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SUMMARY

Germinal center (GC) B cells cycle between the dark
zone (DZ) and light zone (LZ) during antibody affinity
maturation. Whether this movement is necessary for
GC function has not been tested. Here we show that
CXCR4-deficient GC B cells, which are restricted
to the LZ, are gradually outcompeted by WT cells
indicating an essential role for DZ access. Remark-
ably, the transition between DZ centroblast and LZ
centrocyte phenotypes occurred independently of
positioning. However, CXCR4-deficient cells carried
fewer mutations and were overrepresented in the
CD73+ memory compartment. These findings are
consistent with a model where GC B cells change
from DZ to LZ phenotype according to a timed
cellular program but suggest that spatial separation
of DZ cells facilitates more effective rounds of muta-
tion and selection. Finally, we identify a network of
DZ CXCL12-expressing reticular cells that likely sup-
port DZ functions.

INTRODUCTION

Germinal centers (GCs) form in secondary lymphoid organs after

immunization or infection. They are the principal sites in which B

cells modify their immunoglobulin (Ig) variable genes by somatic

hypermutation (SHM) and undergo selection for increases in Ig

affinity for antigen. It has been recognized for more than 80 years

that the GCs are polarized into two zones, the dark zone (DZ) and

the light zone (LZ) (Rohlich, 1930). GCBcells in the DZ and the LZ

are termed centroblasts and centrocytes, respectively. Although

initially described based upon histological observations of its

lower B cell density, the LZ is also distinguished by the presence

of follicular dendritic cells (FDC) that express high amounts of the

complement receptors CD21 and CD35 and FcgRII (CD32) that

capture and display immune complexes, and by its containing

the majority of GC follicular helper T cells (Tfh) that provide

help to B cells. Both of these LZ resident accessory populations
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are critical to GC responses (Victora and Nussenzweig, 2012;

Wang et al., 2011). GC polarization is conserved across a range

of species (Allen et al., 2004; Victora et al., 2012; Yasuda et al.,

1998), strongly suggesting that it plays an important role; how-

ever, this has not been carefully tested and the function of the

DZ is not clear.

Recent advances in imaging have allowed visualization of GC

cell behavior in vivo and have established that GCs are highly

dynamic structures in which B cells transit back and forth be-

tween zones (Allen et al., 2007b; Victora et al., 2010). The rapid

exchange of cells between compartments suggests that centro-

blasts and centrocytes might be better considered as different

transient states within the same developmental step, rather

than being different stages of differentiation. This conclusion is

further supported by findings that centroblasts and centrocytes

are indistinguishable in terms of size and morphology and that

there is great overlap in their gene-expression profiles (Allen

et al., 2007b; Victora et al., 2010). Nevertheless, centroblasts

and centrocytes do differ in expression of a range of genes

involved in activation, chemokine responsiveness, DNA repair,

and proliferation (Allen et al., 2004; Victora et al., 2012). There-

fore, we continue to use the centroblast and centrocyte nomen-

clature but define these states based on expression levels of

the ‘‘signature’’ surface proteins CXCR4, CD83, and CD86; cen-

troblasts express higher amounts of CXCR4 but lower amounts

of CD83 and CD86, whereas centrocytes are identified as being

CXCR4lo, CD83hi, and CD86hi (Allen et al., 2004; Victora et al.,

2010). It is thought that these changes in phenotype are the

outcome of different local inputs within the DZ and LZ, but this

has not been tested (Victora et al., 2012). In contemporary

models of the GC response, SHM and proliferation occur in the

DZ and are followed by B cell shuttling to the LZ where antigen

is captured through their newly mutated BCRs and internalized

for presentation to T cells (Allen et al., 2007a; Victora and Nus-

senzweig, 2012). B cells with the highest affinity acquire more

antigen and present more peptide-MHC class II complexes on

their surface, enabling out-competition of their neighbors (Allen

et al., 2007b; Victora et al., 2010). Iterative rounds of mutation

and selection lead to affinity maturation at the population level.

GC organization requires expression by B cells of the chemo-

kine receptors CXCR5 and CXCR4 (Allen et al., 2004). The ligand

for CXCR5, CXCL13, is expressed by FDC in the LZ and is
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Figure 1. CXCR4 Is Necessary for DZ Access and Continued Participation in Influenza and Gut Associated GCs

(A) Mixed BM chimeric mice with a majority of CD45.1+ and a minority of CD45.2+Mb1-Cre+Cxcr4fl/� or CD45.2+Mb1-Cre+Cxcr4+/+ control B cells were infected

with HKx31 influenza, and medLNs were harvested for IHC analysis on day 13 p.i.

(B) Gating scheme for assessing the participation of CXCR4-deficient B cells within the follicular and GC compartments, showing example from day 28 p.i.

(C) Data from multiple experiments were plotted as percentage of CD45.2+ GC B cells/% within the concurrent follicular compartment, at various time points.

(D–F) Similar IHC (D) and FACS (E and F) analysis was performed for PPs and mesLNs. Dots in (C), (E), and (F) represent single animals, and error bars indicate

means. Comparisons use a nonpaired two-tailed Student’s t test. Scale bars represent 200 um. See also Figure S1.
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responsible for guiding migration to this compartment, whereas

transit to the DZ and away fromCXCL13 is dependent upon cen-

troblasts expressing greater amounts of CXCR4 on their surface.

CXCR4 deficiency in small fractions of GC B cells leads to their

sequestration in the LZ. Here we took advantage of this require-

ment to explore the role of the DZ in GC responses. Surprisingly,

the transition from centroblast to centrocyte phenotype does

not depend on unique zonal cues. However, access to the DZ

is critical for effective participation within the GC; CXCR4-defi-

cent cells acquire fewer mutations and are outcompeted over

time. We propose that this reflects a defect in selection when

SHM and antigen acquisition are not spatially separated. Finally,

we report that the DZ contains a dense network of stromal cells

expressing CXCL12 (the ligand for CXCR4), and we suggest that

these cells help support GC responses.
I

RESULTS

CXCR4 Is Required for Effective Competition in GCs
To testwhether DZ access is critical forGC responses,we gener-

atedmixed bone-marrow (BM) chimeric mice where amajority of

B cells were from wild-type (WT) CD45.1+ donor mice, but that

also contained a smaller fraction (�10%–40%) of B cells lacking

CXCR4 (CD45.2+Mb1-Cre+Cxcr4fl/–). Chimeric mice were in-

fected with the HKx31 strain of influenza virus and responses

were followed in the draining mediastinal LNs (medLNs). The

presence of large numbers ofWTGCBcells permits the develop-

ment of normal GC structures in which the CXCR4-deficient cells

can compete but are restricted to the LZ (Figure 1A; see also

Figures S1A and S1B available online) (Allen et al., 2004). Small

numbers of CD45.2+ cells were found in the DZ of these GCs,
mmunity 39, 912–924, November 14, 2013 ª2013 Elsevier Inc. 913
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Figure 2. CXCR4 Expression Is Not

Required for Effective Competition in

Nonpolarized GCs

BM chimeric mice were generated in which the

majority (75%–95%) of B cells were CXCR4-defi-

cient (or control), and infected with influenza virus.

(A) GC polarization was determined by IHC stain-

ing of medLNs on day 12.

(B) Participation of CD45.2+Mb1-Cre+Cxcr4fl/� or

control cells within follicular B cell and GC com-

partments at 4 weeks p.i., with each dot repre-

senting a single mouse, and error bars indicating

means. Comparisons were with a paired two-

tailed Student’s t test. Scale bars represent

200 um.
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but these were mostly T cells (Figure S1C). In the control mixed

chimeras, CD45.2+ Mb1-Cre+ Cxcr4+/+ B cells were present

throughout theGC, as expected (Figure 1A; Figure S1C). FDC or-

ganization and polarization, as determined by CD16/32 staining,

was normal in both sets of mice (Figure 1A; Figure S1A).

The contribution of CXCR4-deficient cells to the IgDlo CD95hi

GL7+GCpopulationwithin themedLNwasdetermined at various

time points after infection and compared to the concurrent naive

follicular compartment (Figure 1B). Early in the response on day 8

postinfection (p.i.), the proportions of GC and follicular cells

that were CXCR4-deficient was almost identical, indicating that

B cells do not require responsiveness to CXCL12 for seeding

the response (Figure 1C). However, the Cxcr4fl/� population

gradually shrunk as a proportion of the GC over time, with their

representation in the GC at 4 weeks p.i. being approximately a

third of that in the follicular compartment at the same time point

(Figures 1B and 1C), indicating a requirement for CXCL12

responsiveness to compete effectively within these GCs. Impor-

tantly, no defect was seen in control mixed chimeric mice.

We performed a similar analysis of GC responses in the

Peyer’s patches (PPs) and mesenteric LNs (mesLNs) of mixed

BM chimeric mice, where chronic GCs form in response to

gut-associated antigens. We again observed Cxcr4fl/� GC B

cells to be restricted to the LZ when we looked in PPs (Figure 1D)

and saw similar (mesLN, Figure 1F) or slightly stronger (PPs, Fig-

ure 1E) defects in GC participation when cells could not access

the DZ. Therefore, a requirement for CXCR4-expression by GCB

cells is not specific to influenza infection or to the medLN.

CXCR4-Mediated DZ Access Is Essential for Effective
GC Responses
CXCR4 ligation in vitro can lead to Ca2+ flux and the activation

of ERK and AKT (Busillo et al., 2010). Therefore, where CXCR4
914 Immunity 39, 912–924, November 14, 2013 ª2013 Elsevier Inc.
is required for effective responses in

several lineages, it has been difficult

to elucidate whether the chemokine dic-

tates cell fate through the regulation of

positioning or through its direct acti-

vation of these intracellular signaling

pathways. This is particularly true where

CXCL12 is reported to promote pro-

liferation and differentiation processes

in vitro, because chemotactic responses
should not factor in these assays, but their relation to in vivo

observations is not clear.

In an effort to gain insight into whether CXCR4-expression by

GC B cells has a role beyond promoting DZ access, such as

directly stimulating prosurvival or proliferation pathways, we

generated mixed BM chimeric mice in which the majority

(75%–95%) of follicular B cells were from CD45.2+ Mb1-Cre+

Cxcr4fl/� (or Mb1-Cre+ Cxcr4+/+) mice, and a minority were

from CD45.1+ WT donors. Because GCs lack proper stromal

polarization when most GC B cells lack CXCR4 (Allen et al.,

2004), this setup allowed us to drive small numbers of WT GC

B cells into nonpolarized GCs (Figure 2A). We determined

participation byCXCR4-deficient and sufficient cells within these

abnormal GCs at 4 weeks p.i. and found the frequencies of each

population to match that in the concurrent follicular population,

indicating that CXCR4-expression was not required for partici-

pation in these nonpolarized GCs (Figure 2B). These findings

are dramatically different from those in polarized GCs where

CXCR4 expression was required for the cells’ continued partici-

pation (Figure 1) and argue that expression of CXCR4 by GC B

cells promotes effective responses only when it regulates entry

into the DZ.

Cycling between Centroblast and Centrocyte Stages
Does Not Require DZ Access
To determinewhether zone-restricted cues cause the centrocyte

and centroblast states of GC B cells, we compared CD83 and

CD86 expression by CXCR4-deficient and CD45.1+ WT GC B

cells from within the same LN when only WT cells might access

the DZ (Figure 1A). Like in NP-OVA immunized mice (Victora

et al., 2010) and in human tonsils (Victora et al., 2012), we saw

more CD83 and CD86 on WT CXCR4lo centrocytes than on

CXCR4hi centroblasts during influenza infection (Figure 3A).
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Figure 3. Aspects of GC B Cell Behavior Are

Regulated Independently of Cues within a

Particular Zone

(A) IgDloCD95+GL7+ WT GC B cells from the

medLNs of influenza infected mice were costained

for surface CXCR4 expression and for the LZ

markers CD83 and CD86 at �4 wks p.i.

(B) Representative plots of CD83 and CD86

staining (mean %s) on Cxcr4fl/� and control GC B

cells from mixed chimeric mice at 4 weeks p.i.

(chimerism as in Figure 1 and Figure S1). Data

were pooled from several experiments, with each

dot in (C) representing a single mouse.

(D) qPCR measurements of mRNA levels in FACS

sorted IgDloCD95+GL7+ Cxcr4fl/� and WT GC B

cells from mixed BM chimeras. Data in (D) are

pooled from two to three mice with error bars

indicating SD. Comparisons use a paired two-

tailed Student’s t test. See also Figure S2.
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Because we could not use CXCR4 as a marker to distinguish

centrocytes and centroblasts of CXCR4-deficient origin, we

determined the frequencies of cells in these states based on

CD83 and CD86 expression (Figure 3B). To our surprise, the fre-

quency of CXCR4-deficient GC B cells displaying a centroblast

(CD83loCD86lo) phenotype was very similar to that of WT with

just a slight shift toward more centrocyte stage cells (Figures

3B and 3C), despite their severe impairment in accessing the

DZ (Figure 1A). We also saw quite normal frequencies of centro-

blasts and centrocytes in mice lacking CXCR4 on all B cells,

where GCs are not polarized and therefore do not have a

discernible DZ (Figures S2A–S2C). In keeping with these find-

ings, transcripts for the LZ cell genes Myc and Nfkbia (Victora

et al., 2012; Victora et al., 2010) were similarly abundant in WT

and Cxcr4fl/� GC B cells in mixed BM chimeric mice (Figure 3D).

Together, these findings suggest that expression of centrocyte-

associated genes increases without requiring access to DZ-

restricted cues and presumably coinciding with the decrease

in surface CXCR4, though access to the DZ has a small aug-

menting influence on acquisition or maintenance of a centroblast

phenotype.

Cell-Cycle Progression within the LZ
We examined whether cues in the DZ regulate mitosis by

comparing the frequency of CXCR4-deficient andWTGCB cells
Immunity 39, 912–924, N
in S-G2-M phases of cell cycle. By

DNA content measurement, similar fre-

quencies of Cxcr4fl/� (19.8%) and WT

cells (21.9%) were actively proliferating

at the time of analysis (Figure 4A),

although the proportion of cells in S,

G2, and M was marginally lower for the

CXCR4-deficient cells (p = 0.015) (Fig-

ure 4B). This difference was small and

only significant when data from all mice

were pooled and compared, but not

when the means from the four experi-

ments were compared. A similar trend,

but one that did not reach statistical
significance, was observed when bromodeoxyuridine (BrdU)

incorporation over a 30 min period was compared (Figure 4C).

We further examined the sites in which CXCR4-deficient cells

were undergoing mitosis in situ. Histone H3 is rapidly phosphor-

ylated at Ser-10 as cells progress from late G2 into prophase,

with dephosphorylation occurring by the anaphase to telophase

step (Dai et al., 2005). Therefore, unlike BrdU staining, positivity

for phosphohistone H3 (p.H3) identifies mitotic but not S phase

cells (Figure 4D). CD45.2+ p.H3+ cells were found almost exclu-

sively within the LZs of Cxcr4fl/� mixed chimeric mice, confirm-

ing that cellular division was occurring in that zone (Figure 4E).

We also saw significant numbers of p.H3+ cells in the CD35hi

LZs of control WT mice, despite G2-M phases of cell cycle

being mostly restricted to cells at the CXCR4hi stage (Figure 4D)

(Allen et al., 2007b; Victora et al., 2010). Similar patterns of

p.H3 staining were observed in medLNs and PPs of WT mice

(Figures 4F and 4G), indicating that this phenomenon is not a

consequence of earlier exposure to radiation and was not

unique to the antiviral response. Our confidence in the speci-

ficity of the staining reagent was further enhanced by the obser-

vation that p.H3+ cells frequently displayed signs of condensed

chromatin and did not appear associated with tingible body

macrophages. Taken together, these results indicate that GC

B cell progression through cell cycle does not depend upon

access to DZ cues and highlights how the spatial separation
ovember 14, 2013 ª2013 Elsevier Inc. 915
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Figure 4. DZ Access Is Not Required for Cell-Cycle Progression or Mitosis

(A and B) DNA content in Cxcr4fl/� and control GC B cells from mixed BM chimeras (as in Figure 1) was assessed at �4 weeks after influenza infection (A). Data

from multiple experiments are represented in (B).

(C) Proliferation was determined after a single BrdU injection 30min prior to euthanasia. Lines in (B) and (C) join CD45.1+WT andCD45.2+Cxcr4fl/� or control cells

from the same mouse.

(D) GC B cells from influenza-infected WT mice were assessed by FACS for p.H3, DNA content, and CXCR4 expression. Red box highlights p.H3 high cells.

(E) MedLNs from influenza infected mixed BM chimeras were stained at 4 weeks p.i. for p.H3, CD35, IgD, and CD45.2. Arrows indicate cells in the LZ that are

double positive for CD45.2 and p.H3.

(F and G) p.H3 staining in WT medLN (F) and PP GCs (G). Symbols and red boxes identify the high magnification regions shown below. Comparisons are with a

paired two-tailed Student’s t test. Scale bars represent 50 um.
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of centroblast and centrocyte functions is not absolute even in

WT GCs.

Lower Accrual of Mutations in CXCR4-Deficient GC B
Cells
To determine whether SHM within the responding polyclonal

population of Cxcr4fl/� GC B cells was impacted by their restric-

tion to the LZ, we isolated B cells from mixed chimeras and

sequenced a 470 bp region from the JH4 intronic region of rear-

ranged members of the abundant VH558 V-region family by
916 Immunity 39, 912–924, November 14, 2013 ª2013 Elsevier Inc.
using Pacific Biosciences single-molecule DNA sequencing

technology. The mutation frequency in this intronic region pro-

vides a measurement of AID activity (Jolly et al., 1997). An anal-

ysis of the mismatch error rate in follicular B cells as a negative

control for AID activity confirmed the appropriateness of the

sequencing platform; the error rate was comparable to that

expected from nested PCR alone (Figure 5A).

CXCR4-deficient or control GC B cells were compared to WT

CD45.1+ cells from the samemedLNs 23–25 days after influenza

infection. While the frequency of mutations inMb1-Cre+Cxcr4+/+
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Figure 5. Reduced Mutation Load in CXCR4-Deficient GC B Cells

Follicular (A) and GC (B) B cells from medLNs of CXCR4-deficient and control mixed BM chimeric mice were FACS isolated on days 23–25 of influenza infection.

The frequency of mismatch errors in 470 bp of the intron downstream of rearranged VDJ regions was determined by single molecule sequencing. CD45.2+

Cxcr4fl/� and control cells were compared to WT CD45.1+ cells from the same mice. n = number of pooled mice.

(C) Similar analysis for PPs. Approximately three mice were pooled for each PP experiment, and data are pooled from indicated number of experiments.

(D) Intracellular AID protein staining of medLNs from mixed BM chimeras at day 15 p.i. Aicda�/� cells and WT CD45.1+ cells were mixed to provide staining

controls. The GC gating scheme is shown above. Representative of six mice from three experiments.

(E) RT-PCR measurements of genes associated with SHM for Cxcr4fl/– and WT cells frommixed BM chimeras. Data are pooled from two to three mice with error

bars indicating SD. See also Figure S3.
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and CD45.1+WT cells was similar in control mice,Cxcr4fl/�GCB

cell populations from four of six mice contained fewer mutations.

This trend is shown in Figure 5B, which displays the mean data

set. Analysis of PP GC B cells showed a similar pattern, but

with even fewermutations in CXCR4-deficient GCB cells relative

to controls (Figure 5C). Therefore, effective somatic hypermuta-

tion requires GC B cell responsiveness to CXCL12.
I

Activation-induced cytidine deaminase (AID) is thought to be

more abundant in DZ than in LZ cells (Victora et al., 2012). We

optimized a FACS-based assay to determine AID protein levels

in Cxcr4fl/� GC B cells, to ask whether its expression might

be positively regulated by cues in the DZ microenvironment.

AID was equally abundant in Cxcr4fl/� and WT GC B cells

(Figure 5D). Comparisons of Aicda�/� and WT GC B cells
mmunity 39, 912–924, November 14, 2013 ª2013 Elsevier Inc. 917
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Figure 6. Normal PC Development but Increased Memory Cell Output when GC B Cells Are Restricted to the LZ

(A) Representative FACS plots showing memory cell and PC gating schemes.

(B) The frequency of CD45.2+ Cxcr4fl/� and control cells in mixed BM chimeric mice (as in Figure 1) was determined for the GC, memory, and PC compartments

and plotted as fold difference relative to the concurrent follicular population.Mice were analyzed at 11 days and�4wks p.i. Dots represent individual animals, and

error bars show means.

(C) Influenza-infected Cxcr4fl/� and control mixed BM chimeric mice were given BrdU for 3 days at 4 weeks p.i. The proportions of follicular, GC, and BrdU+

memory cells that were CD45.2+ are connected for each mouse.

(D) Memory cell proliferation was assessed by transferring splenocytes from 3–4 weeks influenza-infected mice into infection-matched recipients and giving

recipients BrdU from 24 hr after transfer until analysis 3 days later. BrdU incorporation by transferred and endogenous IgDlo GL7lo CD73+ CD38+ memory cells

was compared. Each dot represents a single animal, and error bars show means.
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confirmed the specificity of the antibody stain (Figure 5D).

Furthermore, Polh, DnaseI, Lig4, and Apex1 transcripts, genes

involved in SHM that are also most abundant in DZ cells

(Victora et al., 2012), had similar expression patterns in

Cxcr4fl/� and control GC B cells (Figure 5E). The extent and

type of class-switch recombination in both populations,

another AID-dependent process that can occur during pre-

GC differentiation or in the GC, also did not depend upon DZ

access (Figure S3). Therefore, although accumulation of normal

numbers of nucleotide substitutions requires responsiveness

to CXCL12, DZ access is not critical for the expression of key

enzymes involved in SHM.
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Memory and Plasma Cell Development without Access
to the GC DZ
GC B cells can undergo one of two terminal fates; they might

differentiate into memory cells or plasma cells (PCs). We exam-

ined whether access to the DZ was necessary for the effective

transition to these stages in Cxcr4fl/�:WT mixed BM chimeric

mice following influenza infection. PCs were identified by being

negative or low for CD4, CD8, GL7 and IgD, as expressing inter-

mediate levels of B220, being positive for CD138, and by their

high intracellular IgG2b levels (Figure 6A). Memory cells are

long-lived and might be generated in GC-dependent and inde-

pendent processes; however, expression of CD73 was recently
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shown to identify memory cells generated via a mostly, but not

exclusively, Bcl6-dependent pathway (Kaji et al., 2012; Taylor

et al., 2012). We therefore used CD73 to enrich for GC-depen-

dent memory cells within our CD38hi GL7lo IgDlo IgG2b+ gating

scheme. Assessments were made both early in the response

on day 11 p.i, when Cxcr4fl/� B cells show minimal defects in

GC participation (Figure 1B), and 4 weeks p.i., when the compet-

itive fitness of Cxcr4fl/� cells has been strongly impacted. While

many B220int CD138+ intracellular-Ighi cells present at day 11 will

presumably have arisen through an extrafollicular GC-indepen-

dent pathway, PC phenotype cells present at the later time

point should mostly be derived from GCs. At both time points,

Cxcr4fl/�PCswere present at approximately the same frequency

as Cxcr4fl/� cells in the GC compartment, suggesting that the

GC-to-PC transition was not dependent upon access to the DZ.

In contrast to PCs, the frequency of CD73+ memory cells

within the Cxcr4fl/� population at 4 weeks p.i. was greater than

expected given their participation within the GC, suggesting

that they might have an increased propensity to transition from

GC to memory stages (Figure 6B). To further examine this possi-

bility, we treated mice with BrdU for 3 days prior to analysis.

Memory cells might form early in responses and persist for

months; however, BrdU staining should mark cells that divided

within the GC during the treatment period but prior to differenti-

ation (Anderson et al., 2007; Kaji et al., 2012). The marking of

recently generated memory cells by BrdU pulsing did not affect

the outcome of these experiments; CXCR4-deficient memory B

cells were present at a higher frequency than GC B cells in both

assays, arguing that aberrant positioning might lead to an

increased output of this cell type (Figure 6C). To control for the

possibility that memory B cells arriving in medLNs from another

site such as the spleen were still undergoing proliferation, we

performed adoptive transfer of splenocytes from 3–4 week in-

fected donor mice in to 3–4 week infected recipient mice, placed

the recipient mice on BrdU-containing water for 3 days, and then

analyzed BrdU incorporation by endogenous and transferred

memory B cells in medLN. This analysis established that recircu-

lating memory cells do not proliferate within 3 days of entering

the medLN (Figure 6D) and supported the suggestion that

CXCR4-deficient GC B cells give rise to elevated frequencies

of memory cells.

Identification of a CXCL12-Expressing Reticular Cell
(CRC) Network in the DZ
Having determined that access to the DZ is important for effec-

tive GC responses, we examined whether the DZ contains stro-

mal cells that might provide support to GC responses. CXCL12

mRNA and protein were previously detected within the DZ

(Allen et al., 2004); however, past studies examining endogenous

CXCL12 were not able to define the precise location or proper-

ties of the CXCL12-expressing cells. In an effort to improve

sensitivity, we used confocal microscopy to examine GFP

expression in heterozygous Cxcl12-gfp gene targeted mice

(Ara et al., 2003). This approach revealed the presence of an

interconnected network of CXCL12-expressing reticular cells

(CRCs) in influenza-induced GCs at various time points p.i. (Fig-

ure 7A; Figure S4A; Movie S1) and within chronic gut antigen

associated PPGCs (Figure 7B;Movie S1).Within theGC, detect-

able GFP expression was almost entirely confined to the DZ
I

stroma, although some DZ CXCL12-GFP+ cells did appear to

stain weakly for CD35 (Figure 7A; Figure S4B; Movie S1). Other

LZ FDC markers (CD16/32, MFGE8, FDC-M2) were undetect-

able or present at very low levels on DZ CRCs (Figure 7C). LZ

and DZ stroma were similar morphologically; high magnification

projections of DZ CRCs in Cxcl12-gfp mice (Figure 7D; Fig-

ure S4C) and of CD35+ LZ FDCs in Ubi-GFP mice that had

been reconstituted with non-florescent BM (Figure 7E) revealed

that both populations formed highly branched and tight reticular

networks. In general, the GC stroma appeared sparse in the

number of cell bodies, but it formed a dense mesh of fine pro-

cesses. By contrast, CXCL12-expressing stromal cells in the

T zone and medullary areas extended fewer but broader pro-

cesses and often, particularly in the case of T zone FRCs, formed

more regular organized structures (Figure 7D; Figure S4C). In

addition to the DZ CRCs, we frequently observed CD31+ blood

vessels ensheathed by CXCL12+ pericytes immediately adjacent

to and within GCs (Figure 7A).

We costained DZ CRCs with antibodies that recognize anti-

gens associated with other LN stromal subsets. In contrast to

the neighboring T zone stroma, and to the follicular conduit

and blood vessel-associated FRCs, DZ CRCs mostly did not ex-

press detectable levels of ERTR7 andwere not tightly associated

with the type IV collagen extracellular matrix (Figure 7F). These

findings, together with the striking differences inmorphology dis-

played by DZ CRCs and T zone FRCs, indicates that DZ CRCs

most likely do not arise from T zone stroma that were ‘‘engulfed’’

when the GC expanded. We therefore asked whether CRCs

might be present within naive primary follicles because such

cells might contribute to early stages of GC polarization before

later forming the DZ CRC network. Consistent with this possibil-

ity, we frequently observed CXCL12-GFP+ reticular cells in the

primary follicle close to where it meets the T cell or medullary

zone (Figure 7G). This primary follicle CRC network often

extended to the edge of the CD35+ FDC network deeper within

the follicle, where it sometimes appeared that there was overlap

in GFP and CD35 distribution, perhaps reflecting both stromal

cell types receiving similar inductive signals at the transitional

area (Figure 7G). Like DZ CRCs, primary follicle CRCs extended

fine processes from their globular body and they were mostly

negative for ERTR7 (Figure 7H), although they did show some as-

sociation with type IV collagen (albeit less consistently than for T

zone FRC) (Figure 7H; Figure S5) and differed from DZ CRCs in

usually not appearing to form the same tight nest-like structures.

In summary, these observations establish the presence of

CXCL12-expressing reticular cell (CRC) networks within primary

follicles and the GC DZ. The DZ CRCs are morphologically

similar to FDCs but have a distinct chemokine expression profile

and lack most FDC-associated surface markers.

DISCUSSION

This study provides evidence of an essential role for the DZ in the

GC reaction. A major difference between the LZ and DZ is the

presence in the LZ of immune-complex-decorated FDC and

the majority of GC Tfh cells. The cues that promote the transition

of centroblasts to centrocytes had not been examined in detail

before now, but the increased expression by centrocytes of

genes commonly associated with acute activation was thought
mmunity 39, 912–924, November 14, 2013 ª2013 Elsevier Inc. 919
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Movie S1.
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to suggest exposure of centroblasts to centrocyte-inducing sig-

nals upon arrival in the LZ (Victora and Nussenzweig, 2012).

However, our data are not consistent with such amodel because

we found nearly normal proportions of CXCR4-deficient GC B

cells displaying a CD83lo CD86lo centroblast-like phenotype,

despite their sequestration in the LZ. Furthermore, access to

the DZ was not essential for efficient passage through the S to

G2-M checkpoint of the cell cycle. Together, these findings

strongly suggest that centroblast and centrocyte functions are

limited to a certain cellular stage, rather than to a particular

site. We propose a model where switching from the centroblast

proliferative stage to the centrocyte selection stage progresses

according to a cellular ‘‘timer’’ that operates independently of

DZ-derived signals. Activation of the timer might be triggered

by LZ-derived signals such as receipt of T cell help. According

to this model, decreases in surface CXCR4 expression by GC

B cells are coordinated with reductions in proproliferative and

SHM gene expression and increases in CD83 and CD86. This

phenotype transition causes the cell tomigrate into the LZ, rather

than occurring as a consequence of it. Expression of centrocyte-

associated genes (such as CD86) might change the nature of the

interaction with T cells, thereby limiting the capacity for positive

selection to the period after the current round of mutation and

clonal expansion is complete.

While the decision of when to exit the DZ centroblast stage

might be set by a cellular timer, regulation of reentry into the cen-

troblast compartment probably involves cells testing their new

BCRs by competing for the formation of productive T cell interac-

tions (Allen et al., 2007b). Delivery of peptide antigen to a subset

of GC B cells was sufficient to stimulate increased cellular divi-

sion, centroblast differentiation, and ongoing GC participation

at the expense of their neighbors (Victora et al., 2010). Two recent

studies indicate that c-Myc might play an important role in DZ

cyclic reentry because it is required for continued participation

in the GC, and it is expressed by a small fraction of centrocytes

that are enriched for high affinity Ig rearrangements and that

have recently entered the synthesis phase of cell cycle (Calado

et al., 2012; Dominguez-Sola et al., 2012). By supporting amodel

in which T cell-derived signals induce transient c-Myc expres-

sion, leading to reentry to the DZ stage, these studies seem

consistent with transient c-Myc expression being involved in

resetting the centroblast ‘‘timer.’’ While we emphasize the role

of a zone-independent and thus likely intrinsic cellular program

in coordinating the centroblast gene expression profile and in

regulating the transition back to the centrocyte stage, extrinsic

factors suchas thenature of earlier T cell interactionmight imprint

aspects of behavior while in the DZ-associated state.

Although DZ access is not essential for centroblast differenti-

ation and proliferation, it is required for effective competition

and continued participation within the GC. We propose two

non-mutually exclusive models that might explain this. First,

the polarizedGCmight reflect a need for the temporal and spatial

separation of centrocyte and centroblast functions, rather than

cues in each zone promoting them. The most compelling

example for thismight be the physical separation of SHMand se-

lection; this might facilitate complete exchange of existing BCR

with newly encoded protein from the mutated locus prior to an-

tigen and T cell exposure. Premature entry into the LZmight drive

aberrant BCR signaling or lead to inappropriate T cell interac-
I

tions that could result in negative selection (clonal deletion) or

premature positive selection. For example, failure to upregulate

CD86 following BCR crosslinking in anergic B cells leads to their

killing by FasL-expressing T cells (Rathmell et al., 1998), and the

low CD86 expression by centroblasts might cause these Fashi

cells to suffer a similar fate following antigen presentation in

the GC LZ. Over time, improper GC B cell selection would man-

ifest as a decrease in somaticmutation accruement. As a second

possibility, the activity of the SHMmachinery might be bolstered

by cues only present in the DZ.We did not observe differences in

AID mRNA or protein abundance in CXCR4-deficient cells; how-

ever, thesemeasures do not exclude the possibility that SHMac-

tivity is lower; its regulation is particularly stringent and includes

transcriptional, posttranscriptional, and posttranslational mech-

anisms (McBride et al., 2004). Less efficient acquisition of nucle-

otide substitutions would be expected to lead to less frequent

improvements in affinity and reduced competitiveness in the GC.

A key function of the GC is to generate memory B cells and

PCs that provide protection against future infections of the

same or similar kinds. We found that the frequency of CXCR4-

deficient PCs closely matched that of the concurrent GC popu-

lation, suggesting that differentiation toward this fate was not

negatively affected by their inability to respond to CXCL12.

This finding was true regardless of whether we looked early in

the response, when many antibody-secreting cells will be gener-

ated via an extrafollicular response, and after 4 weeks of infec-

tion when most PCs should be generated in the GC. However,

it must be noted that we could not assess the efficiency of gener-

ating long versus short-lived PCs because CXCR4 is required

intrinsically within PCs for BM homing (Hargreaves et al., 2001;

Nie et al., 2004). In contrast to PC generation, the representation

of CXCR4-deficient cells within the memory compartment was

greater than expected given their GC participation defect,

consistent with the idea that a transition to the memory cell

fate might be favored when cells cannot access the DZ. It is

important to note that currently available tools do not allow for

the definitive identification of memory cells that have recently

exited the GC reaction, especially during complex polyclonal

responses; however, work has suggested that costaining with

CD73 and BrdU should enrich for such a developmental stage

(Anderson et al., 2007; Kaji et al., 2012; Taylor et al., 2012). The

signals that cause more cells to adopt this fate are not clear,

but we think it might again be a consequence of CXCR4-defi-

cient GC B cells engaging with T cells prematurely or aberrantly

due to their positioning in the antigen and T cell rich LZ. Previous

studies have indicated that the selection checkpoint for memory

cell generation might be less stringent than it is for PCs (Smith

et al., 2000; Victora et al., 2010). An increase in memory cell gen-

eration has been reported in at least two other settings where the

B-T interaction is abnormal; in mice lacking interleukin-21R (IL-

21R) specifically on B cells (Zotos et al., 2010) and in mice lack-

ing Fas on all class-switched B cells (Hao et al., 2008). Increased

memory cell numbers were also seen inBcl6 heterozygousmice,

which might be analogous to where T cell-derived IL-21 cannot

drive the maintenance of Bcl6 protein levels (Kaji et al., 2012)

(Linterman et al., 2010). Therefore, we speculate that a possible

increase in memory cell generation by CXCR4-deficient B cells

might reflect their receiving a quality of T cell help that is suffi-

cient to rescue them from deletion but that cannot drive their
mmunity 39, 912–924, November 14, 2013 ª2013 Elsevier Inc. 921
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PC differentiation or stimulate their continued participation in

the GC.

GCB cells are acutely dependent upon trophic factors present

in their microenvironment; cells displaced from that setting die

within a matter of hours (Wang et al., 2011). While LZ FDCs

provide one source of such factors, our confocal analysis of

CXCL12-GFP and of Ubi-GFP mice revealed the DZ to contain

a patchwork of tight and highly branched reticular cells that

might also contribute. Previous studies had noted some

VCAM-1, fibrinogen, and CD35 staining in this zone but had

not examined the nature of the stromal network in detail (Allen

and Cyster, 2008). We observed some variation in DZ coverage

by CXCL12-producing stroma; in some GCs, the network

extended throughout the CD35lo region but formed patches of

‘‘labyrinth-like’’ structures, seemingly similar morphologically to

the reticular network described in human basal LZs (Imal and

Yamakawa, 1996). LN GCs mostly form with the LZ proximal to

the subcapsular sinus from where antigen drains and the DZ ex-

pands to border the neighboring T or medullary compartment.

This raised the possibility that CXCL12-expressing reticular cells

(CRCs) in the DZ arise by the GC engulfing the neighboring

compartment as the follicle expands. However, we also identi-

fied a T-zone proximal network of CXCL12-expressing reticular

cells in primary follicles. Like DZ CRCs, primary follicle CRCs

were mostly distinct from neighboring FRCs both in their

morphology and in their not strongly associating with ERTR7

staining, although it should be noted that both primary and sec-

ondary follicles also contained ERTR7+ CXCL12-GFP+ perivas-

cular cells. We therefore think it more likely that preexisting

follicular CRCs help to establish early stages of GC polarization

and later form DZ CRCs as the GC matures. An important ques-

tion for future study is the relative contributions of CRCs,

CXCL12-expressing perivascular cells, and GC-proximal FRCs

to GC organization and maintenance. In this regard, it is inter-

esting to note that CXCL12-expressing perivascular and

endothelial cells are important in organizing and maintaining

hematopoietic stem cell and committed B cell progenitor niches

in the BM (Tokoyoda et al., 2004). In this setting, cells compete

for cues derived from the stromal network. It will be interesting

to see whether a similar fitness competition plays out in the GC.

In summary, we have provided evidence that centrocyte differ-

entiation from centroblasts occurs as part of a timed cellular pro-

gram. We believe a key function of this program is to temporally

separate the processes of SHM and mitosis from selection; as

the molecular program transitions the cell to the centrocyte

stage, proliferation and mutation genes are reduced and the

cell readies itself for optimal engagement with antigen and with

T cells. Therefore, much of GC behavior that has traditionally

been described as reflecting a function of the LZ or the DZ

instead occurs as part of the particular stage of the GC B cell

program. However, we also provide strong evidence that the

spatial separation of LZ and DZ functions is critical for mainte-

nance of effective GC responses.
EXPERIMENTAL PROCEDURES

Mice and Infections

Mixed BM chimeric mice were generated by transferring �3 3 106 cells

from the following mixes into lethally irradiated (2 3 450 rads, 3 hr apart)
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B6-CD45.1+ recipients: Mb1-Cre+ Cxcr4fl/�:CD45.2+ at 45:55, Mb1-Cre+

Cxcr4+/+:CD45.1+ at 25:75, Mb1-Cre+ Cxcr4fl/�:CD45.1+ at 5:95 and Mb1-

Cre+ Cxcr4+/+:CD45.1+ at 85:15, to give ratios of �20:80, 27:75, 10:90, and

10:90, respectively. Mice lacking CXCR4 on all B cells were generated with

Mb1-Cre+ Cxcr4fl/� BM, and mice expressing GFP in all stroma were made

with WT BM and Ubi-GFP recipients. Reconstituted mice were rested

>8 weeks prior to infection. Mb1-Cre, Cxcr4fl/fl, and Cxcr4�/�, Ubi-GFP, and

Aicda�/� mice were all backcrossed to the C57BL/6 background for >8

generations (Hobeika et al., 2006; Muramatsu et al., 2000; Nie et al., 2004;

Schaefer et al., 2001; Zou et al., 1998). Cxcl12-gfp gene-targeted mice were

on an impure C56BL/6 background (Ara et al., 2003).

For influenza infections, anesthetized mice were given 2 3 104 pfu of the A/

HK-x31 (x31, H3N2) virus via the intranasal route. For memory B cell transfers,

splenocytes (entire spleen) from infected C57BL/6 mice were transferred into

B6-CD45.1+ recipients by i.v. injection. For BrdU experiments, mice received a

single i.p. injection of 2.5mgBrdU (Sigma Aldrich) 30min prior to euthanasia or

were fed water containing 0.8 mg/ml BrdU for longer-term labeling. Animals

were housed in a specific pathogen-free environment at UCSF, and all exper-

iments conformed to ethical principles and guidelines approved by the Institu-

tional Animal Care and Use Committee of UCSF.

Flow Cytometry

For most experiments, single cell suspensions were generated and stained as

previously described using Abs listed in Table S1 (Allen et al., 2007b). For PCs,

tissues were finely chopped then digested shaking for 35 min at 37�C in

0.5 mg/ml type 4 collagenase (Worthington Biochemical Corp.) in DMEM,

2% FBS, 1% HEPES. EDTA (10 mM final) was added a further 5 min. Stromal

cell suspensions were prepared as described (Yi et al., 2012). For cell-cycle

analysis, cells were stained with antibodies prior to fixation overnight on ice

in 1% PFA in PBS. Fixed cells were washed twice with BD CytoPerm. DAPI

was added to a final concentration of 5 nM in perm buffer prior to FACs on

Lo setting. Doublets were excluded with Fsc and Ssc properties and by CD4

and CD8 dump-gating. BrdU staining was performed as per manufacturer’s

guidelines (BDPharMingen). For AID staining, cells were fixed (30min) and per-

meabilized (overnight) with eBioscience FoxP3 staining buffer. Anti-AID was

preadsorbed in 2% mouse serum prior to staining in perm buffer for 1 hr at

RT. Secondary stain of bio donk anti-rat was followed by 30 min incubation

with 4% rat and mouse serums. Subsequent surface and Bcl6 staining was

performed in perm buffer for 1 hr at RT in the presence of serums. To detect

p.H3 by FACs, we fixed cells on ice in 1.6% PFA for 12 min and washed

them once with PBS, 2% FBS. Cells were permeabilized by adding 500 ml

70% ice-cold Etoh dropwise while vortexing. Samples were moved to �20�C
and stored overnight. The following day, cells were rehydrated in FACs buffer

for 10 min and washed 23 prior to staining with rabbit anti-p.H3 Ab at RT for

1 hr. Secondary (bio donk anti-rab) and tertiary stainswere performed similarly.

Samples were acquired and analyzed with a BD LSR II and Flowjo (Treestar).

IHC and Confocal Microscopy

For IHC, tissues were prepared and stained as described (Allen et al., 2007b)

(Table S1). Positioning within the PPs of Cxcr4fl/– cells was determined in

mice with a higher frequency of CD45.2+ cells thanwas used for FACS analysis

to enable detection of otherwise rare cells. For confocal microscopy (GFP,

p.H3 inWT hosts), tissues were fixed in 4% PFA in PBS for 2 hr at 4�C, washed

4–63 in PBS, thenmoved to 15% (30min) and 30% (overnight) sucrose in PBS.

Tissues were flash frozen in TAK tissue-mounting media the following day, and

30 uM sections were dried for 1 hr prior to staining.We blocked 30 mMsections

overnight and stained them for 12–24 hr at each step in PBS with 3%–5%

mouse serum, 0.1%BSA, 0.3%Triton X-100, and 0.1%NaN3. For IF detection

of p.H3 and T cells, 8 mM sections were stained in PBS and mouse serum for

1–3 hr. Slides were mounted with Fluoromount-G (Southern Biotech), and

images were taken with a Leica SP5 inverted microscope with 403 and 633

oil immersion objectives. Images were analyzed and processed with the Imaris

software and Adobe Photoshop. Videos were compiled with Apple iMovie. IHC

images were captured with Zeiss AxioObserver microscope.

RT-PCR and Pacific Biosciences Sequencing

qPCR was performed as previously described using RNA isolated from

10,000 – 40,000 FACS sorted cells (Allen et al., 2004) (Table S2). For JH558
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intron sequencing, 11,000–30,000 GC B cells were FACs sorted and DNA ex-

tracted with QIAGEN DNEasy Kit. DNA was eluted in 100 ml H2O and concen-

trated to �15 ml with a centrifugal evaporator for use as template for nested

PCR (Table S3). New primers and reagent were added directly to 1� PCR prod-

uct for the 2� reaction. Secondary reaction primers incorporated 12 unique

barcodes, enablingmultiplexing of six reactions on a single SMRT cell. Primers

are specific for JH558 family members, and only cells with JH4 giving bands of

the correct size (�700 bp). PCR products were cut from 1.2% agarose gels

and purified (QIAquick columns, QIAGEN). Yields were �0.5–1.5 mg DNA.

Library prep/sequencing (Pacific Biosciences RS sequencer) were performed

at the UCSD BIOGEM facility with circular concensus mode, 2 3 55 min

movies, with standard, and later ‘‘stage start,’’ procedures. Sequences were

reported as FASTQ files, which were analyzed with the Bioconductor package

‘‘ShortRead.’’ Reads were filtered by requiring that 15 bp at each end of the

target region match the reference sequence perfectly and that the spacing

between these matches be within 2 bp of the expected length.

Statistical Tests

Prism software (GraphPad) was used for statistical analysis.
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