyze the implication of classical and
non-classical (GPER/GPR30) estrogen receptors in normal and
malignant germ cells and the regulation of cell proliferation by
xeno-estrogens and discuss how GPER/GPR30 could be
considered as a potential therapeutic target in humans.
COULD TGCC BE A HORMONE-
DEPENDENT CANCER?

Environmental Features
Several studies have reported abnormalities of male genital tracts
in animals that were accidently exposed to endocrine disruptors,
such as hypospadias and cryptorchidism in alligators (16) or
panthers (17), especially in the case of exposition to the
organochloride dichlorodiphenyltrichloroethane (DDT) or its
metabolites (DDE, DDD), which exhibit estrogenic properties.
However, there is actually no animal model of TGCC, except for
transgenic mice with targeted overexpression of GDNF in
spermatogonia (18).

In humans, early fetal exposure to diethylstilbestrol (DES), a
synthetic estrogen used during the 1960’s, was responsible for an
increased incidence rate of cryptorchidism and hypofertility by
impairment of sperm quality in sons and in grandsons (19, 20).
Such an exposure was also suggested to be responsible for the
Frontiers in Endocrinology | www.frontiersin.org 2
occurrence of TGCC in the offspring of two meta-analysis (21,
22). In past studies, the association between occupational
exposure and risk to develop TGCC (23–25) was well-
documented and offered suggestive or strong arguments.
However, more recent epidemiological case-control studies
reported conflicting data for fetal exposure to p,p′-DDT
(estrogenic compound) or to p,p′-DDE (a stable metabolite of
DDT with antiandrogenic properties) (26–31).

Estrogens and Normal Germ Cells
Testicular concentrations of 17b-estradiol (E2) are 10 to 100
times higher than those measured in blood (32). E2 is produced
after testosterone conversion by aromatase in all mammalian
testes, including humans (33). Estrogens are essential for
spermatogenesis control but the type of estrogen receptors
involved and the molecular mechanisms by which estrogens
may precisely act during spermatogenesis still remain
incompletely understood (34).

Expression of classical and non-classical estrogen receptors
expression in mammalian testes is well-established. It exhibits
some species specificity and some controversial results, especially
in humans [reviewed in (35)]. Indeed, in humans, the classical
nuclear estrogen receptor ERb has been clearly identified in most
germ cells, including fetal gonocytes (36), neonatal, prepubertal
(37), and adult spermatogonia (38), while ERa is not expressed
in human gonocytes (36) or neonatal or prepubertal
spermatogonia (37). However, data concerning the expression
of ERa by male germ cells are inconsistent, as some authors
reported an expression in elongated spermatids and mature
spermatozoa (39) and others did not find any expression of
ERa at all (38, 40). In fact, these inconsistent observations could
be due to the existence of a truncated isoform of ERa lacking
exon 1, called ERa46, which has been identified in human adult
spermatozoa (41). This isoform could participate in non-
genomic membrane signaling. Indeed, one reported case of a
man with an inactivating mutation of ERa gene was associated
with a normal sperm count but with completely abnormal
motility (42).

GPER/GPR30 and Testis
GPR30 is a widely conserved orphan GPCR, which has been
renamed as G protein-coupled estrogen receptor (GPER)
(HUGO & MGI Databases). It is a seven-transmembrane
domain protein, identified for the first time in a triple-negative
breast cancer cell line, that can bind E2 and other estrogenic
compounds independently of the classic estrogen receptors (ERa
and ERb). The precise subcellular localization of GPER/GPR30 is
still a matter of debate as it has been detected at the plasma
membrane but also in the endoplasmic reticulum and Golgi
apparatus (43).

GPER/GPR30 has been identified in numerous rodents and
human estrogen targets normal or malignant tissues where it can
mediate rapid E2-induced non genomic signaling events (43).
GPER/GPR30 can activate cell proliferation through several
signaling pathways involving MAP kinases, ERK1/2, and PI3K
pathways (44, 45) but also microRNA regulation (46–48), EGFR
transactivation (49, 50), HIF induced pathway (51, 52), IGF-R
TABLE 1 | Usual risk factors of testicular germ cell cancers.

Risk Factor Risk estimate or range Odd Ratio
(95% CI)

Low birth weight (versus normal) 1.34 (1.08 – 1.67)
Low gestational age (versus not low) 1.31 (1.07 – 1.59)
Cryptorchidism 4.30 (3.62 – 5.11)
Inguinal hernia 1.63 (1.37 – 1.94)
Twinning 1.22 (1.03 – 1.44)
Prior TGCC 12.4 (11.0 – 13.9)
Father with TGCC 3.78 (1.94 – 6.63)
Brother with TGCC 12.74 (6.38 – 22.64)
Adult height (per 5 cm increase) 1.13 (1.07 – 1.19)
TGCC, testicular germ cell cancers.
Adapted from Cook MB. et al. (5). and Mc Glynn KA. et al. (6).
January 2021 | Volume 11 | Article 600404

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Chevalier et al. GPER and Testicular Cancer
pathway (53, 54), NF-kB pathway (55, 56), and crosstalk with
other receptors (classical or truncated estrogen receptors, or
other steroids receptors) (57–59). Within those pathways, the
activation of ERK1/2 is undoubtedly the most consistent
pathway across cell types and is usually considered as a key
factor in cancer prognosis.

Analyzing normal human testes from a fertile man, we
previously reported that GPER/GPR30 was expressed by both
somatic (Sertoli and Leydig cells) and germ cells (60). Amazingly,
Rago et al. (61). reported a negative staining in adult germ cells,
probably due to the use of abnormal granulomatous testes. As
expression of GPER/GPR30 in human fetal gonocytes has not yet
been studied; it could be possible that only immature germ cells
and gonocytes express GPER/GPR30, explaining these
inconsistent data [reviewed in (62)].
ESTROGENS, GERM CELLS
PROLIFERATION, AND TGCC

Estrogen Receptors and Malignant
Germ Cells
Estrogen receptor expression is a well-recognized prognosis
factor of estrogen-dependent cancers, especially in the case of
breast cancer (63–65). Several teams have suggested that TGCCs
could be estrogen-dependent cancers as they express both ERb
and GPER/GPR30 (66–70). We previously reported in a large
cohort of TGCCs that GPER/GPR30 was overexpressed only in
seminoma but not in non-seminoma tumors (60) and promoted
seminoma cell proliferation (71). Pais et al. (72) reported that
expression of ERb was decreased in seminoma but remained
high in teratomas. In the same way, Boscia et al. (69) showed that
ERb was downregulated in seminomas and reported a negative
association between the expression of ERb and GPER/GPR30
protein. This inverse receptor expression pattern could reflect a
switch in estrogen responsiveness from a suppressive (66) to a
promoting profile (60, 67), as it has also been observed in other
estrogen-dependent cancers and was correlated to a poorer
prognosis (63–65).

Genetic factors could of course explain this specific profile
of expression. Variants of ERb were explored but studies
reported inconsistent data. Ferlin et al. (73) reported a weak
but not significant association between one variant for ERb and
an increase risk of TGCC in Italian men, while Brokken et al.
(74) described exactly the opposite in a cohort of 367 Nordic
patients with TGCC and two other variants of the ERb. In our
large cohort of 169 TGCCs, we were able to describe that
seminomas were characterized by a loss of homozygous
ancestral genotype concerning two polymorphisms located in
the promoter region of GPER/GPR30 (75). We assumed that this
genotype could explain a part of GPER/GPR30 overexpression in
seminomas. This expression profile could also be determined by
epigenetic modulation of ERb and GPER/GPR30 genes (low
expression of ERb due to an hypermethylation of its promoter
and high expression of GPER/GPR30 gene due to an
hypomethylation of its promoter). Indeed, fetal exposure to
Frontiers in Endocrinology | www.frontiersin.org 3
EDCs is supposed to induce such epigenetic modulation as
reported, for example, by Zama et al. (76) who reported that
fetal and neonatal exposure to the endocrine disruptor
methoxychlor was responsible for a down regulation of ovarian
ERb gene expression.

Anway et al. (77) were the first to observe and to report
several epigenetic modifications in rodent DNA male germ cells
after gestational exposure to vinclozolin (antiandrogenic
compound) or methoxychlor (estrogenic compound). These
data have been recently confirmed by Dumasia et al. (78) for
xenoestrogens signaling through ERb. Since this first publication
of Anway et al. (77) DNA methylation (hyper- and hypo-) (79,
80), onco-miRNAs expression (miR 371-373) (81, 82), or
chromatin modifications have been reported in TGCC (83).
However, even if experimental data in rodents suggested that
these epigenetic modifications might be induced by fetal
exposure to EDCs, it remains to be proven that such epigenetic
modifications exist in humans and can be induced by fetal
exposure to EDCs.
Putative Role of GPER/GPR30 in
Malignant Germ Cells
JKT-1 cell line is derived from a human testicular seminoma
(84), which expressed functional aromatase (66) and is able to
convert testosterone into E2 and as well as ERb, but not ERa. At
physiological concentrations (10-7 to 10-9 M), we previously
reported that E2 was able to inhibit in vitro JKT-1 cell
proliferation involving an ERb pathway (66). We conjugated
E2 to bovine serum albumin (E2-BSA) for the purpose that E2
cannot cross the plasma membrane and then cannot link to its
canonical receptor ERb. In this condition, E2-BSA at the same
concentrations (10-7 to 10-9 M) stimulated in vitro JKT-1 cell
proliferation by activating the ERK1/2 and PKA pathways. E2-
BSA is responsible for a rapid (15 min) phosphorylation of
CREB. This effect was not inhibited by ICI-182,780, an
antagonist of ERb, but by Pertussis toxin, suggestive of the
involvement of a membrane G-protein-coupled receptor
(GPCR). Similar results were obtained with bisphenol A (BPA)
at low and very low (nM to pM) concentrations (85), the levels
already found in male cord blood and in more than 95% of the
worldwide population (86, 87).

Among EDCs, BPA is especially a matter of concern as
populations exhibit worldwide with detectable blood and/or urine
levels of BPA (86), and so it is used as a monomer to manufacture a
wide range of objects containing polycarbonate plastic and resins.
BPA is considered an estrogenic EDC and is recognized as a
substance of very high concern (SVHC) by the European
Chemicals Agency (ECHA) because several experimentations and
data reported that it is involved in developmental, reproductive, and
malignant diseases by mimicking the natural hormone E2 and by
interfering with endogenous pathways at selective periods, especially
during fetal life (88). However, BPA exhibits a weak affinity for the
classical ERs, which is 1,000–2,000 times lower than E2. Thus, it has
been suggested that BPA could act through other receptors than
classical ERs, for example GPER/GPR30, PPARg gamma, or ERRg
gamma (88).
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In our JKT-1 seminoma cells model, we were able to identify
the GPCR involved in the promoting action of E2-BSA and BPA
as GPER/GPR30 (71). Indeed, the BPA-induced promotive effect
was mimicked by G1 alone, a specific agonist of GPER/GPR30,
while it was totally inhibited by G15, a partial antagonist of
GPER/GPR30, as well as a selective anti-GPER/GPR30 siRNA
(Figure 1A) (60, 71). This GPER/GPR30-mediated signaling of
BPA was also reported in other hormone-dependent tumors. For
example, Pupo et al. (90) reported that BPA could increase the
proliferation of SKBr3 breast cancer cells, which lack the classical
ERs, through a GPER/GPR30-EGFR/ERK transduction pathway.

Interestingly, the dose-response curve that we obtained for
BPA in our model was non-monotonic and showed an inverted
U-shape curve (Figure 1B). Non-monotonic dose response
curves (NMDRC) have already been reported and well-
documented for natural hormones. NMDRC have also been
suggested for EDCs, especially in the case of BPA, but there
are few consistent data available in the literature (91). Most
authors explained that these atypical dose-response curves
resulted from the complex interactions between the ligand (i.e.,
the natural hormone or an EDC) and a hormone receptor. In our
model, it could, for example, be explained by the resultant of the
double opposite effect of BPA on ERb and GPER/GPR30 (60,
85). Indeed, at low doses (nM or pM), BPA acts only through
GPER/GPR30 by a promotive effect while it acts also through
ERb at higher dose (mM), which counteracted the promotive
GPER/GPR30-mediated effect (66). In order to confirm this
hypothesis, we exposed JKT-1 cells to variable doses of BPA
together with a fixed dose of E2. The BPA dose-response curve
that we obtained kept its inverted U-shape aspect but was down-
translated, confirming that BPA can act either through ERb or
GPER/GPR30 depending on the other estrogenic compounds
that are present in the cell environment. This parameter is
particularly important to consider since in most cases we are
exposed to EDC mixtures.

Furthermore, in the same cellular model, the effects of several
EDCs on in vitro proliferation were totally different and dependent
on the resultant of the two expressed receptors, ERb and GPER/
GPR30. For example, atrazine, another estrogenic pesticide,
induced a suppressive effect on seminoma cell proliferation in
vitro involving a GPER/GPR30-dependent pathway (92). In the
same way, an alkylphenol mix promoted seminoma cell
proliferation through a GPER/GPR30-dependent pathway (93).
However, in this case, the promoting effect is also mediated
through ERa36, which is a truncated form of the canonical
ERa66 (without both transcriptional activation domains (AF-1
and AF-2)) and was first described first by Wang et al. (94) in
2005. It seems to participate in non-genomic estrogen signaling
concurrently to and/or associated with GPER/GPR30, as
demonstrated in breast cancer cell lines (94) and in seminoma-
like TCam-2 cell line (95). Thus, the presence of ERa36 in tumors
is an important parameter to consider before considering selective
antagonists of GPER/GPR30 as a therapeutic target in TGCC or
other estrogen-dependent cancers.

The crosstalk among GPER/GPR30 signaling, classical
estrogen receptors, and other nuclear receptors involved in
Frontiers in Endocrinology | www.frontiersin.org 4
testis physiology regulation is also important to consider (96).
Through such interactions, GPER/GPR30 could probably
modulate the tumor microenvironment and through this
mediate TGCC progression and aggressiveness, especially by
inducing epithelial-mesenchymal-transition (97, 98), as has
been reported in breast cancer (98, 99) and in pancreatic
adenocarcinoma (100).
COULD GPER/GPR30 CONSTITUTE A
POTENTIAL THERAPEUTIC TARGET
FOR TGCC?

Accumulating evidence supports the role of GPER/GPR30 in
cancer progression and metastasis in estrogen-dependent
cancers (especially in breast cancer), even though GPER/
GPR30 signaling can differently affect the development of
cancer depending on the type of tissue, but also in the same
tissue depending on the type of ligand (92). A better
comprehension of the molecular pathways involved in TGCC
development, in particular the role of GPER/GPR30 in tumor
progression, points out new tools like agonists or antagonists of
GPER/GPR30, which could be used going forward by clinicians
to target cancer cells and improve the patient’s chance of survival
(68, 101).

Three pharmacological GPER/GPR30-ligands were routinely
available to study GPER/GPR30 functions. The first one, G-1,
was identified by Bologa in 2006 and is a specific agonist of
GPER/GPR30, while G-15 and G-36, identified respectively in
2009 and 2011 by Dennis, are GPER/GPR30 antagonists.
However, G-15 exhibits a partial cross-reactivity with ERa
explaining why G-36 is mainly used in the study of GPER/
GPR30 (102). Other pharmacological ligands were synthetized
(GPER/GPR30-L1 and GPER/GPR30-L2) (102, 103) but they
exhibit variable affinities for GPER/GPR30 and potential cross-
reactivity with classical ERs, explaining why they cannot be
considered as therapeutic tools at this time (104). These small
molecules were used especially in vitro, as we did with seminoma
cells; in our model, G-1 was able to mimic the proliferative effect
of BPA while G-15 neutralized this effect and reduced cell
proliferation in the presence of BPA (71). Thus, G-15 may be a
helpful adjuvant in the treatment of TGCC. Nevertheless, to date,
no studies have reported the use of GPER/GPR30 antagonists in
this way.

However, agonists and antagonists of GPER/GPR30 were
tested in the treatment of other tumors. For example, as we
observed in vitro in seminoma cells, G-15 was also able to
decrease the in vitro proliferation of non-small cell lung cancer
(105) while G-1 was reported to induce malignant cell
proliferation, invasion, and migration in primary cultured lung
cancer cells (106) and in ER-negative breast cancer cells (107,
108) involving SIRT1 (108). At the opposite end, G-1 was able to
decrease in vivo the tumor volume of pancreatic ductal
adenocarcinoma in mice (109) and of adrenocortical
carcinoma in a xenograft model (110, 111).
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Interestingly, G-1 was also able to reduce the side effects of
chemotherapy, as, for example, the cardiac toxicity of doxorubicin
is usually used as an adjuvant therapy in breast cancer (112). This
beneficial effect is related to the well-documented GPER/GPR30
actions on the vascular system, involving in this specific case the
Frontiers in Endocrinology | www.frontiersin.org 5
Nox1 pathway, which could constitute new therapeutic tools
(113, 114).

Actually, only one clinical study is registered in Clinical Trials
involving a GPER/GPR30 agonist. The NCT04130516 is a phase
1, first-in-human, open-label, multicenter study (up to six study
A

B

FIGURE 1 | Effects of estrogens and bisphenol A on human testicular seminoma cell (JKT-1) proliferation in vitro. (A) Analysis of JKT-1 cells proliferation in vitro,
adapted from Chevalier et al. (71) JKT-1 cells were seeded in six-well plates (0.6 × 106 cells/well). After 48 h, the JKT-1 cells were washed and estrogen starved
overnight in phenol red-free DMEM (Dulbeccos’s Modified Eagle Medium) supplemented with 1% charcoal-stripped fetal bovine serum. Serum-deprived JKT-1 cells
were then incubated for 24 hours with 17b-estradiol (E2; 1 nM), E2-BSA (1 nM), or bisphenol A (BPA; 1 nM), after a pre-treatment with G15 (1 nM) or ICI-182,780
(1 µM). G1 (1 nM) was used as a positive control. Values shown are expressed in percent change in cell number compared to control (steroid-free medium
containing DMSO for bisphenol A or medium containing ethanol for estrogens, G1, and G15) given as the mean ± SE of at least three independent experiments. Cell
counting was performed using a Malassez hemocytometer and confirmed using Vi-CELL automate (Beckman Coulter, Fullerton, CA). *p < 0.05; **p < 0.001.
(B) Dose-response curves obtained with 17b-estradiol (E2) and bisphenol A (BPA) in JKT-1 cells in vitro, adapted from Fenichel et al. (89). and Bouskine et al. (85).
JKT-1 cells were seeded in six-well plates (0.6 × 106 cells/well). After 48 h, the JKT-1 cells were washed and estrogen starved overnight in phenol red-free DMEM
(Dulbeccos’s Modified Eagle Medium) supplemented with 1% charcoal-stripped fetal bovine serum. Serum-deprived JKT-1 cells were then incubated for 24 hours
with 17b-estradiol (E2) alone or bisphenol A (BPA) alone at variable doses from 10-5 M to 10-12 M obtained by serial dilutions, or with a fixed dose of E2 (10-9 M) and
BPA at variable doses (same range, from 10-5 M to 10-12 M). Values shown are expressed in percent change in cell number compared to control (steroid-free
medium containing DMSO for bisphenol A or medium containing ethanol for estrogens) given as the mean ± SE of nine independent experiments for each condition.
Cell counting was performed using a Malassez hemocytometer and confirmed using Vi-CELL automate (Beckman Coulter, Fullerton, CA). Modeling of dose-
response curves were performed using GraphPad Prism version 8.4.3 for Mac OS X, GraphPad Software, San Diego, California USA, www.graphpad.com.
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sites in the United States) designed to characterize the safety,
tolerability, and antitumor effects of LNS8801 administered
orally in patients with advanced cancer (solid tumor or
lymphoma). The recruitment is still on-going, and the
estimated primary completion date is the end of 2021.

Finally, even though GPER/GPR30 modulation represents a
potential novel strategy in cancer therapy, there remains a lack of
solid clinical evidence supporting the specificity of GPER/GPR30
antagonists, especially in TGCC.

When compared with normal tissues, GPER/GPR30 is highly
expressed in breast cancer and its high expression at the plasma
membrane is strongly correlated with a poor prognosis,
especially in triple negative tumors (115). This overexpression
of GPER/GPR30 was also related to tamoxifen resistance (116,
117). Thus, GPER/GPR30 could be considered as a potential
therapeutic target in such estrogen-dependent cancers.
CONCLUSION

Since its discovery in breast cancer, the role of GPER/GPR30 in
estrogen-dependent malignancies has been of great interest.
TGCC, the most common solid cancer in young men, expresses
classical estrogen receptors (ERb) but also GPER/GPR30. While
E2 is responsible for a suppressive effect through an ERb-
dependent pathway, EDCs like BPA could induce in vitro
seminoma cell proliferation by binding to GPER/GPR30.
Furthermore, GPER/GPR30 is overexpressed in seminoma,
probably due to genetic and/or epigenetic modulations that
could be induced by fetal exposure to some EDCs. As proposed
by Skakkebaek (4), an estrogenic environment might impair
normal differentiation and proliferation of normal fetal,
perinatal, and peripubertal germ stem cells, and then predispose
Frontiers in Endocrinology | www.frontiersin.org 6
an individual to TGCC, meaning it may be considered as an
estrogen-dependent cancer. In our model, we have showed that G-
15, a partial antagonist of GPER/GPR30, was able to reduce in
vitro the BPA-induced cell proliferation (71) and may constitute a
potential adjuvant in the treatment of TGCC. However, there
remains a lack of solid clinical evidence to consider its clinical use.
Direct regulation of GPER/GPR30 expression by siRNA silencing
and/or nanotechnology could offer, at last, another tool to target
GPER/GPR30 in cancer therapy.
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