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Abstract Background/purpose: The diagnosis of peri-implantitis using periapical radiographs
is crucial. Recently, artificial intelligence may apply in radiographic image analysis effectively.
The aim of this study was to differentiate the degree of marginal bone loss of an implant, and
also to classify the severity of peri-implantitis using a deep learning model. Materials and
methods: A dataset of 800 periapical radiographic images were divided into training
(n Z 600), validation (n Z 100), and test (n Z 100) datasets with implants used for deep
learning. An object detection algorithm (YOLOv7) was used to identify peri-implantitis. The
classification performance of this model was evaluated using metrics, including the specificity,
precision, recall, and F1 score. Results: Considering the classification performance, the spec-
ificity was 100%, precision was 100%, recall was 94.44%, and F1 score was 97.10%. Conclusion:
Results of this study suggested that implants can be identified from periapical radiographic im-
ages using deep learning-based object detection. This identification system could help dentists
and patients suffering from implant problems. However, more images of other implant systems
are needed to increase the learning performance to apply this system in clinical practice.
ª 2024 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
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Introduction

Since Prof. Branemark completed the first successful
mandibular rehabilitation treatment using titanium dental
implants in 1965, dental implants have opened a new era in
prosthetic treatment for patients with missing teeth or loss
of masticatory function.1,2 Due to its innovative technology,
materials, and design, dental implant treatment has
become increasingly popular and has significantly grown.
According to a survey conducted in the US, the average
annual growth rate from 1999 to 2016 was 14%, and it is
expected to reach 23% by 2026.3 As a result, dental im-
plants are the preferred treatment for patients with
missing teeth, significantly improving their quality of life.

Numerous studies confirmed that dental implants are an
option for restoration, with survival and success rates
exceeding 90%.4,5 However, many complications still occur
even 5 years after implant placement, which may lead to
implant failure. Implant complications are classified into
two categories: mechanical and biological. Mechanical
complications include fixture or screw fractures and loos-
ening, as well as implant fractures. Implant mucositis and
peri-implantitis are some of the biological complications
which occur around the implant.1,6,7 Researchers have
conducted retrospective studies to analyze the numerous
risk factors for implant failure, which are attributed to
patient factors (such as marginal bone loss and excessive
occlusal forces), implant design factors, and restorative
factors (such as loosening or fracture of the restoration
screw).8 Further research showed that the incidence of
peri-implantitis is as high as 10%w40%,9e11 and there is a
tissue response to plaque formation similar to periodontal
disease.12 Initial symptoms are not obvious and can be
overlooked or misdiagnosed. As time passes, it can lead to
persistent bone resorption and separation of the implant-
bone interface, ultimately resulting in implant loosening
or loss and even systemic diseases. Therefore, early diag-
nosis, accurate staging, and timely and appropriate treat-
ment are crucial for controlling peri-implantitis.

Peri-implant mucositis and peri-implantitis are destruc-
tive inflammatory processes that arise pathological condi-
tions in the tissues surrounding dental implants.13e15 The
clinical assessment of peri-implantitis includes the use of a
periodontal probe to measure periodontal pocket depth
and bleeding, as well as X-ray imaging to detect marginal
bone loss (MBL).14 Alveolar bone loss is typically obscured
by periodontal tissues, and it is difficult to directly deter-
mine, making x-ray imaging an essential tool for evaluating
the range of peri-implant bone loss in cases of peri-
implantitis.

Dental x-rays, including two-dimensional (2D) images
like periapical (PA) and bitewing, panoramic (Pano), and 3D
images like computed tomography (CT) and cone-beam CT
(CBCT), are essential tools for diagnosing dental hard-tissue
diseases such as caries, periodontal disease, and apical
periodontitis. Therefore, x-ray imaging is an important,
commonly used tool in dental clinical diagnosis, that plays a
crucial role in diagnosing oral hard tissue diseases.16,17

Nowadays, artificial intelligence (AI) is flourishing, and
applications of radiological image databases in AI systems
have made the final diagnosis of various diseases more
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efficient and accurate. This has become a popular topic in
the field of radiology imaging today.18 In 2010, there was a
major breakthrough in intelligent technology with deep
learning (DL), where learning models shifted from using
graphic processing units (GPUs) to perform classification
tasks to using large datasets to execute algorithms for
clinical diagnoses, disease predictions, and providing
treatment recommendations.19,20 Convolutional neural
networks (CNNs) have been trained to use convolution to
extract image features, which enables fast and effective
classification and predictions. As a result, CNNs have
become popular algorithms for object recognition.21 In
healthcare fields, CNNs are being successfully applied to
various types of medical images to resolve different prob-
lems. For example, they can automatically assess the shape
and position of malignant breast tumors in mammographic
images22,23 and detect diabetic retinopathy in ophthalmo-
logical exams.24

Diagnosis and treatment in dentistry heavily rely on x-
rays, and in recent years, various algorithms have been
applied in dentistry, utilizing x-ray images for diagnoses,
treatment predictions, classification, and more.25e28 AI
applications have indeed produced satisfactory results in
the field of oral medicine. However, up to now, only a few
studies are available using DL to detect peri-implantitis in
dental x-ray images,29,30 and no research has explored the
relationship between the extent of peri-implantitis and
MBL. This method can be used to detect dental implants
and peri-implantitis.

Hence, utilizing PA imaging to identify and classify peri-
implantitis was the objective of this study. The major
purpose was to differentiate the degree of MBL of implants
and also classify the severity of peri-implantitis. This was
accomplished through automated detection, feature
extraction, and categorization, enabling the training of
small-scale medical image datasets using DL, resulting in
good classification and prediction outcomes.

Materials and methods

Image datasets

About 800 anonymized digital PA radiograph images of pa-
tients who had experienced dental implant treatment were
collected from November 2016 to June 2021 as conducted
by the Dental Department of Shuang-Ho Hospital (New
Taipei City, Taiwan). In order to prevent personal identifi-
cation, images were anonymized, and thus, the need for
patient consent was waived by the Institutional Review
Board of Taipei Medical University (N202103063) for the
retrospective collection of images. The study included
healthy individuals, excluding those with known systemic
diseases.

Annotation of implants

Three implant systems were physically annotated in peri-
apical radio diagnostic images with an annotation tool
(labellmg, Vancouver, British Columbia, Canada). The most
commonly used three systems at Shuang-Ho Hospital were
selected as dental implants in the present study. These
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three implant systems, including Brånemark Mk III System
(Nobel Biocare, Zürich, Switzerland, n Z 217), Implantium
Implants System (Dentium CO., LTD, Seoul, South Korea,
n Z 360), and XiVE System (Dentsply Sirona Charlotte, NC,
USA, n Z 202). These were all bone level implants,
differing in their connection designs and implant body
features.

Bone loss ratio and classification

Peri-implantitis is determined by the degree of bone loss
and other clinical indicators, such as radiographic bone loss
and bleeding/suppuration on probing or probing
depth.13,14,31e33 The present study classified the severity of
bone loss around implants based on the defect depth at the
implant neck and the ratio of bone loss to implant length.31

Peri-implantitis defects are classified into four groups:
Grade 1 < 15% of implant length, Grade 2 � 15%w25% of
implant length, Grade 3 � 25%w50% of implant length, and
Grade 4 > 50% of implant length (Fig. 1A).

Data preprocessing and labeling

The images we used were all resized to 640 (width) � 640
(height) pixels, and all of the files were.jpg files, which
were used for both training and testing. The images were
randomly separated into two datasets: 75% for training (600
images) and 25% for testing and validation (200 images)
(Table 1). After learning, models were made by imple-
menting the training dataset. Also, we utilized no image
enhancement or pre-processing approaches to improve the
PA images, and the test datasets were independent of the
training dataset. We assessed the performance of the
models which were made using the training dataset.

The labeling process was determined by a dentist with
many years of clinical experience, and the labeling decision
was made for each image, and then corresponding annota-
tions were generated by the YOLO labeling tool (LabelImg;
https://github.com/tzutalin/labelimg). Each implant had
three annotated bounding boxes, including the total
implant length (the category name of the implant system),
a box for bone loss (abbreviated as BL), and a box for non-
bone loss (abbreviated as NBL) (Fig. 1B). Annotate bound-
ing boxes on periapical films, marking a rectangle extending
from the implant abutment connection to the deepest point
of the defect, which appears as a darker area (indicating
lower bone density). Then, measure the vertical distance
from a predetermined point on the implant. The implant
length percentage of the bond defect site over the total
implant length, the implant length which not surrounded by
bone tissue, and the implant length surrounded by bone
tissue were all calculated using coordinates of the three
bounding boxes. Then, annotated images were exported in
formats of image files (.jpg) and text files (.txt).

YOLOv7 deep learning network construction and
training

The present study used the YOLOv7 DL model whose end-
to-end algorithm was proven to achieve high accuracy and
rapid analysis of object detection.34 In this study, YOLOv7
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was trained with PA images and their region of interest
(ROI) information, and training data were provided with
bounding box information for the training phase. The
bounding box evidence comprised width (w) and height (h)
values, and the class label of the implant in the PA image.
The implant system of PA images was detected using a 256
convolutional layer architecture with a variety of kernel
sizes, activation functions, skip connections, residual
blocks, and fully connected layers.

To implement YOLOv7 for training and testing, pytorch
library 2.2.4 was utilized to implement the network and
TensorFlow 1.14 (available at https://github.com/
tensorflow/tensorflow) which was employed as a desktop
backend with a TITAN RTX graphics processing unit
(NVIDIA, Santa Clara, CA, USA). YOLOv7 predicted
bounding boxes for each grid cell. The YOLO detection
procedure splits the input image into 32 � 32 grid cells,
each of which detects possible objects in the input image
where the center of the object is located. Therefore,
each grid cell generates multiple bounding boxes (B)
around possible object regions and box confidence scores
for whether these boxes contain objects. The training
dataset was divided into 32 batches for every epoch, and
1000 epochs were run.

The first part used the Darknet-53 backbone as input
with a comma-separated value (CSV), which can provide
feature extraction and stacked information from input im-
ages. The second part was the spatial pyramid pooling
module þ path aggregation network (SPP þ PAN) which was
used to fuse feature evidence of different scales. The third
part used YOLO Head for final inspection, which generated
final output vectors with object scores, class probabilities,
and bounding boxes (Fig. 2).

Performance metrics

Box confidence was attained by multiplying the probability
that a region in the relevant grid cell was an object by the
value of the Intersection over union (IOU), as follows:

Ground truth confidenceZProbðobjectÞ�IOU
ground truth

predicted
:

In this study, total numbers of implants, BLs, and NBLs in all
PAs were determined. Objective evaluation of their per-
formances was conducted using the Intersection over union
(IOU), a commonly used evaluation metric in object
recognition research. The overlap area of the ground-truth
bounding box and the predicted bounding box divided by
their union area (either ground-truth bounding box or pre-
dicted bounding box) was done to calculate the IOU. An IOU
threshold value of 0.533 is often set in object detection
research, and if the IOU value of a bounding box is greater
than 50%, it is considered a true positive (TP); otherwise it
is considered a false positive (FP).35 Multiple bounding
boxes were created around possible object regions in each
grid cell, and the box confidence score indicated the like-
lihood that the bounding box contained an object. A con-
fidence score of 0 indicated that there was no object in the
corresponding grid cell, and any bounding boxes with zero
confidence were therefore excluded. In the present study,
"misdetection" refers to the detection of non-MBL loss

https://github.com/tzutalin/labelimg
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow


Fig. 1 The classification of peri-implantitis defect grades and the examples by using LabelImg software.
(A) Illustration of the classification of peri-implantitis defect grades. Classified to defect severity according to the ratio of marginal
bone loss from the total implant length. BL: bone loss; NBL: non-bone loss; Grade 1-4 (%): BL / Total implant length in percentage.
(B) Examples of annotating implant fixtures, bone loss, non-bone loss and implant fixture using LabelImg software. a. Marginal bone
loss is annotated with blue box. b. Non-bone loss is annotated with green box. c. Xive fixture is annotated with red box.

Table 1 The number of fixtures for each implant system
in the dataset.

Implant dataset Xive Implantium Mark III Total

Train 136 291 173 600
Test 31 40 29 100
Validation 33 37 30 100
Total dataset 200 368 232 800

W.-F. Lee, M.-Y. Day, C.-Y. Fang et al.
areas, while "undetection" refers to failure to accurately
detect MBL. This was done to achieve precise MBL
detection.
1168
The diagnostic performance of YOLOv7 was measured by
the mean average precision (mAP), where a higher value
indicates more-accurate learning.35 Precision, recall, and
the F1 score were also used as indicators for evaluating the
object detection performance and classification ability.
Precision, also called the positive predictive value (PPV),
specifies the ability to distinguish negative datasets, with
higher precision values indicating stronger discriminative
ability. Recall, also called sensitivity or the true positive
rate (TPR), specifies the ability of a model to interpret
positive datasets, with higher recall values indicating a
better performance with positive datasets. A higher recall



Fig. 2 Structure of YOLOv7 used in the study.

Journal of Dental Sciences 19 (2024) 1165e1173
score may lead to a lower precision score, and it is unclear
whether a higher precision score or recall score is better.

Considering the overall evaluation of the classification
performance, based on the yielded TP, true negative (TN),
FP, and false negative (FN) values, the accuracy, precision,
recall, specificity, and F1 score were respectively calcu-
lated and are shown in Table 2. Table 2 also summarizes the
predicted and actual results used to determine the accu-
racy of the model. The accuracy, sensitivity, specificity,
precision, and F1 score were calculated as follows:

Accuracy Z [TP þ TN] / [TP þ TN þ FP þ FN];

Sensitivity Z TP / (TP þ FN);

Specificity Z TN / (TN þ FP);

Precision Z TP / (TP þ FP);

F1-score Z 2 � precision � recall / (precision þ recall).
Table 2 Accuracy, sensitivity, specificity, precision, and
F1 score values for recognizing peri-implantitis.

Accuracy Precision Sensitivity Specificity F1-Score

Overall 94.74% 100% 94.44% 100% 97.10%
Bone

loss
96.18% 100% 95.83% 100% 97.86%

Non-
bone
loss

93.42% 100% 93.06% 100% 96.43%
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Results

Dental implant system classification

Various results of the implant detection system of at least
200 images were recognized in periapical radiographic im-
ages, and the implant type with the maximum number was
Implantium (368), while the minimum implant type was
Xive (200). Table 1 provides information on the implants in
the training, test, and validation datasets. Fig. 3 provides
information of the peri-implantitis defect grades in the
datasets.
YOLOv7 model performance results for BL
classifications

From observations, a few of the diagnoses were missed, but
the area of BL as determined by YOLOv7 was usually similar
to the ground truth bounding box. The YOLOv7 model and
the observer annotations converged with an increase in the
severity of BL.

TP, TN, FP and FN values, and the accuracy, sensitivity,
specificity, and F1 score were calculated and are shown in
Table 2. Table 2 also summarizes the predicted and actual
results used to determine the accuracy of the model. Ratios
in Implantium and Xive implants were the largest accuracy
at 0.98, while that in Mark III implants was the smallest at
0.97. Performance metrics of the YOLOv7 model for
recognizing peri-implantitis in a total of 800 periapical
images were an accuracy of 94.74%, a sensitivity of 94.44%,
and an F1 score of 97.10%. There was no statistically sig-
nificant difference in the classification accuracy observed



Fig. 3 The number of peri-implantitis defect grades in the dataset.
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among the three groups, and the detailed accuracy per-
formances of YOLOv7 are given in Table 2.

Confusion matrix

Other results analyzed were a confusion matrix of BL and
NBL based on the YOLOv7 architecture for model training
and testing as shown in Fig. 4. According to the quantity of
correct values with the arrangement, the color gamut of
shades varied and became darker. The diagonal compo-
nents are the quantity of images appropriately predicted,
and the label of the prediction matches the true label.

Discussion

Removing a failed dental implant and replacing it with a
new one is expensive and technically challenging. Regen-
erative treatments for dental implant repair can also be
costly and unpredictable if not done correctly. Long-term
maintenance and clinical oversight of peri-implant disease
remain the most cost-effective and successful preventive
measures for treating this disease.36 After implant place-
ment and abutment connection, limited BL may occur. This
Fig. 4 Confusion m
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biological process may lead to unwanted implant surface
exposure and biofilm adherence. Early BL is a risk factor for
peri-implantitis, according to a large study population. The
higher the amount of early BL, the higher the incidence of
disease, especially in combination with other risk factors
such as smoking.37

According to a recent study, peri-implantitis is classified
into three groups based on the severity of BL. The groups
are as follows: stage 1: BL < 25% (of fixture length), stage 2:
25% < BL < 50%, and stage 3: BL > 50%.38 A dentist needs to
locate appropriate landmarks to analyze radio diagnostic
images and diagnose peri-implantitis. However, as dis-
cussed in previous studies, the severity of peri-implantitis is
classified depending on the degree of BL based on the
percentage of radiographic BL.39,40 According to the 2017
World Workshop on the classification of peri-implant and
periodontal diseases and conditions,13 the evidence sug-
gested that if there is an increased risk of developing peri-
implantitis at sites, probing depth was correlated with BL
and was, hence, an indicator for the severity of disease.
Problems like implant detection and peri-implantitis remain
unsolved in general clinics in the field of dentistry. In this
case, an unknown implant system, degree of marginal
bone, and the severity of peri-implantitis will make
atrix of YOLOv7.
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problems worse and result in other serious dental problems.
Therefore, identifying MBL and the dental implant system is
essential for both dentists and patients.

Digital radiographs are most effective for identifying
MBL and peri-implantitis. This is the starting point for the
evaluation and finding more-convenient ways in daily clin-
ical settings. To identify implant systems, radiographs of
implants are suggested after physiological remodeling to
assess changes in the bone level.39,41 A certain level can be
standardized regardless of the patient, and standardized
shapes of implants in images are an advantage of using PA
radiographic images. Studies suggest that PA radiographs
are the most reliable way to capture the entire tooth to the
root apex with minimal distortion, and they can detect
peri-implant BL.42 This study was conducted using digital PA
images, and datasets were divided into training, validation,
and test datasets. This study focused on automated iden-
tification and classification of MBL of dental systems and
the severity of the peri-implantitis from PA radiographic
images utilizing a DL-based model, an AI technique. Thus,
the model itself identified the implant rather than the
dentist. Trained algorithms were tested for their perfor-
mance using the test dataset.

Takahashi et al. applied an object detection model
called YOLOv3 to identify six different dental implant sys-
tems using a total of 1282 pano-radiograph images.43 While
the detection of a large number of implants is noteworthy,
it is important to highlight that only implant regions devoid
of peri-implant tissue were successfully detected, and an
mAP of 0.71 they used is a relatively inadequate level of
accuracy. This outcome was due to the fact that they uti-
lized pano-radiographs, which have lower image quality
compared to periapical radiographs utilized in this study.

AI technologies are being clinically assessed in the terms
of the diagnostic performance and patient results, and also
many professionals have confidence that AI techniques will
progressively replace or be substituted for medical educa-
tion for healthcare experts, particularly in diagnoses.40,44

Differentiating the degree of MBL of implants and
Fig. 5 Example images of the result of the marginal bone loss de
dental implants and peri-implantitis, e: false positive (FP) cases, f
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classifying the severity of peri-implantitis are of often
challenging. In view of the serious issues involved, an
automated AI-based method will be a good resolution to
prevent further complications and causes. Furthermore,
the CNN took 38 s and oral maxillofacial specialists took
23.1 min for a diagnosis, demonstrating AI’s efficiency.45 In
our study, we used a CNN which exhibited good accuracy,
and we concluded that the CNN model can facilitate
detection of MBL around implants. A study reported that
YOLOv7 had the highest accuracy in real time object
detection in terms of both accuracy and speed.34

The YOLOv7 model was used in this study for detection
and classification, while Chat et al., used the Mask
Regional-CNN (ReCNN) model that detects and classifies
target frames and then segments targets at pixel levels.29

The implants were recognized and categorized according
to the brand name with high accuracy by the AI system.
Also, an automated identification system which is not
dependent on the dentist’s expertise is required. In this
study, we divided MBL training data according to the
implant abutment connection type, and BL areas were
automatically identified by the model (Fig. 1B).

Several metrics of diagnostic performance were used for
model evaluation. When estimating the performance of
object detection, mAP and IOU are mainly used, also pre-
cision, recall, and F1 score are used. The accuracy of the
object detection model was measured employing mAP. A
mAP value of closer to 1.0 is considered more accurate.35

An IOU value of a bounding box of greater than 50% is
considered a TP, and the mAP obtained in this study was
0.94. Thus, on account of this, the performance of the
hyperparameters was determined to be high.

In implant detection among all ground truth labels, we
included all of the dental implants within the entire test
dataset. Considering the FP and FN, the FN was not able to
detect the implant profile that was truncated in the corner
of the image. If a PA radiograph clearly provides all of the
profiles of an implant, a higher accuracy would be pre-
dicted. Meanwhile, when brightness and saturation within
tection test. aed: True positive (TP) cases that well detected
eh: false negative (FN) cases.
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the images were similar to those of implants such as crowns
and pontics, an FN can occur (Fig. 5).

Prevention is key when it comes to peri-implantitis.
Clinicians should carefully monitor patients who are at risk
for biological complications and identify risk factors/in-
dicators to categorize an individual patient for his/her
susceptibility. This may also alter the maintenance protocol
in order to prevent complications. For patients exhibiting
early BL exceeding a certain threshold, stricter monitoring
may be advantageous to prevent further development of
biological complications.46,47

According to a systematic review and meta-analysis, all
implants produce some degree of BL following implant
installation and loading. Early implant BL of 1.5 mm occurs
during the healing phase and the first year in function at the
crestal area of implants, followed by annual BL of 0.2 mm
thereafter. One study also found that implant neck design
and surface characterization were associated with reduced
MBL.48 Detection of the brand of the implant system is
important as well as the BL level. Clinicians should closely
monitor the patient for peri-implant BL or a change in the
implants’ response to percussion after implant placement.
A retrospective study found that radiological evaluation of
MBL can be performed in different ways, such as by eval-
uating the distance from the implant shoulder to the bone
or by measuring the number of exposed threads that are not
in contact with bone.49 The brand of the implant might
influence the amount of early bone loss around the implant,
which may necessitate further investigation into the vari-
ations in surface treatment and implant design. Further
study for detecting both the implant system and BL will be
important for AI detection systems.

In our study, we used a CNN and achieved good accuracy.
We concluded that the CNN model can facilitate detection
of MBL around implants. According to studies, YOLOv7 had
the highest accuracy and speed in real-time object detec-
tion. Further study for detecting both the implant system
and BL will be important for AI detection systems. This can
help clinicians monitor a patient’s condition more accu-
rately and efficiently.
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