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Significant progress in osteochondral tissue engineering has been made for biomaterials
designed to deliver growth factors that promote tissue regeneration. However, due to
diffusion characteristics of hydrogels, the accurate delivery of signaling molecules remains
a challenge. In comparison to the direct delivery of growth factors, gene therapy can
overcome these challenges by allowing the simultaneous delivery of growth factors and
transcription factors, thereby enhancing the multifactorial processes of tissue formation.
Scaffold-based gene therapy provides a promising approach for tissue engineering
through transfecting cells to enhance the sustained expression of the protein of interest
or through silencing target genes associated with bone and joint disease. Reports of the
efficacy of gene therapy to regenerate bone/cartilage tissue regeneration are widespread,
but reviews on osteochondral tissue engineering using scaffold-based gene therapy are
sparse. Herein, we review the recent advances in gene therapy with a focus on tissue
engineering scaffolds for osteochondral regeneration.

Keywords: microRNAs, gene therapy, scaffold, tissue engineering, osteochondral regeneration
INTRODUCTION

Articular osteochondral injury is a common and frequently occurring disease in orthopedics, mainly
caused by accidental trauma, sports injury or arthritis. Mature articular cartilage has a very weak
ability to resist injury and disease, and has limited self-repair ability. After the articular cartilage is
damaged, it cannot be effectively repaired, eventually leading to the occurrence of osteoarthritis
(OA). It is expected that by 2030, OA will be the most common chronic degenerative joint disease
among aging populations (Thomas et al., 2014; Tsezou, 2014). OA patients often suffer from severe
pain and limited mobility. OA is also considered the leading cause of disability in the general
population. The regeneration of articular cartilage that lacks self-healing ability is a major challenge
in clinical treatment and clinically available methods fail to meet long-term effective regeneration
requirements. This has caused concern in the field of osteochondral tissue engineering in which new
tissues can be engineered to promote joint regeneration and prevent the onset of OA (Zhang et al.,
2019). One promising approach is the treatment of genes delivered by tissue engineering scaffolds.
By transfecting specific gene sequences into seed cells, overexpressing or silencing the original gene,
the biological function of the cells could be regulated to obtain the desired effect. Gene therapy
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combined with tissue engineering scaffolds provides a more
precise, controlled, and sustained release of therapeutic factors
compared to traditional methods of delivering growth factors
directly (Figure 1). This review focuses on recent advances in
gene therapy in the field of scaffold-based osteochondral tissue
engineering. In terms of miRNAs, we focus on recent research
progress related to OA in the hope that miRNA can be used in
the future gene therapy approaches combined with scaffold-
based osteochondral tissue engineering.
OSTEOCHONDRAL TISSUE ENGINEERING

Tissue engineering uses bionic scaffold to simulate the cell
growth microenvironment and combines the body's self-
healing ability to guide tissue regeneration in damaged or
defective tissue sites. The cell microenvironment of tissue
engineering bionics can induce cartilage or the osteogenic
differentiation of stem cells, promoting their proliferation and
migration, leading to endogenous osteochondral regeneration (Li
et al., 2016). Osteochondral tissue engineering has evolved to
enhance cell proliferation, differentiation, migration, and
survival by transmitting growth factors and signaling
molecules. These ligands combined with cell surface receptors
of mesenchymal stem cells or mesenchymal progenitors, activate
signaling pathways that promote osteochondral regeneration.
However, the short half-life of recombinant proteins, such as
BMPs, low bioactivity and high preparation costs lead to the
exploration of new methods to deliver bioactive osteochondral
regenerative compounds (Shi et al., 2014). A promising area is
the use of scaffold-based gene therapy. By introducing specific
gene sequences into cells, it is possible to modify or replace
existing genes and regulate their epigenetic functions to achieve a
desired purpose (Ginn et al., 2018). Gene-activated scaffolds
provide a continuously controlled method of nucleic acid
therapy to achieve a more efficient and safe release of
biological agents.
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Scaffold Biomaterials
To promote tissue regeneration, the osteochondral scaffold must
be biocompatible, have a suitable rate of degradation, and possess
a porous structure (Wang et al., 2019a). To-date, osteochondral
tissue engineering biomaterials include natural polymers,
synthetic polymers, metals, and inorganic materials. Natural
mate r i a l s a re der i ved f rom anima l s , p l an t s , and
microorganisms and can be classified into protein,
polysaccharide, polyester, and polyamide based polymers
according to their chemical composition (Nooeaid et al., 2012;
Liu et al., 2018). The natural biological function and ability to
promote cell adhesion and proliferation are unique advantages of
natural polymer materials such as collagen, gelatin, and chitosan
(Nooeaid et al., 2012; Kowalczewski and Saul, 2018). The
variability and low mechanical strength of different batches of
natural biomaterials lead to inevitable defects (Hsu et al., 2010).
In contrast, mechanical properties can be carefully controlled
through structural and surface modifications using synthetic
polymers (Shimomura et al., 2014). However, because of its
inherent hydrophobicity and lack of binding sites, their cell
adhesion ability is relatively poor (Sarasam et al., 2006;
Antonova et al., 2016). Another important consideration when
designing osteochondral scaffolds is that the rate of degradation
of biomaterials should match the rate of tissue repair. There are
significant differences in the rates at which enzymes degrade
natural polymers at different transplant sites in vivo, depending
on the activity and concentration of the enzyme under different
conditions. Conversely, hydrolytically degradable synthetic
polymers show minor differences between sites or patients
compared to enzymatically degradable polymers. However, the
by-products of degradation are toxic (Zhang et al., 2014).
Bioceramics, such as calcium phosphate, are characterized by
their excellent osteoinductivity. Common types of bone calcium
scaffolds are hydroxyapatite, tricalcium phosphate, biphasic
calcium phosphate, and multiphase bioglass. By changing the
composition of Ca3(PO4)2 ceramics, the stability and mechanical
properties of the materials can be modified (Lima et al., 2019).
FIGURE 1 | Scheme of gene activated scaffold. Specific gene sequences were encapsulated into gene delivery vectors (Non-viral or viral), forming gene-vector
complexes. (A) Exogenous seed cells were modified by uptake of gene–vector complexes, then were seeded into biomimetic scaffold supporting for the formation of
new tissue. (B) The gene–vector complexes were loaded directly into the scaffold. Endogenous seed cells around the osteochondral defect migrate into the scaffold
and take in specific genes in the gene–vector complexes, promoting chondrogenic or osteogenic differentiation.
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However, separate scaffold biomaterials are not effective in
promoting osteochondral tissue repair. To increase the number
of cells and the chondrogenesis/osteogenesis of MSCs, an array
of cellular factors can be applied to the scaffold to promote and
maintain the production of cartilage ECM.

Biochemical Factors
Bone morphogenetic proteins (BMPs) (Reyes et al., 2014),
fibroblast-growth-factor 2 (FGF-2) (Yi et al., 2012),
transcriptional SOX proteins (Cao et al., 2011), nel-like
molecule-1 (Nell-1) (Zhang et al., 2016b; Wang et al., 2017), and
IGF-1 and IGF-2 promote cartilage formation (Wang et al., 2009)
and osteogenic differentiation. In addition, as angiogenic factors,
Platelet derived growth factors (PDGF), vascular endothelial
growth factor (VEGF), and early growth response gene 1 (EGR-
1) promote bone repair (Franses et al., 2010; Press et al., 2015;
Sheng et al., 2018). As anti-angiogenic factor, chondromodulin 1
(CHM-1) not only stimulates chondrogenesis but also inhibits
chondrocyte hypertrophy and endochondral ossification (Klinger
et al., 2011). A common route of administration for general
growth factors is intravenous injection. However, the growth
factor in the blood has a short half-life. By adjusting the
physicochemical properties of the scaffold to slow release of
growth factors, the drawbacks of direct administration can be
avoided. Although 3D scaffolds can function as sustained-release
growth factors, their ability to promote perivascular tissue healing
and stem cells (SCs) regeneration is limited by their localization.
Scaffold-based gene therapy provides a promising approach for
tissue engineering through transfecting specific nucleic acids into
cells to enhance the sustained expression of the growth factors of
interest or through silencing target genes associated with bone and
joint disease

MicroRNAs
Cartilage
MicroRNAs (MiRNAs) are ~22 nucleotide single stranded RNAs
that regulate post-transcriptional gene expression. MiRNA
induces degradation of the target mRNA by binding to the 3′-
untranslated region (UTR) complementary sequence on
messenger RNA (mRNA), inhibiting translation, thereby
suppressing corresponding protein production. Unlike small
interfering RNA (siRNA), which regulates only one specific
target, miRNA can regulate multiple targets. A single miRNA
can regulate different targets in multiple signaling pathways, so it
is more advantageous than other biomolecules in terms of
functional effects. MiRNA expression profiles are significantly
different during the development of articular cartilage,
chondrocyte differentiation, and MSC chondrogenesis.
Chondrocyte miRNA profiles differ from normal chondrocytes
during their degeneration during osteoarthritis (OA). These
miRNAs involved in chondrocyte differentiation or
degeneration may be used in bioscaffolds in future studies to
participate in the regeneration of cartilage tissue. The following is
a summary of their latest.

MiRNAs regulate chondrocyte signaling and epigenetic
functions (Cong et al., 2017b). Among the miRNAs, miR-210
targets the death receptor-6 (DR6) and inhibits NF-kB signaling
Frontiers in Pharmacology | www.frontiersin.org 3
in cultured chondrocytes and OA animal models. In addition, by
inhibiting karyopherin subunit alpha-3 (KPNA3) gene
expression, MiR-26a/MiR-26-b regulate the translocation of
NF-kB-p65 to the nucleus (Mirzamohammadi et al., 2014),
and their inhibition leads to enhanced COX-2 and MMP-3, -9,
-13 expression (Yin et al., 2017). MiR-138 expression is low in
OA cartilage compared to normal cartilage whilst p65 is targeted
by miR-138 during OA progression (Wei et al., 2017). MiR-27a-
3p levels are also lower in OA cartilage (Li et al., 2018a) while
miR-139 is highly expressed and inhibits cell viability and
migration by inhibiting the expression of EIF4G2 and IGF1R.
MiR-139 inhibitors show the opposite effect (Hu et al., 2016).

Through its ability to target FUT1, microRNA-149-5p
promotes the proliferation and survival of chondrocytes, thus
preventing OA. It has also been found to be downregulated in
patients with OA, leading to degenerative cartilage and
disturbing homeostasis. Carriers have been employed to deliver
miRNA-149-5p to MSCs to promote chondrogenesis (Celik
et al., 2019). MiR-218 is highly expressed early in cartilage
formation, but is stopped in synaptic-derived mesenchymal
stem cells (SDSC) at the maturation stage of cartilage
differentiation and miR-218 may directly regulates 15-
hydroxyprostaglandin dehydrogenase expression in SDSCs
(Chen et al., 2019c). MiR-320c was decreased in the later
stages of chondrogenesis of adipose-derived stem cells
(hADSCs) and OA chondrocytes. It inhibits degeneration of
OA chondrocytes by directly targeting beta-catenin and
inhibiting Wnt signaling (Hu et al., 2019). MiR-92a-3p
expression was increased in MSC chondrogenic exosomes and
significantly decreased in OA chondrocytes exosomes. MiR-92a-
3p may be involved in regulating cartilage development by
targeting WNT5A (Mao et al., 2018b). Conversely, miR-182-5p
plays a negative role in BM-MSC chondrogenesis by down-
regulating parathyroid hormone-like hormone (PTHLH) (Bai
et al., 2019). Table 1 summarizes the miRNAs, related to
cartilage development, that have been studied in recent years.

Subchondral Bone
The subchondral bone layer below the cartilage in a joint acts as a
shock absorber to absorb stress, cushion vibrations, and
maintaining joint shape. Studies have shown that subchondral
bone remodeling runs through the entire pathogenesis of OA
(Aho et al., 2017) via the activities of two main cell populations,
osteoblasts (OBs) that promote bone formation and osteoclasts
(OCs) that promote bone resorption. OBs originate from MSC
precursors mainly through BMPs, Wnt, TGF-b signals. OCs
originate from peripheral blood mononuclear cell (PBMC)
precursors mainly by the effects of RANKL/OPG ratio. Bone
remodeling and osteoclast differentiation are controlled by
miRNAs (Taipaleenmaki, 2018). MiR-135-5p promotes
osteogenesis through its ability to enhance the activity of
alkaline phosphatase (ALP), upregulate calcification molecules,
and target the Hypoxia inducible factor 1 alpha inhibitor
(HIF1AN) (Yin et al., 2019). Conversely, MiR-145 suppresses
human jaw bMSC osteogenic differentiation through WNT/b-
catenin signaling and semaphorin3A (SEMA3A) targeting (Jin
et al., 2019). Similarly, MiR-494 suppresses osteoblast
January 2020 | Volume 10 | Article 1534
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differentiation by BMPR-SMAD-RUNX2 signal simulated by
microgravity (Qin et al., 2019). MiR-877-3p targets Smad7 to
enhance TGF-b1 mediated MC3T3-E1 cell differentiation (He
et al., 2019). MiR-200c also enhances osteogenic differentiation
of hBMSCs by regulating AKT/b-Catenin signaling through the
inhibition of myeloid differentiation factor 88 (Myd88) (Xia
et al., 2019). In human ADSCs, miR-125a-3p could negatively
modulates osteoblastic differentiation via targeting Smad4 and
Jak1. John et al. found that miR-487b-3p suppressed osteoblast
differentiation by targeting Notch-regulated ankyrin-repeat
protein (Nrarp), which in turn, suppresses Runx-2 and Wnt
signaling (John et al., 2019). In BMSCs, miR-206 inhibits
osteogenic differentiation through regulating glutamine
metabolism (Chen et al., 2019d). MiR-223 is a newly
discovered miRNA that induces MC3T3-E1 differentiation via
HDAC2 targeting (Chen et al., 2019b). A complete summary is
shown in Table 2.

Similar to osteoblast differentiation, the expression pattern of
miRNAs related with the osteoclast differentiation has also been
Frontiers in Pharmacology | www.frontiersin.org 4
deeply explored (Hrdlicka et al., 2019). MiR-363-3p activated by
MYB enhances osteoclast differentiation and inhibits osteoblast
differentiation via the PI3K-AKT-PTEN axis (Li et al., 2019a).
MiR-1225 suppresses TNFa-induced osteoclast differentiation
through Keap1-Nrf2-HO-1 signal via ROS generation in bone
marrow-derived macrophages (BMMs) (Reziwan et al., 2019).
Conversely, miR-142-5p targets PTEN and induces BMM
osteoclastogenesis (Lou et al., 2019). In addition, Smad3
expression is reduced by miR-145, the mimics of which in
OVX mice repress OCs (Yu et al., 2018). MiR-125a-5p
promotes osteoclast differentiation through inhibiting
TNFRSF1B expression (Sun et al., 2019a). Sun and colleagues
showed that miR-338-3p enhances the differentiation of Ocs by
targeting Mafb (Sun et al., 2019b) that is also a target for miR-
199a-5p (Guo et al., 2018). Wang et al. found that miR-218
decreased osteoclastogenic differentiation via suppressing NF-kB
signal via targeting TNFR1 (Wang et al., 2018b). Recent studies
have shown that miR-133a promotes postmenopausal
osteoporosis through enhancing OC differentiation (Li et al.,
TABLE 1 | Summary of the miRNAs associated with cartilage development and homeostasis.

miRNA Targets gene In vitro/in vivo Cells/vivo model Biological effect Reference

miR-9-5p Tnc In vitro, in vivo Mice chondrocytes, mice Regulates cartilage homeostasis (Chen et al., 2019a)
miR-10a-5p HOXA1 In vitro, in vivo Mice chondrocytes, mice Regulates cartilage homeostasis (Ma et al., 2019b)
miR-16-5p SMAD3 In vitro Human chondrocytes Regulates cartilage homeostasis (Li et al., 2015)
miR-21-5p FGF18 In vitro, in vivo Human chondrocytes, mice Regulates cartilage homeostasis (Wang et al., 2019b)
miR-27a PI3K In vitro SW1353 Regulates cartilage homeostasis (Cai et al., 2019)
miR-30a DLL4 In vitro Rat MSC Enhance chondrogenesis (Tian et al., 2016)
miR-34a Cyr61 In vitro Human chondrocytes Regulates cartilage homeostasis (Yang et al., 2018a)
miR-92a-3p ADAMTS4/5 In vitro Human MSC Enhance chondrogenesis (Mao et al., 2017a)

HDAC2 In vitro Human MSC Enhance chondrogenesis (Mao et al., 2017b)
miR-93 TCF4 In vitro, in vivo Human chondrocytes, rabbit Regulates cartilage homeostasis (Xue et al., 2019)

TLR4 In vitro, in vivo Mice chondrocytes, mice Regulates cartilage homeostasis (Ding et al., 2019)
miR-95-5p HDAC2/8 In vitro Human chondrocytes Regulates cartilage homeostasis (Mao et al., 2018a)
miR-98 Bcl-2 In vivo Rats Regulates cartilage homeostasis (Wang et al., 2016)
miR-107 HMGB-1 In vitro, in vivo Human chondrocytes, rabbit Regulates cartilage homeostasis (Lin et al., 2019)
miR-127-5p Runx2 In vitro Rat BMSCs Enhance chondrogenesis (Xue et al., 2017)
miR-138 HIF-2a In vitro Human chondrocytes Inhibit chondrogenesis (Seidl et al., 2016)
miR-140-5p Smad3 In vitro Mandibular condylar chondrocytes Regulates cartilage homeostasis (Li et al., 2019c)
miR-145 MKK4 In vitro, in vivo Rat chondrocytes, rat Regulates cartilage homeostasis (Hu et al., 2017)
miR-145-5p SOX9 In vitro Human BMSC Inhibit chondrogenesis (Verbus et al., 2017)
miR−146a−5p CXCR4 In vitro Human chondrocytes Regulates cartilage homeostasis (Jia et al., 2019)
miR-146b AM In vitro, in vivo Mice chondrocytes, mice Regulates cartilage homeostasis (Liu et al., 2019b)

SOX5 In vitro Human Skeletal stem cells Inhibit chondrogenesis (Budd et al., 2017)
miR-149-5p FUT-1 In vitro Human MSC Enhance chondrogenesis (Celik et al., 2019)
miR-181a-5p SBP2 In vitro SW1353 Regulates cartilage homeostasis (Xue et al., 2018)
miR-193b-3p HDAC3 In vitro, in vivo hMSC, PHCs, nude mice Enhance chondrogenesis,

Regulates cartilage homeostasis
(Meng et al., 2018)

miR-221-3p SDF1 In vitro SW1353 Regulates cartilage homeostasis (Zheng et al., 2017)
miR-222 HDAC-4 In vitro, in vivo Human chondrocytes, mice Regulates cartilage homeostasis (Song et al., 2015)
miR-320 MMP-13 In vitro Mice chondrocytes Enhance chondrogenesis (Meng et al., 2016)
miR-322 MEK1 In vitro, in vivo Mice chondrocytes, mice Enhance chondrogenesis (Bluhm et al., 2017)
miR-365 HDAC4 In vitro, in vivo Rat BMSCs, rats Enhance chondrogenesis (Chen and Wu, 2019)
miR-384-5p SOX9 In vitro, in vivo Mice chondrocytes, mice Regulates cartilage homeostasis (Zhang et al., 2018)
miR-410 Wnt3a In vitro Human BMSC Enhance chondrogenesis (Zhang et al., 2017)
miR-411 MMP-13 In vitro Human chondrocytes Regulates cartilage homeostasis (Wang et al., 2015)
miR-483 SMAD4 In vitro Human BMSC Enhance chondrogenesis (Anderson and

McAlinden, 2017)
miR-526b-3p SMAD7 In vitro Human BMSC Enhance chondrogenesis (Wu et al., 2018)
January 2020 | V
Tnc, tenascin C; AM, alpha-2-macroglobulin; HMGB-1, high mobility group box 1; CXCR4, C−X−C chemokine receptor type 4; TLR4, toll−like receptor 4; SBP2, sequence binding protein
2; SW1353, human chondrosarcoma chondrocyte; HDAC2/8, histone deacetylase 2/8; hMSC, human mesenchymal stem cell; PHCs, primary human chondrocytes; Cyr61, cysteine-rich
angiogenic inducer 61; MKK4, mitogen-activated protein kinase 4; CXCL12, C−X−C motif chemokine ligand 12; MEK1, mitogen-Activated Protein Kinase 1; DLL4, delta-like 4; MMP-13,
metalloproteinase 13; HIF-2a, hypoxia-inducible factor 2a.
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2018b). The culmination of these studies highlight the potential
of miRNAs to regulate OC differentiation (Table 2).
VECTOR BASED GENE-DELIVERY

Tissue-engineering and gene therapy have been used in the
treatment of myocardial injuries (Gabisonia et al., 2019),
the repair of cartilage defects (Armiento et al., 2018), and the
Frontiers in Pharmacology | www.frontiersin.org 5
treatment of bone defects (Chen et al., 2019e). Compared with
protein-based treatment, gene therapy has two main advantages.
Gene therapy is more biologically active and physiological than
common recombinant approaches (Raftery et al., 2019). Since
the gene fragment itself cannot be efficiently introduced into the
cell, an effective vector is required. Gene vectors can be virus-
based (lentiviruses or baculoviruses) or non-viral including
transfection methods such as lipofectamine, electroporation,
and nanoparticles. They all have their own advantages and
TABLE 2 | Summary of recently identified miRNAs associated with osteogenesis.

miRNA Targets gene In vitro/in vivo Cells/vivo model Biological effect Reference

miR-16-2-3p WNT5A In vitro hBMSCs Inhibit osteogenic differentiation (Duan et al., 2018)
miR-21-5p SMAD7 In vitro MC3T3-E1 Promote osteoblast differentiation (Li and Jiang, 2019)
miR-27b PPAR In vitro hBMSCs Promote osteogenic differentiation (Seenprachawong et al., 2018)
miR-29b BCL-2 In vitro Mice BMSCs Promote osteoclast differentiation (Sul et al., 2019)
miR-34c LGR4 In vitro Mice BMMs Promote osteoclast differentiation (Cong et al., 2017a)
miR-92b-5p ICAM-1 In vitro, in vivo Mice BMSCs, mice Promote osteogenic differentiation (Li et al., 2019d)
miR-96 SOST In vitro Mice osteoblast Promote osteoblast differentiation (Ma et al., 2019a)
miR−100−5p FGF21 In vitro, in vivo Mice BMMs, mice Inhibit osteoclast differentiation (Zhou et al., 2019a)
miR-125a-5p TNFRSF1B In vitro RAW 264.7 OPC Promote osteoclast differentiation (Sun et al., 2019a)
miR-128 SIRT6 In vitro C2C12 cells Inhibit osteoblast differentiation (Zhao et al., 2019b)
miR-130a PPAR In vitro hBMSCs Promote osteogenic differentiation (Seenprachawong et al., 2018)
miR-132-3p Smad5 In vitro MC3T3-E1 Inhibit osteoblast differentiation (Liu et al., 2019a)
miR-135-5p HIF1AN In vitro MC3T3-E1 Promote osteoblast differentiation (Yin et al., 2019)
miR-139-3p ELK1 In vitro MC3T3-E1 Inhibit osteoblast differentiation (Wang et al., 2018c)
miR-140-5p TLR4, BMP2 In vitro, in vivo ASCs, rats Promote osteogenesis (Guo et al., 2019b)
miR-141 Calcr, EphA2 In vitro, in vivo M-BMMs, monkey Inhibit osteoclast differentiation (Yang et al., 2018b)
miR-142-5p PTEN In vitro Rat BMMs Promotes osteoclast differentiation (Lou et al., 2019)
miR-144-3p RANK In vitro CD14+PBMC Inhibit osteoclast differentiation (Wang et al., 2018a)
miR-145 SEMA3A In vitro hJBMMSCs Inhibit osteoblastic differentiation (Jin et al., 2019)
miR-145-5p OPG In vitro, in vivo RAW-264.7, mice Promotes osteoclast differentiation (Chen et al., 2018)
miR-146a M-CSF In vivo Mice with OVX Inhibit osteoblast differentiation (Zhao et al., 2019a)
miR-199a-5p Mafb In vitro RAW 264.7 cells Promote osteoclast differentiation (Guo et al., 2018)
miR-218-5p COL1A1 In vitro Mice BMSCs Promote osteoblastic differentiation (Kou et al., 2019)
miR-218 Mmp9 In vitro RAW264.7 cells Inhibit osteoblastic differentiation (Guo et al., 2019a)
miR-200c Myd88 In vitro hBMSCs Promote osteogenic differentiation (Xia et al., 2019)
miR-208a-3p ACVR1 In vitro, in vivo MC3T3-E1, mice Inhibit osteoblastic differentiation (Arfat et al., 2018)
miR-210 Runx2 In vitro HUCB-MSC Promote osteoblast differentiation (Asgharzadeh et al., 2018)
miR-221 ZFPM2 In vitro MC3T3-E1 Promote osteoblast differentiation (Zheng et al., 2018)
miR−223−5p HDAC2 In vitro, in vivo MC3T3−E1, mice Promote osteoblast differentiation (Chen et al., 2019b)
miR-338-3p IKKb In vitro RAW264.7 cell Inhibit osteoclast differentiation (Niu et al., 2019)

RANKL In vitro Mice BMCs Inhibit osteoclast differentiation (Zhang et al., 2016a)
miR-342-3p ATF3 In vitro, in vivo MC3T3−E1, mice Promote osteoblast differentiation (Han et al., 2018)
miR-363-3p PTEN In vitro CD14+PBMC Promote osteoclast differentiation (Li et al., 2019a)
miR-367 PANX3 In vitro, in vivo Mice osteoblast, mice Promote osteoblast differentiation (Jia and Zhou, 2018)
miR-376c-3p IGF1R In vitro hBMSCs, Inhibit osteogenic differentiation (Camp et al., 2018)
miR-377 RANKL In vitro, in vivo hBMMs, mice Inhibit osteoclast differentiation (Li et al., 2019b)
miR-383 Satb2 In vitro Rat BMSCs Inhibit osteoblastic differentiation (Tang et al., 2018)
miR-494 BMPR2/RUNX2 In vitro C2C12 cells Inhibit osteoblast differentiation (Qin et al., 2019)
miR-451 YWHAZ In vitro, in vivo hBMSCs, mice Inhibit osteoblast differentiation (Pan et al., 2018)
miR-487b-3p Nrarp In vitro, in vivo Mice osteoblasts, mice Inhibit osteoblast differentiation (John et al., 2019)
miR-874 SUFU In vitro, in vivo Rat osteoblasts, rat Promote osteoblast differentiation (Lin et al., 2018)
miR-877-3p Smad7 In vitro MC3T3-E1 Promote osteoblast differentiation (He et al., 2019)
miR-1225 Keap1 In vitro, in vivo BMMs, mice Inhibit osteoclast differentiation (Reziwan et al., 2019)
miR-let-7c SCD-1 In vitro hADSCs Inhibit osteogenic differentiation (Zhou et al., 2019b)
January 20
HIF1AN, hypoxia-inducible factor 1 a inhibitor; M-CSF, macrophage colony-stimulating factor; OVX, ovariectomy; SEMA3A, semaphorin 3A; h-JBMMSCs, human jaw bone marrow
mesenchymal stem cells; ICAM-1, intracellular adhesion molecule‐1; SOST, sclerostin; hADSCs, human adipose derived mesenchymal stem cells; Nrarp, notch-regulated ankyrin-repeat
protein; PPAR, peroxisome Proliferator-Activated Receptor g; ATF3, activating transcription factor 3; SCD-1, stearoyl-CoA desaturase 1; ZFPM2, zinc finger protein multitype 2; MC3T3-
E1,the mouse osteoblast-like cells; SUFU, suppressor of fused gene; IGF1R, insulin growth factor 1 receptor; HUCB, human umbilical cord blood; Satb2, special AT-rich-sequence-
binding protein 2; ACVR1, activin A receptor type I; BMMs, bone marrow-derived macrophages; TNFRSF1B, TNF receptor superfamily member 1B gene; RAW 264.7 OPC, RAW 264.7
osteoclast precursor cell; Mmp9, matrix metalloproteinase-9; OPG, osteoprotegerin; M-BMMs, monkey bone marrow-derived macrophages; Calcr, calcitonin receptors; EphA2, ephrin
type-A receptor 2 precursor; LGR4, leucine-rich repeat-containing G-protein-coupled receptor 4.
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disadvantages, but in general, the transfection efficiency of
current viral vectors is still higher than that of non-viral vectors.

Viral Vectors
Use of Adenoviruses
Adenoviral transgenic efficiency is typically close to 100% in
vitro. Adenoviruses can transduce different human tissue cells,
dividing and non-dividing. The production of high titer
adenoviral vectors is simple and no integration into the
genomes of human cells occur. As such, adenoviral vectors
have been increasingly used in clinical trials of gene therapy
and have become the most promising viral vectors, second only
to retroviral vectors. In a recent study, it is found that the use of
Adenoviral-BMP-2/basic fibroblast growth factor (bFGF)-
modified BMMSCs combined with demineralized bone matrix
promote bone formation and angiogenesis, successfully repairing
canine femoral head necrosis (ONFH) (Peng and Wang, 2017).
However, the biggest challenge to the effectiveness of adenoviral
approaches are the immune response.

Baculovirus Approaches
Baculoviruses show no pathogenicity toward humans and can be
used under normal biosafety level 2 conditions. Baculoviruses, like
adenoviral, induce both dividing and non-dividing cells. In some
recent studies, baculoviruses has been used. Lo and colleagues
employed Cre/loxP-based baculovirus vectors in adipose-SCs to
enhance bone healing (Lo et al., 2017). Fu and coworkers
highlighted the ability of baculoviruses to induce osteogenesis
through allogeneic-MSCs (Fu et al., 2015). Despite this promise,
the transient expression profiles of baculoviruses limit their use. In
an attempt to overcome this issue, Chen and coworkers developed
baculoviruses hybridized with the miR-155 scaffolds and the
sleeping beauty transposon to sustainably inhibit transgene
expression for extended time periods (Chen et al., 2011).

Lentiviruses
The advantage of lentiviral vectors are the high levels of foreign
gene integration into the host chromosome in cells typically
difficult to transfect, including primary cell cultures. Lentiviral
vectors can be combined with chondroitin sulfate-hyaluronic acid-
silk fibrin composite scaffolds and applied to bone-ligament
connections to promote tissue engineering (Sun et al., 2014). In
addition, Brunger et al. developed an independent bioactive
scaffold that is capable of inducing stem cell differentiation and
cartilage ECM formation using lentiviruses (Brunger et al., 2014).
Despite the great progress in the study of lentiviral vector, it is still
far from clinical application. First, the titer of recombinant virus is
still not up to the level of in vivo application. Second, due to the
complex biological properties of HIV, it is difficult to establish a
stable HIV vector like the commonly usedmouse retroviral vector,
and the established packaging cells are not ideal.

Non-Viral Gene Delivery Vectors
Commercialized cationic lipids such as Lipofectamine 2000,
Lipofectamine 3000, Lipofectamine RNAiMAX, and SiPORT
NeoFx are widely used in biomaterial-based gene therapy. In
recent studies, using lipofectamine 2000, Anti-miR-221 was
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transfected into adipose-MSCs which were seeded into
synthetic nHA/PCL scaffolds. The results indicate that this
method provides an effective way to promote osteogenesis of
AT-MSCs (Hoseinzadeh et al., 2016). Macmillan et al. combined
lipofectamine-complexed plasmids encoding BMP-2 and TGF-
b1 with HA microparticles for delivery to the MSCs of three
healthy pig donors. This study provides a promising approach to
gene therapy that regulates stem cell growth and development to
treat bone defects (McMillan et al., 2018).

Although the toxicity of liposomes are well-known, more
efficient transfection methods to replace them have not emerged.
Recently, to enhance the interaction between cells and nucleic
acids, Raftery et al. developed a new cell penetrating peptide,
GET, combined with a variety of collagen scaffolds, which
showed good regeneration potential. GET is suitable for all
three germ layer cell transfections with efficiencies comparable
to Lipofectamine 3000 and minimal cytotoxicity. These findings
suggest that GET can be combined with scaffold delivery systems,
to provide new solutions to a variety of tissue engineering
regenerative indications (Raftery et al., 2019).
GENE THERAPY IN SCAFFOLD BASED
OSTEOCHONDRAL TISSUE REPAIR

Gene therapy for osteochondral tissue repair is divided into two
phases: one to locate the gene to the target area directly, either
through encapsulation onto a scaffold, or through a specific gene
vector (in vivo). Alternatively, the target gene is loaded into the
cells by the vectors in vitro, and genetically modified cells are
administered to the target lesion area, with or without a scaffold
(ex vivo). However, the main obstacle to the treatment of focal
defects with non-scaffolds is that the genetically modified cells or
gene vectors with intra-articular injections are diluted by the
joint fluid and fail to reach the target lesion area. To avoid this
drawback, a promising approach is to deliver modified cells or
gene vectors using different types of scaffolds. When the scaffold
is degraded, the contents are slowly released to the target area.
Gene therapy combined with scaffolds increases the efficiency
and duration of transfected genes, forming an efficient system to
promote osteochondral regeneration. We herein summarize and
discuss these gene therapy-binding scaffolds discovered from
2006 to 2019 in the contest of seeding cell types (Figure 2).

Gene Modified BMSCs
MSCs are the most widely studied due to their high availability
and proliferative/differentiation ability. The microenvironment
typically dictates the fate of MSCs. BMSCs are more commonly
employed than those derived from adipose tissue (AMSCs),
particularly for osteochondral therapy. In one study, BMSCs
were transfected with hIGF-1 cDNA and mixed with calcium
alginate gels for transplantation into 6 mm osteochondral defects
and were found to improve the repair (Leng et al., 2012).

In view of the role of TGF-b in promoting cartilage repair, in
addition to the inhibition of inflammatory and immune responses,
pcDNA-TGF-b gene-modified BMSCs were seeded onto
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biodegradable poly-L-lysine coated polylactic acid (PLA) scaffolds
which were transplanted into New Zealand rabbit articular
cartilage full-thickness defects. In vitro, after 2 weeks of cell
seeding, the cartilage matrix formed and filled with the
attachment holes of the scaffold. In vivo, 24 weeks after
transplantation, the hyaline cartilage repaired the cartilage defect
area, trabecular bone and dense bone repair in the subchondral
area and the quality of the regenerated tissue improved over time
(Guo et al., 2006). Similarly, BMSCs were transduced with pDNA-
TGF-b1 and loaded into PLGA/fibrin gel hybrids which were
implanted into rabbit articular cartilage models, resulting in the
regeneration of new cartilage tissue with similar thickness, cell
arrangements, color, and abundant glycosaminoglycans to normal
cartilage (Li et al., 2014). Moreover, TGF-b1-gene engineered rat
BMSCs induced cartilage regeneration in rats (He et al., 2012), and
their transfer onto PGA scaffolds using adenoviral approaches
induced chondrogenic differentiation both in vitro and in vivo (Xia
et al., 2009). Robust collagen II staining was observed in
adenovirus-mediated-BMP-2 and TGF-b3 infected cells. DBM
compounds with BMP-2 and TGF-b3 infected BMSC scaffolds
showed high biocompatibility and the capacity to regeneration
cartilage in pig models (Wang et al., 2014).

SOX9 is a transcription factor of the SOX (Sry-type HMG
box) protein family that promotes cartilage formation and the
Frontiers in Pharmacology | www.frontiersin.org 7
phenotypes of chondrocytes. Adenoviral vectors have been used
to transfect SOX9 into rabbit BMSCs which effectively induced
their differentiation into chondrocytes on PGA scaffolds and
improved the repair of cartilage defects (Cao et al., 2011). More
recently, Venkatesan et al. designed 3D fibrin-polyurethane
scaffolds in a hydrodynamic environment that provided a
favorable growth environment for rAAV-infected SOX9-
modified hBMCs and promoted their differentiation into
chondrocytes. Interestingly, the expression of SOX9 lasted 21
days, the longest time point evaluated (Venkatesan et al., 2018).

Cartilage engineering can also be mediated through gene
activation matrices. Rowland et al. engineered lentiviral
particles expressing a doxycycline-inducible IL-1 receptor
antagonist (IL-1Ra) on a cartilage-derived matrix to prevent
IL-1 mediated inflammation. Similar scaffolds have been
employed for site directed chondrogenic and osteogenic
differentiation using BMSC populations that overexpress either
chondrogenic, BMP2, or TGF-b3 transgenes. The ability to
regulate IL-1Ra expression afforded protection to the cartilage-
matrix in the presence of IL-1, leading to enhanced bone
production and cartilage formation. When inflammation is
absent, cartilage-derived matrix hemispheres expressing TGF-
b3 and BMP-2 were also fused to the bilayers of osteochondral
constructs to promote healing (Rowland et al., 2018). Yang and
FIGURE 2 | The components that have been utilized in gene activated scaffold for osteochondral tissue engineering.
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coworkers also transfected BMSCs with adenoviruses expressing
C-type natriuretic peptides and seeded the cells onto silk/
chitosan scaffolds to promote chondrogenesis in rat cartilage
defect models (Yang et al., 2019).

Despite advances in the development of osteochondral repair
scaffolds, their combination with miRNAs remains in the early
stages. MiR-221 can induce BMSCs toward chondrogenesis in
the absence of TGF-b and could repair osteochondral defects
following its subcutaneous implantation into mouse models,
promoting Collagen type II positive tissue expression that was
negative for collagen type X (a well characterized marker of
hypertrophy). The potential of hMSCs silenced for miR-221 to
suppress collagen type X represents an exciting development
with clear therapeutic potential for cartilage repair in the clinic
(Lolli et al., 2016).

Gene Modified ADSCs
It is now well accepted that ADSCs have clinical utility. An
advantage is their ability to be collected via lipoaspiration, a non-
invasive harvesting process. Lu and coworkers developed
baculoviruses for FLPo/Frt expression of genetically engineered
rabbit ADSCs. The cells were transfected with TGF-b3/BMP-6
and added to PLGA-GCH scaffolds for implantation to cartilage
defects in weight-bearing areas, promoting regeneration. The
designed neo-cartilages had defined cartilage-specific-structures
in the absence of degeneration or hypertrophy (Lu et al., 2014).
In other studies, the inguinal fat of rats were transduced with
SOX via retroviral approaches and ADSCs were collected and
seeded into fibrin gels and implanted onto defects in the femur
patellar groove. These approaches significantly increased type II
collagen expression, GAG levels, and improved cartilage healing
(Lee and Im, 2012). Upon seeding the ADSCs into large PCL-
scaffolds immobilized with Dox-inducible lentiviruses expressing
IL-1Ra, controlled tissue growth and biomimetic cartilage
properties were maintained (Moutos et al., 2016).

Gene Modified Chondrocytes
Isolated cartilage cells can be obtained through enzymatic
digestion and can embed into cartilage lacuna, preventing
immune cell invasion and organ rejection. However, the cells
dedifferentiate overtime and their propensity for cartilage
production becomes impaired, limiting their use in clinical
application. The use of 3D cultures can mimic the
microenvironment of the extracellular matrix permitting the
maintenance of phenotypic stability. In this regard, neonatal
male foals chondrocytes transduced with IGF-1-adenoviruses
and embedded into fibrinogen were implanted into equine
defects and conferred high levels of IGF-1 expression and
cartilage healing (Goodrich et al., 2007). Griffin and colleagues
used a comparable approach with rAAV5 and implanted the
carriers into equine femurs, also showing improved graft healing
(Griffin et al., 2016). FGF-2 and IGF-I plasmid vectors have also
been delivered into Lapine articular chondrocytes. The cells were
encapsulated into alginate scaffolds and transplanted onto rabbit
knee joint defects for a period of three weeks, in which enhanced
IGF-I/FGF-2 levels improved the defects with no adverse effects
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to the synovial membrane, highlighting the utility of these
approaches to promote cartilage repair (Orth et al., 2011).

FGF-2 is mitogenic in articular chondrocytes and when
transfected into articular chondrocytes and encapsulated in
alginate scaffolds, FGF-2 expression was maintained for over
21 days and improved cartilage defects in the knee joints of
rabbits. No adverse effects were again evident in the synovial
membrane following histological assessments but type II
collagen expression was enhanced (Kaul et al., 2006).

Mechanical movements activate integrin b1-signaling and
enhance the proliferative capacity of chondrocytes, increasing
matrix synthesis. Liang and co-workers seeded integrin b1-
transfected chondrocytes onto PLGA scaffolds which produced
higher levels of GAG and type II collagen after lentiviral-integrin
b1 transfection compared to mechanically stressed sham
controls. The opposing phenotype was observed in the cells
silenced for integrin b1, suggesting that in addition to
mechanical stimulation, the overexpression of integrin b1
enhances cartilage regeneration (Liang et al., 2015) (Table 3).
CONCLUSION AND FUTURE DIRECTIONS

In summary, osteochondral defects are not a single cartilage or
bone injury, but involve complex multi-structural components.
The healing of these components is challenging. To-date, there is
no technology that can form a natural cartilage structures in the
joints. Osteochondral tissue engineering shows good potential for
osteochondral repair and OA treatment, but several problems
remain. For example, at the seed cell level, chondrocytes have
poor availability and dedifferentiation properties. Unacceptable
outcomes such as chondrocyte hypertrophy and endochondral
ossification are often accompanied by an inability to control the
differentiation of chondrogenic SCs. Also, due to its unique layered
structure, osteochondral tissue theoretically requires a multi-phase
structure to simulate the native layered structure, but this is difficult
to achieve. Recent studies have shown that a combination of gene
vectors, genes, seed cells, and scaffolds are more likely to obtain
hyaline cartilage, with the combined changes between them
primarily based on lesion size, location, and structure.

Genes have been transfected into MSCs or chondrocytes to
improve their phenotypic properties. In general, cartilage gene
therapy enables seed cells to continuously encode growth factors,
transcription factors, or anti-inflammatory cytokines, thereby
inducing cartilage differentiation and inhibiting the progression
of inflammatory diseases (Figure 2). Studies have shown that
multiple combinations of genes encoding growth factors,
transcription factors, or anti-adverse response cytokines are
more advantageous than single genes for improving healing and
reducing adverse effects. To minimize hypertrophy, ossification,
and host immune responses, complex gene delivery vectors must
be designed to increase safety and more sustained gene protein
release. miRNAs regulate chondrogenesis and arthritis. The
expression of a specific miRNA mimetic or miRNA inhibitor
permits the manipulation of the expression profiles of the cellular
miRNAs and their epigenetic features. On this basis, combined
January 2020 | Volume 10 | Article 1534

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Yan et al. Gene Therapy for Osteochondral Regeneration
with 3D biological scaffold printing technology, it is more
conducive to accurately control cell differentiation and optimize
the biochemical and biomechanical properties of regenerated
tissues. However, the use of 3D delivery systems to miRNA-
activated scaffolds is in its infancy. Moreover, in terms of scaffolds,
3Dmultiphase structural scaffolds are complex, and not conducive
to the control of each phase, including degradation rates and shear
forces. Therefore, the two-phase scaffold divided into a cartilage
phase and a bone phase is simpler than multi-phase scaffolds and
ideal for osteochondral scaffolds (Seo et al., 2014). We propose that
to make full use of the integrated fusion bilayer scaffold, each
genetically modified cell line (overexpression or knockout of
miRNA) can edit specific signaling molecules that facilitate
tissue regeneration in each layer.
Frontiers in Pharmacology | www.frontiersin.org 9
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