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model-designed environments
Paula Jouhten1,2,3,† , Dimitrios Konstantinidis1,†, Filipa Pereira1, Sergej Andrejev1, Kristina Grkovska1,

Sandra Castillo2, Payam Ghiachi4, Gemma Beltran5, Eivind Almaas6 , Albert Mas5 ,

Jonas Warringer4 , Ramon Gonzalez7, Pilar Morales7 & Kiran R Patil1,8,*

Abstract

Adaptive evolution under controlled laboratory conditions has
been highly effective in selecting organisms with beneficial pheno-
types such as stress tolerance. The evolution route is particularly
attractive when the organisms are either difficult to engineer or
the genetic basis of the phenotype is complex. However, many
desired traits, like metabolite secretion, have been inaccessible to
adaptive selection due to their trade-off with cell growth. Here, we
utilize genome-scale metabolic models to design nutrient environ-
ments for selecting lineages with enhanced metabolite secretion.
To overcome the growth-secretion trade-off, we identify environ-
ments wherein growth becomes correlated with a secondary trait
termed tacking trait. The latter is selected to be coupled with the
desired trait in the application environment where the trait mani-
festation is required. Thus, adaptive evolution in the model-
designed selection environment and subsequent return to the
application environment is predicted to enhance the desired trait.
We experimentally validate this strategy by evolving Saccha-
romyces cerevisiae for increased secretion of aroma compounds,
and confirm the predicted flux-rerouting using genomic, transcrip-
tomic, and proteomic analyses. Overall, model-designed selection
environments open new opportunities for predictive evolution.
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Introduction

Adaptive evolution under environmental selection pressure can give

rise to and optimize complex phenotypes (Darwin, 1859; Shoval et

al, 2012; Locey & Lennon, 2016; Sunagawa et al, 2020). While this

evolutionary process can involve numerous alternative paths at the

level of genotype, phenotype evolution is often convergent (Barrick

et al, 2009; Lassig et al, 2017). Adaptive evolution under controlled

laboratory conditions can thus be used to obtain target phenotypes

without explicit knowledge of the causative genotype. This method,

known as adaptive laboratory evolution, is widely used for improv-

ing microbial strains; examples include temperature tolerance

(Sandberg et al, 2014; Caspeta & Nielsen, 2015), simplified nutri-

tional requirement (Bracher et al, 2017), and boosting photosyn-

thetic capabilities (Antonovsky et al, 2016; Gassler et al, 2020).

While effective in optimizing complex traits and operationally

simple, adaptive laboratory evolution is inherently limited to traits

that are genetically linked to the fitness. Consequently, improving

fitness-neutral or costly trait requires artificial, non-Darwinian,

selection through screening of large numbers of variants. This is

a considerable combinatorial challenge for complex multigenic

traits, and, thus, application of artificial selection has yet been lim-

ited to single proteins or pathways with photometric readouts

(Arnold, 1993; Wang et al, 2009; Lee et al, 2013; Chen et al, 2018;

van Tatenhove-Pel et al, 2020). Darwinian selection of a complex

trait requires identification of an environmental condition where the

trait becomes genetically growth-linked (Agrawal & Stinchcombe,

2009), for example, increased antioxidant production could be

selected under oxidative damage conditions (Reyes & Kao, 2018).

However, such qualitative and sparsely known associations cannot

be generalized, calling for predictive models of trait dependences.

Here, we ask whether first-principle models could enable pre-

dicting environments under which a desired trait could be
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adaptively selected. We base our strategy on genome-scale meta-

bolic models, which allow predicting metabolic fluxes consistent

both with the mass balance constraints and the fitness objectives

of the cells (e.g., optimal growth; O’Brien et al, 2015; Varma &

Palsson, 1994). In the context of laboratory evolution, genome-

scale metabolic models have well predicted fitness improvement

and the associated metabolic flux changes (Ibarra et al, 2002; Szap-

panos et al, 2016; Strucko et al, 2018; Guzman et al, 2019). The

genome-scale metabolic models can also be used for predicting

metabolic gene deletions that couple a desired production trait to

growth (Burgard et al, 2003; Patil et al, 2005). After such model-

guided genome editing adaptive laboratory evolution has success-

fully been used to improve the growth-coupled production rates

(Burgard et al, 2003; Jantama et al, 2008; Brochado & Patil, 2013;

Jensen et al, 2019; Pereira et al, 2021). We use these genome-

scale metabolic models to predict environment-dependence of the

coupling between metabolic traits, and that between metabolic

traits and the cell fitness. This allowed us to generalize the design

of evolution environments and Darwinian selection of target phe-

notypes.

Results

Evolution environment

Consider an application environment, for example, wine must

wherein the manifestation of a target metabolic trait, for example,

aroma production, is desired. We postulate that improvement of the

desired trait in the application environment can be achieved through

adaptive evolution in a distinct evolution environment, followed by

the return to the application environment. To design the evolution

environment, we take advantage of the observation that the cou-

pling between metabolic traits is predictable as couplings between

metabolic fluxes and dependent on the nutritional/chemical compo-

sition of the environment (Box 1).

To search for a suitable evolution environment, that is, a

defined chemical environment in which the adaptive evolution is

to take place, we use the basis provided by the selection response

relation (equations 3 and 4). Ideally, the evolution environment

would be chosen such that there is a direct selection for the

desired trait through flux coupling with the cell growth. This, how-

ever, will only rarely be possible as most desired traits, such as

metabolite secretion, are in a trade-off with cell growth due to a

competition for metabolic precursors and co-factors (Jouhten et al,

2016; Nielsen & Keasling, 2016; Fig 1A). We therefore aim at

growth coupling of a secondary trait, which we term tacking trait.

Tacking trait is here defined as a set of fluxes that are flux coupled

(Burgard et al, 2004) to cell growth in the evolution environment,

and with the desired trait in the application environment (Fig 1B).

We note that it is neither necessary for the tacking trait to be cou-

pled with the desired trait in the evolution environment, nor it is

likely due to the trade-off with growth. Further, the tacking trait is

necessarily a proper subset of fluxes that must increase or

decrease for the desired trait enhancement in the application envi-

ronment. Due to the environment-dependence of genetic correla-

tions between traits (equation 3), the tacking trait and the

evolution environment are intrinsically linked and need to be iden-

tified simultaneously.

A desired trait that does not pose a fitness advantage will not be

under Darwinian selection in the application environment (Fig 1A).

In our strategy, the evolution environment is designed such that the

tacking trait becomes flux coupled to mean fitness (Fig 1B), allow-

ing positive selection on de novo mutations enhancing the tacking

trait. Upon switching to the application environment, in which the

tacking trait is flux coupled with the desired trait, the latter is

enhanced (Fig 1C and D). To illustrate this strategy, we consider a

simple metabolic network (Fig 1E–G). The parental strain is well

adapted to channel the nutrients to cell growth and thus produces

Box 1. Trait-fitness dependences are predictable as flux couplings.

The selection acting on a phenotypic trait is the covariance
between the trait and the relative fitness, as described by
Robertson-Price identity (Robertson, 1966, 1968; Price, 1970;
Rausher, 1992; equation 1).

s ¼ cov w; zð Þ (1)

where s is the selection differential, w fitness, and z the trait of
interest.

When there is genetic covariance between the trait and relative
fitness, evolutionary response to selection can occur (equation 2,
the secondary theorem of selection).

R ¼ sg ¼ cova w; zð Þ (2)

where R is the response to selection with units of the trait and
fitness multiplied, sg is the genetic selection differential, and
cova(w,z) is the additive genetic covariance.

Equation (2) generalizes to a multivariate form for multiple traits
(Rausher, 1992).

R ¼ cova w; zð Þ (3)

We now consider the case of metabolic traits, which can be rep-
resented and modeled as a set of metabolic fluxes (net reaction
rates). Metabolic trait interdependencies under a given chemical
environment can then be predicted using genome-scale meta-
bolic models as flux couplings (Burgard et al, 2004). Two meta-
bolic reactions are coupled if a nonzero flux through one
reaction implies a nonzero flux through the other. Flux covari-
ance follows from flux coupling (Heinonen et al, 2019; preprint:
Pradhan et al, 2019; Thommes et al, 2019). Importantly for mod-
eling evolutionary adaptation, flux coupling implies genetic
dependences between the corresponding enzyme-coding genes
(Notebaart et al, 2008).

To predict the relative response of a metabolic trait to selection, we use
its coupling to the specific growth rate (proxy for mean fitness). Analo-
gous to the secondary theorem of selection (equation 3), this gives:

Fv ¼ v

μ
(4)

where Fv is the relative unitless responses of single-flux metabolic
traits to selection, v the metabolic fluxes, and μ the specific growth
rate. Thus, higher the flux per growth unit, stronger the selection.
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only a little desired product (Fig 1E). In an appropriately selected

evolution environment (Fig 1F), a different set of pathways are flux

coupled with growth (Fig 1F). During the adaptive evolution,

increased flux through these growth-coupled pathways is selected

for. While there is no increase of production in the evolution envi-

ronment, the evolved strain exhibits, due to the direct coupling

between the tacking and the target trait, improved production in the

application environment (Fig 1G).

Under a prolonged cultivation, the desired trait may be nega-

tively selected in the application environment. However, this is not

an obstacle for the use of the proposed strategy in, for example, a

biotechnological setting. A typical microbiological process involves

only a few generations (below 10) and is thus unlikely to diminish

the desired trait. The necessary condition will be to maintain

and propagate the cell stock in a separate environment (in this case

the evolution environment), which is a common practice in microbi-

ology.

Predicting evolution environment

To predict evolution environments satisfying the conditions laid out

above, we devised an algorithm, termed EvolveX, based on genome-

scale metabolic models. The algorithm simultaneously identifies a

tacking trait and evaluates the suitability of a set of nutrients for

adaptively evolving the tacking trait (evolution environment).

EvolveX consists of four main steps. Step 1: For a given desired

trait, its flux basis is determined. This is defined as the set of fluxes

that must change for the enhancement of the desired trait in the

application environment. Step 2: For the identified flux basis, a

response to selection in the evolution environment is predicted. The

A

E F G

B C D

Figure 1. Darwinian selection in an absence of fitness advantage through an evolution environment and a tacking trait.

Current phenotype is represented with an orange circle, whereas the orange star represents the desired target phenotype.
A In the application environment (yellow), Darwinian selection (gray arrows) enriches cells with fitter phenotypes but with diminished desired trait.
B The tacking trait is chosen to be coupled with fitness in the evolution environment and can therefore be improved through Darwinian selection.
C The tacking trait is also characterized by direct coupling to the desired target trait in the application environment, even though not so in the evolution

environment (green).
D Evolved cells with a strengthened tacking trait (through selection in the evolution environment) manifest an improved desired trait in the application environment.
E–G A simple metabolic network illustrating the evolution environment and the tacking trait. The desired trait is the production flux of a compound (open

hexagon). The squares depict available nutrients, which differ between the target and evolution environments. The arrows represent metabolic fluxes, the
thicker the arrow the higher the flux. The tacking trait (red arrows), which is part of the flux basis of the desired trait, is flux coupled to cell growth flux
(i.e., proxy of mean fitness) in the evolution environment. Thus, the tacking trait can be improved through adaptive evolution in the evolution environment.
Due to the flux coupling in the application environment, the improved tacking trait leads to the enhanced desired target trait (i.e., increased target
compound secretion).
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subset of the flux basis with nonzero responses to selection forms

the tacking trait. Note that, as the covariances of traits may change

through evolution (Lande, 1980; Jones et al, 2007; Arnold et al,

2008), we define the flux basis (Step 1) in the ancestral state but pre-

dict the response to selection in a state that is expected to be

approached during experimental evolution (Ibarra et al, 2002; Szap-

panos et al, 2016; McCloskey et al, 2018). Step 3: A minimum size

(cardinality) of the subset of the flux basis having a stronger

response to selection in the evolution environment than in the appli-

cation environment is estimated. Step 4: A suitability score of an

evolution environment is calculated by combining: (i) results of Step

2, indicating the strength of response to selection; (ii) results of Step

3, indicating the coverage of flux basis with desired selection; and

(iii) the number of chemical components in the evolution environ-

ment (lower the number, higher the score). The last criterion is

included to discount for the uncertainty in the knowledge of the

organism’s nutritional preferences. Further details of EvolveX imple-

mentation, which accounts for variability in flux estimates and nor-

malizes the score to enable comparison across different growth

rates, are provided in Materials and Methods.

Model-predicted evolution environments increase
aroma production

To experimentally validate the applicability of model-designed evo-

lution environment, we set to improve secretion of aroma com-

pounds by Saccharomyces cerevisiae in wine must. Wine must is

characterized by high sugar content and relatively less assimilable

nitrogen. As aroma synthesis diverts carbon and nitrogen away

from the production of daughter cells, it cannot be adaptively

selected in the application environment (wine must). Moreover,

while the metabolic pathways that synthesize aroma compounds

are known, their regulation is poorly understood, preventing facile

engineering of aroma secretion (de Carvalho et al, 2017).

We targeted two main groups of aroma compounds: (i) pheny-

lethyl alcohol and its acetate ester, phenylethylacetate, which have

a rose and honey scent and raspberry-like flavor; and (ii) branched-

chain amino acid-derived higher alcohols (2-methyl-1-butanol and

3-methyl-1-butanol) and their acetate esters (2-methylbutylacetate

and isoamyl acetate; Swiegers et al, 2005; Carpena et al, 2021),

which have a banana and pear scent and fruity flavor. All these

aroma compounds derive from amino acids’ (L-phenylalanine and

branched chain amino acids) carbon backbones and contain no

nitrogen. The flux bases of the target aroma syntheses were defined

as a minimum set of fluxes that have to increase for the particular

target aroma generation to be enhanced. Similarly, flux bases could

include fluxes that should be negatively selected for desired trait

development.

To identify a suitable evolution environment for enhancing the

target aroma generation and corresponding tacking traits, we

assessed all 1,540 combinations of up to three carbon and nitrogen

sources, chosen from 22 common constituents of yeast growth

media. All combinations were ranked for their suitability for posi-

tively selecting the flux bases of the target aroma generation (via the

tacking traits) using the EvolveX score (Table EV1). High-scoring

environments were assessed for literature evidence of feasibility of

S. cerevisiae growth. Two of the high-scoring environments, which

were among the top 20 of 1,171 growth-supporting solutions, were

selected for experimental validation. Evolution environment con-

taining glycerol, phenylalanine, and threonine as sole carbon and

nitrogen sources was chosen for phenylethyl alcohol and

phenylethylacetate production. In this environment, hereafter called

glycerol environment (Fig 2A), 7 fluxes (out of 20 in the flux basis)

formed the tacking trait of phenylethyl alcohol and phenylethylac-

etate production (Table EV2). For branched-chain amino acid-

derived aromas, ethanol environment (Fig 2A), containing ethanol,

arginine, and glycine, was selected for experimental validation. In

the ethanol environment, 11 fluxes (out of 44 in the flux basis)

formed the tacking trait (Table EV2). The two tacking traits included

two common fluxes (transketolase 1, ribulose 5-phosphate

epimerase). However, only eight common fluxes were predicted to

be positively selected in the two evolution environments while 57

fluxes were predicted to be selected only in one of the two evolution

environments (Table EV3). Notably, the glycerol environment and

in the ethanol environment were predicted to expose positive selec-

tion on 17 (out of 29) and 20 (out of 44) common fluxes with intu-

itive control environments glycerol and ammonium and ethanol and

ammonium, respectively (Table EV3). Thus, the EvolveX designed

glycerol and ethanol evolution environments act as appropriate con-

trols to each other.

In each of the two selected environments, three replicate popula-

tions of a diploid wine yeast strain (selected based on capability of

growing in both environments) were independently evolved asexu-

ally for over 150 generations (Fig 2B). Growth improvement was

observed in both evolution environments (Fig 2C and D, Table

EV4). In the selected isolates evolved in ethanol environment, an

increase in maximum specific growth rate of over two-fold was esti-

mated (Fig 2D). Aroma production and growth physiology of single

colony isolates were assessed in natural wine must fermentations

(without any aroma precursor supplementation). All evolved iso-

lates maintained their fermentation performance in the natural wine

must (Fig 2E, Table EV5), indicating their suitability for use in wine

fermentations.

Mass-spectrometry analysis of the volatile compounds (28 quan-

tified, Table EV6) in wine must fermentations with the parental

strain and evolved isolates provided a view on the changes in vola-

tiles following evolution. In principal components analysis, the

strains did not cluster by their history (Fig 2F), supporting that the

volatile metabolite production was not universally impacted follow-

ing laboratory evolution. However, the principal components analy-

sis considering only the aromatic and branched chain amino acid’s

derived compounds, the aroma profiles clustered by the evolution

environment and separately from the parental (Fig 2G). The first

principal component (PC1, 37.6% of total variance) distinguished

parental from the evolved strains. In accordance with the model pre-

dicted overlap of the tacking traits (transketolase and ribulose 5-

phosphate 3-epimerase fluxes; Table EV2) and fluxes under selec-

tion (Table EV3), common separation from the parental aroma pro-

file was expected. Further attesting the model, the isolates selected

in the ethanol and glycerol evolution environments were separated

mainly by the target aroma compounds (PC2, 24.8% of total vari-

ance, Fig 2G and H). While for target aroma compound isoamyl

acetate, we could not validate the model predictions (i.e., level simi-

lar to parental in fermentations with E2-1), phenylethylacetate was

specifically increased in the wine must fermentations with the iso-

lates selected in the glycerol environment (Fig 2H). Similarly, the
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combined pool of branched-chain amino acid-derived aroma com-

pounds 2-methyl-1-butanol and 3-methyl-1-butanol was increased

only for the isolate selected in the ethanol environment. Together,

evolved isolates featured increased aroma formation in wine must

according to the EvolveX predictions.

Evolved strains exhibit molecular changes in accord with the
model predictions

To understand the genetic basis of the evolved phenotypes, we

sequenced the whole genomes of the evolved populations. In

A C D E

F

B

G

H

Figure 2. Aroma production changes detected in evolved yeast strains.

A Origin of aroma compounds in the yeast central metabolism: branched-chain amino acid-derived compounds (esp. 2-methyl-1-butanol, 3-methyl-1-butanol, isoamyl
acetate, and 2-methylbutylacetate), and aromatic amino acid-derived compounds (esp. phenylethyl alcohol and phenylethyl acetate). Acetate esters of higher alcohols
share an acetyl-CoA (ACCOA) precursor.

B Parental wine strain of S. cerevisiae was adaptively evolved in both ethanol environment and glycerol environment for over 150 generations.
C Evolved single colony isolates had improved growth in glycerol environment compared to parental. The growth of isolates G2-1 and G2-2 and the parental character-

ized in three biological replicates as backscattered light (AU—arbitrary units).
D Evolved single colony isolates had improved growth in ethanol environment compared to parental. The growth of isolates E2-1 and E2-2 and the parental character-

ized in three biological replicates as backscattered light (AU—arbitrary units).
E Evolved single colony isolates maintained similar to parental growth ability characterized in single biological replicates as carbon loss in natural wine must

fermentations.
F Principal components analysis of quantified 28 volatile aroma compounds in natural wine must fermentations, with the parental (gray) and evolved strains in three

biological replicates. Evolved strain from the ethanol evolution environment (ethanol, arginine, glycine), E2-1, in light blue, and that from the glycerol evolution envi-
ronment (glycerol, phenylalanine, threonine), G2-1, in orange.

G Principal components analysis of aromatic and branched amino acid-derived volatile compound profiles of natural wine must fermentations, with the parental (gray)
and evolved strains (E2-1 in light blue, G2-1 in orange) in three biological replicates.

H Changes in selected aroma compound abundances in wine must fermentations. AU—arbitrary units. E2-1 (light blue) was selected in the ethanol environment, and
G2-1 (orange) was selected in the glycerol environment. 2 + 3-methylbutanol (a combined pool of 2-methyl-1-butanol and 3-methyl-1-butanol) and isoamyl acetate
(acetate ester of 3-methyl-1-butanol) were the desired target aromas of the ethanol environment, deriving from branched-chain amino acids. Phenylethyl alcohol
and its acetate ester, phenylethyl acetate, were the desired target aromas of the glycerol environment. Medians over three biological replicates are shown with black
lines. Significant differences in means (Tukey’s test; n = 3; P value < 0.05) are indicated with P values.
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addition, we sequenced isolates from the evolved populations at

two intermediate stages, an earlier (~100 generations) and a later

stage (~214 and ~165 generations for ethanol and glycerol environ-

ment, respectively).

In the case of ethanol environment, copy number variants

(CNVs) analysis revealed triplications of chromosome VII in several

evolved populations and isolates (Table EV7). Further, recurrently

in several populations and clones single nucleotide variants (SNVs)

were found in SKY1, which encodes a serine/threonine kinase

involved in the regulation of polyamine transport (missense

p.Ala591Val, frameshift p.Leu64fs, stop gain p.Ser117*; Table EV8).

We also observed a loss-of-heterozygosity segment in the contig

containing the SKY1 locus. SKY1 deletion gives yeast tolerance to

high spermine concentrations (Erez & Kahana, 2001), a degradation

product of arginine, which was one of the three components in the

ethanol environment. In clones where SKY1 mutations were not

detected, we found paired missense mutations in genes encoding

the ubiquitin ligase Rsp5 (p.Arg355Gly) and its target-guide and

adapter Ldb19 (p.Pro679Thr), which drive the endocytosis of

plasma membrane-localized amino-acid transporters. Ldb19 variant

A

C

F G

D

E

B

Figure 3.
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was accompanied with a loss-of-heterozygosity in the contig con-

taining the locus (Fig 3A). Thus, in the ethanol environment, muta-

tions in genes involved in arginine utilization were enriched in

accord with the selection regime.

The clones and the populations selected in the glycerol environ-

ment had only few SNVs, and no genes showed recurrent SNVs

(Table EV8). However, CNVs were prevalent, with multiple tripli-

cated segments observed in several cases (Fig 3B, Table EV7). This

extensive variation meant that no particular genes or pathways

could be directly linked with either growth or aroma production.

Indeed, many of the duplicated genes could be dosage compensated

(preprint: Muenzner et al, 2022). Therefore, we next resorted to

analyzing changes at the transcriptomic and proteomic levels. The

evolved cells were characterized both in the application environ-

ment (wine must, same batch as was used for determining the

aroma profiles) and in their corresponding evolution environments

(Tables EV9 and EV10). In all cases, the overlap between transcript-

level and protein-level changes was below 6%, indicating major role

of post-transcriptional regulation in both the improved aroma gener-

ation in wine must and in the improved fitness in the evolution

environments.

The fitness improvement in the glycerol environment was asso-

ciated with a differential abundance of 48 and 78 metabolic

enzymes in G2-1 and G2-2, respectively (Table EV10). In total, 139

and 224 proteins were found in differential abundance compared

to the parental strain (limma; n = 3, P value > 0.01, −1 > log2fc >
1) in G1-2 and G2-2, respectively. Sixty-six of the proteins were

shared (Fig 3C and D) marking the shared solutions in fitness

improvement. Many protein down-regulations were shared

between G2-1 and G2-2 (Fig 3C). The metabolic enzymes with

increased abundance were enriched in respiratory pathways in

accord with the strong selection pressure predicted by EvolveX

(Table EV3). A significant overlap was found between the

enzymes predicted to be positively selected and the proteins pre-

sent in higher abundance in the clones evolved in the glycerol

environment (hypergeometric test; G2-1 P value 0.000022, G2-2 P

value 0.0024). The proteins present in higher abundance in G2-2

overlapped significantly also with the tacking trait (P value 0.021).

In addition, glycolytic enzymes (Cdc19, Pdc6, and Tdh1) became

less abundant in G2-1, suggesting increased respiratory activity rel-

ative to glycolysis.

The fitness improvement in the ethanol environment was also

associated with few, focused, enzyme abundance changes (12 in

E2-1 and 31 in E2-2; limma; n = 3, P value > 0.01, −1 > log2fc >
1, Table EV10). In total, 19 and 68 proteins were found in differen-

tial abundance compared to the parental strain in E1-2 and E2-2,

respectively. Only eight of these were shared between E2-1 and

E2-2 (Fig 3C and D), underscoring the multiple evolutionary solu-

tions to fitness improvement. The metabolic enzymes present in

higher abundance in E2-2 significantly overlapped with the

enzymes predicted to be positively selected in the ethanol environ-

ment (hypergeometric test P value 0.050). Consistent with arginine

as the nitrogen source in this evolution environment, the changes

included decreased abundance of arginine biosynthetic pathway

enzymes (Arg1 and Arg8 in E2-1, and Arg5,7 in E2-2). Strain E2-2

further had decreased abundance of proline oxidase, Put1,

involved in the utilization of one of the four nitrogen atoms in

arginine. Several transporters had higher abundance in E2-2: argi-

nine permease (Can1), monocarboxylate transporter (Jen1),

methionine permease (Mup1), and hexose transporter (Hxt6). The

endocytosis of all these transporters is mediated by Rsp5-Ldb19

(Nikko & Pelham, 2009; Becuwe & Leon, 2014; Guiney et al,

2016), which was mutated in the E2-2. Overall, in both evolution

environments, the protein abundance changes were limited to the

key growth-linked pathways predicted by EvolveX—respiration in

the glycerol environment, and arginine metabolism in the ethanol

environment.

In the application environment (wine must), the improved aroma

generation was accompanied by changes in expression of around

50–200 genes (Table EV9). Genes connected to the tacking traits

and flux basis were affected, including chorismate synthesis, aro-

matic amino transferase, and the Ehrlich pathway. In G2-2, a

◀ Figure 3. Molecular changes detected in evolved yeast strains.

A Loss-of-heterozygosity (LoH) coincided with single nucleotide variants (SNVs, marked on the top and right side of the panel) in evolved populations and clones from
the ethanol environment, suggesting the necessity of the SNVs being homozygous for the evolved phenotype. The evolved clones (“-clone”) and populations are
named according to their selection environment: “G”—glycerol selection environment. “E”—ethanol selection environment. The number after the letter stands for the
evolution status: 1—the time of first isolation of clones, 2—the time of second isolation of clones. The clones for which we determined protein and transcript alter-
ations are indicated in bold.

B Evolved populations and clones from the glycerol environment exhibited large copy number variations. Shown are the genome segment copy numbers along the
chromosomes (chr). Vertical lines mark ends of contigs.

C Upset plot of sets of proteins higher in abundance (limma, n = 3 (biological replicates), P value < 0.01, −1 > log2fc > 1) in the evolved isolates than in the parental
strain in the respective evolution environments (G1-2, G2-2: glycerol environment; E1-2, E2-2 ethanol environment) shows partly shared solutions underlying
improved fitness.

D Upset plot of sets of proteins lower in abundance (limma, n = 3 (biological replicates), P value < 0.01, −1 > log2fc > 1) in the evolved isolates than in the parental
strain in the respective evolution environments (G1-2, G2-2: glycerol environment; E1-2, E2-2 ethanol environment) shows proportionally large overlaps between the
isolates evolved in the same environment.

E The evolved clones fermenting natural wine must (application environment) revealed both shared and evolution environment-specific protein abundance changes up
and down in comparison to the parental strain (limma, n = 3 (biological replicates), P value < 0.01, −1 > log2fc > 1). Clones for which we quantified the aroma pro-
duction are shown in color (E2-1 in light blue, G2-1 in orange). Clones from the glycerol environment (G2-1, G2-2) featured higher abundance of Tkl1p (transketolase)
and lower abundance of His1p (ATP phosphoribosyltransferase).

F Changes in protein (limma; n = 3 (biological replicates), P value < 0.01, −1 > log2fc > 1) and transcript abundances (Wald test; n = 3 (biological replicates),
fdr < 0.05, −1 > log2fc > 1) are centered on the pathways leading to the target aroma compounds phenylethyl alcohol and phenylethyl acetate. The changes
consistent with the model predictions are indicated with colored arrows (protein-level) and clouds around the arrows (transcript-level).

G Proteomic and transcriptomic changes in evolved clones, marked as in (F), for pathways leading to the branched chain amino acid-derived target aroma compounds.
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significant overlap was detected between the corresponding flux

basis of the desired trait and the genes found up-regulated (hyperge-

ometric test; P value 0.0052). At protein level, abundance changes

(limma; P value > 0.01, −1 > log2fc > 1) were observed in 9 to 32

proteins in the evolved isolates (Fig 3E, Table EV10). A few changes

in metabolic enzymes centered on the supply of precursors to the

target aroma compounds were observed (2 to 10 enzymes, Fig 3F

and G). Significant overlap was detected in proteins found in higher

abundance in the evolved clones and the tacking traits of the both

aroma profiled evolved clones (G2-1 P value 0.011, G2-2 P value

0.017, E2-1 P value 0.046). In E2-1, also the flux basis excluding the

tacking trait overlapped significantly with the proteins in higher

abundance than in the parental strain (P value 0.0064). All evolved

strains except E2-2 exhibited increased levels of transketolase (Tkl1)

consistent with increased precursor supply to aroma biosynthesis as

per model prediction. The clones from the glycerol environment

showed decreased levels of His1, which competes with Tkl1 for the

precursor ribose 5-phosphate (Fig 3F). Another competing pathway,

Orotidine-50-phosphate decarboxylase (Ura3), involved in purine

nucleotide synthesis, was also less abundant. In the ethanol envi-

ronment, increased Tkl1 abundance was accompanied by those of

dihydroxyacid dehydratase (Ilv3) and isopropylmalate isomerase

(Leu1; Fig 3G). Both Ilv3 and Leu1 are involved in branched-chain

amino acid biosynthesis and higher activities were predicted by the

model. Leu2, which follows Leu1 in the leucine biosynthesis path-

way, had decreased abundance on one of the clones in accord with

the model predictions (Fig 3G). Overall, the protein abundance

changes in evolved cells were centered on the aroma synthesis path-

ways consistent with the model predictions.

Discussion

The EvolveX algorithm, with roots in the laws of thermodynamics

as captured by genome-scale metabolic models, allowed us to pre-

dict the environment-dependent trait–fitness correlations. Our the-

ory and results thus bring predictive evolution, which has yet

mostly based on empirical correlations, in the realm of first-

principles modeling. Previously, adaptive evolution of fitness-

beneficial traits in one niche has been shown to facilitate exapta-

tion, that is, the predisposition to fitness improvement in another

niche (Szappanos et al, 2016). In contrast, we propose and show

that, in an appropriately chosen evolution environment, a trait

without a fitness benefit in the application environment can adap-

tively evolve.

The increased phenylethyl alcohol and phenylethyl acetate gener-

ation we observed occurred in an evolution environment containing

the direct aroma precursor phenylalanine. In contrast, no target

aroma precursor was included in the evolution environment for the

branched-chain amino acid-derived aroma compounds. This demon-

strates the utility of metabolic modeling in identifying nonintuitive

evolution environments. While we designed the evolution environ-

ments in this study using carbon and nitrogen sources, enzyme inhi-

bitors and substrate analogs can also be used to expand the search

space for the evolution environments. Furthermore, while the flux

bases in this study included only fluxes that should be positively

selected, fluxes that should be negatively selected for developing a

desired trait could also be included in the design of evolution envi-

ronments. The evolution environments were not optimized here

also for specificity to changes in the target compounds. While the

variance in aromatic and branched-chain amino acid-derived aro-

mas (including the target compounds) reflected the evolution envi-

ronment of the strains, the variance in other volatile compounds

can be thought to exemplify both the metabolic couplings and

redundant solutions of adaptive evolution. Optimizing the evolution

environment choice for the specificity of the desired trait develop-

ment could be achieved by extending the EvolveX scoring scheme

to flux bases that include also fluxes that should not be change in

either direction.

A key question for generalization of the proposed strategy is

which traits will be accessible through changing the growth environ-

ment. By applying the EvolveX algorithm to all reactions in of the

yeast metabolism, we predict that 149 reactions can be targeted

through environments composed of common nutrients; this cover-

age can be substantially expanded (to 273) by using enzyme inhibi-

tors in the evolution environment. Instead of enzyme inhibitors,

possible metabolic gene deletions/mutants can be used to expand

the coverage. EvolveX thus extends the design of growth-product

coupling (Burgard et al, 2003; Jantama et al, 2008; Brochado &

Patil, 2013; Jensen et al, 2019; Pereira et al, 2021) from genotype-

dependent trait-fitness dependences to also considering

environment-dependence of the trait selection.

The use of model-designed evolution environment maintains the

key advantage of adaptive laboratory evolution, namely, circum-

venting the need to know, except for the basic metabolic network

structure, the genetic and regulatory basis of the traits of interest.

Indeed, the omics analysis of the improved aroma generation traits

in our case study revealed complex genotype–phenotype relation-

ships. Improving these traits using rational strain improvement

would currently be challenging (Hassing et al, 2019). As genome-

scale metabolic models are becoming easier to reconstruct (Pitkanen

et al, 2014; Machado et al, 2018; Wang et al, 2018; Seaver et al,

2021), our approach can be readily applied to any organism amen-

able for experimental evolution. Commonly a sufficient quality net-

work is obtained in automatic model reconstruction though the

accuracy is the most dependent on the success of protein functional

annotation still challenging for less well-characterized metabolic

enzymes. In this study, we used the S. cerevisiae reference strain

genome-scale metabolic model to represent our wine yeast parental

strain. This demonstrates that the method is not sensitive to differ-

ences beyond central pathways when the target compounds origi-

nate from the central pathways too. While the choice of the parental

wine strain was made based on growth in our selected evolution

environments, the EvolveX method is applicable to any strain that

can divide in the evolution environment.

The theory of the tacking traits and the evolution environments

is generalizable to nonmetabolic traits if the dependency between

the fitness and other traits can be quantitatively modeled. This

could be done by using, for example, signaling networks. Thus, in a

broader view, our theory provides means for understanding com-

plex adaptive processes through systematizing the joint

environment-genetic dependences between fitness and other traits.
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Material and Methods

Reagents and Tools table

Reagent/Resource Reference or Source
Identifier or Catalog
Number

Experimental Models

Saccharomyces cerevisiae Lallemand (Blagnac, France) N/A

Chemicals, Enzymes and other reagents

Arginine Sigma Aldrich Cat # A5006

Glycine Sigma Aldrich Cat # G7126

Threonine Sigma Aldrich Cat # T8625

Phenylalanine Sigma Aldrich Cat # P2126

Ethanol Sigma Aldrich Cat # 1009861000

Glycerol Sigma Aldrich Cat # G5516

Turbo DNAse Thermo Fisher Cat # AM2238

RapiGest SF Surfactants Waters Cat # 186001861

TMT10plexTM Isobaric Label Reagent Thermo Fisher Cat # 90110

Software

Matlab (R2017b v. 9.3.0, R2019b, v. 9.7.0) https://www.mathworks.com/products/matlab.html N/A

R (v. 3.6.3, v. 4.0.3, v. 4.1.2) https://www.r-project.org N/A

Python (v. 3.6, v. 3.6.13) https://www.python.org/ N/A

IBM ILOG CPLEX (v. 12.8.0, v. 12.10.0) https://www.ibm.com/products/ilog-cplex-optimization-
studio

N/A

GATK4 (v. 4.1.0.0) https://gatk.broadinstitute.org/hc/en-us N/A

Other

RNAeasy kit Qiagen Cat # 74104

NEBNext® UltraTM II Directional RNA Library Preparation
Kit

New England Biolabs (NEB) Cat # E7760S

NEBNext Poly(A) mRNA Magnetic Isolation Module New England Biolabs (NEB) Cat # E7490L

NEBNext DNA Ultra2 Library Preparation Kit New England Biolabs (NEB) Cat # E7103

HiSeq2500 platform Illumina N/A

TRACE GC Ultra Thermo Fisher Scientific N/A

ISQ mass detector Thermo Fisher Scientific N/A

TriPlus autosampler Thermo Fisher Scientific N/A

Ultrospec® 2100 UV–Vis spectrophotometer Biochrom, Harvard Bioscience N/A

Qubit Thermo Fisher Scientific N/A

GeneVac EZ-2 plus evaporating system SP Scientific N/A

Methods and Protocols

EvolveX algorithm
The flux bases of the desired traits were determined as minimum

sets of fluxes requiring up- or down-regulation (respective to cur-

rent metabolic phenotype) for the desired metabolic traits to

arise. Such flux sets were determined by solving a mixed-integer

linear programming (MILP) problem after which the required flux

change directions either up or down were assigned. The MILP

problem was formulated similarly to (Shlomi et al, 2005;

equation 5).

min ∑
m

i¼1

yi

s:t:

S � v ¼ 0

vlb ≤ v ≤ vub

vtrait ≥ α � vtrait;max α∈ 0; 1½ �
vi�yi vub;i�wub;i

� �
≤ wub;i

vi�yi vlb;i�wlb;i

� �
≥ wlb;i yi ∈ 0; 1½ �

wub;i ¼ wmax;i þ δ¦wmax;i¦þ ϵ

wlb;i ¼ wmin;i�δ¦wmin;i ¦�ϵ

5
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where S is the stoichiometric matrix, v the vector of metabolic

fluxes, vlb and vub the flux lower and upper bounds, respectively, yi
are binary variables representing whether a reaction flux i requires

up- or downregulation for the rise of the target trait vtrait at level α of

maximum, vtrait,max. wub,i, and wlb,i are the flux thresholds of wild-

type metabolic phenotype derived from the wild-type minimum

fluxes wmin,i and maximum fluxes wmax,i and parameters δ and ε.

As equally small, alternative, flux sets may exist, they were enu-

merated by introducing an additional constraint ∑n
j¼1yj <n render-

ing previous solutions infeasible.

An evolved metabolic state was predicted by minimizing the total

nutrient uptake flux for synthesizing an arbitrary unit of growth

while the cells were exposed to inhibitors and metabolic effectors

present in the evolution environment (equation 6).

minc � v
s:t:

S � v ¼ 0

vμ ¼ 10

vn ≤ �1 n∈N

vinh ¼ 0; inh∈ I

vlb ≤ v ≤ vub

6

where c defines the nutrient uptakes possible in the particular evo-

lution environment with −1, vμ is the growth flux, vn are the

uptake fluxes from environment N, and I is the set of metabolic

reactions inhibited by the inhibitors present in the evolution envi-

ronment.

The total response to selection of the desired trait (in worst-case

scenario) was predicted as the sum of flux couplings of its flux basis

with growth. For the subsets of the flux basis associated with flux

change directions up and down, the minimum and maximum

growth coupled fluxes, respectively, were summed under the con-

straint of minimized total nutrient uptake flux for an arbitrary unit

of growth (equation 7). Thus, the concept of flux coupling (Burgard

et al, 2004) was used to identify which reactions in the flux bases

are growth coupled in the evolution environment.

min ∑
k

¦u¦¼1

v¦u¦ þ ∑
l

¦d¦¼1

�v¦d¦ð Þ
s:t:

S � v ¼ 0

vμ ¼ 10

vn ≤ �1 n∈N

vinh ¼ 0 inh∈ I

vlb ≤ v ≤ vub

c � v ≥ ruptake;max

0 ≤ v¦u¦ ≤ v¦u¦;ub; ¦u¦∈U; v¦u¦;ub ¼ max vu;lb; vu;ub
� �

0 ≤ v¦d¦ ≤ v¦d¦;ub; ¦d¦∈D; v¦d¦;ub ¼ max vd;lb; vd;ub
� �

vu�v¦u¦ ≤ 0; u∈H

�vu�v¦u¦ ≤ 0

vd�v¦d¦ ≤ 0; d∈ L

�vd�v¦d¦ ≤ 0

�vd�M � d¦d¦ þ v¦d¦ ≤ 0

vd þM � d¦d¦ þ v¦d¦ ≤ M; d¦d¦ ∈ 0; 1½ �

7

where ruptake,max is the optimal state from equation (3), H and L

are the sets of fluxes (and k and l the sizes of sets) belonging to

the desired trait’s flux basis requiring up- and down-regulation,

respectively, and U and D are sets of absolute flux variables repre-

senting the fluxes belonging to the desired trait’s flux basis requir-

ing up- and down-regulation, respectively. v¦u¦,ub and v¦d¦,ub are the

upper bounds of the absolute flux variables whose values were

derived as maximum absolute value of the flux bounds vlb and vub.

M is a parameter for which a value of 20,000 was used. It is dou-

ble the maximum flux upper bound. d¦d¦ is a binary variable intro-

duced for each reversible flux belonging to the flux basis of the

desired trait and requiring down-regulation.

The minimum subset size (i.e., worst-case scenario) of the flux

basis of the desired trait having stronger response to selection in the

particular evolution environment than in common laboratory

growth conditions (or application environment) was estimated

under the constraint of minimized total nutrient uptake flux for an

arbitrary unit of growth and under the constraint of worst-case

total response to selection of the flux basis of the desired trait (equa-

tion 8).

min ∑
p

t¼1

bt

s:t:

S � v ¼ 0

vμ ¼ 10

vn ≤ �1 n∈N

vinh ¼ 0 inh∈ I

vlb ≤ v ≤ vub

c � v ≥ rmax

0 ≤ v¦u¦ ≤ vu;ub ¦u¦∈U; v¦u¦;ub ¼ max vu;lb; vu;ub
� �

0 ≤ v¦d¦ ≤ vd;ub ¦d¦∈D; v¦d¦;ub ¼ max vd;lb; vd;ub
� �

vu�v¦u¦ ≤ 0 u∈H

�vu�v¦u¦ ≤ 0

vd�v¦d¦ ≤ 0 d∈ L

�vd�v¦d¦ ≤ 0

�vd�M � d¦d¦ þ v¦d¦ ≤ 0

vd þM � d¦d¦ þ v¦d¦ ≤ M; d¦d¦ ∈ 0; 1½ �

∑
k

¦u¦¼1
v¦u¦ þ ∑

l

¦d¦¼1

�v¦d¦ð Þ ≤ smin

v¦u¦ þ 1þ γð Þwmax;¦u¦�vub;¦u¦ ≤ 1þ γð Þwmax;¦u¦

�v¦d¦ þ γ�1ð Þwmin;¦d¦�vlb;¦d¦ ≤ γ�1ð Þwmin;¦d¦

8

where smin is the minimum combined response to selection of the

desired trait’s flux basis determined above, and γ is a threshold

parameter for stronger response to selection than in the common

laboratory conditions represented by maximum and minimum

growth couplings wmax,¦u¦ and wmin,¦d¦ respectively.

The suitability of an evolution environment for adaptively evolv-

ing a desired metabolic trait was evaluated by deriving a weighted

sum of (i) the total flux couplings to growth of the desired trait’s

flux basis, (ii) the minimum subset size of the desired trait’s flux

basis with higher/lower predicted responses to selection than in

common laboratory growth conditions (or application environ-

ment), and (iii) the number of chemical components in the evolu-

tion environment (equation 9). The lower the score for the
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evolution environment, the better suited it was considered for adap-

tively evolving desired traits.

score ¼ 103 � k�smin

kþ lð Þ þ 103 � kþ l�bminð Þ
kþ lð Þ þ z 9

where bmin is the minimum subset size (i.e., worst-case scenario)

of the desired trait’s flux basis having stronger response to selec-

tion than in common laboratory growth conditions (or application

environment), and z is the number of components in the particular

evolution environment.

Model simulations
Saccharomyces cerevisiae consensus genome-scale metabolic model

v. 7.6 (Herrgard et al, 2008; Aung et al, 2013) was used with few

revisions including augmenting the model with missing Ehrlich

pathway (Hazelwood et al, 2008) reactions and conditional con-

straints for predicting parental and evolved flux states. For imple-

menting the model revisions, Matlab R2017b v. 9.3.0 and Cobra

toolbox v.3.0 (cloned 29.03.2018; Heirendt et al, 2019) were used.

EvolveX algorithm was implemented and run in Matlab R2017b v.

9.3.0 with IBM ILOG CPLEX v. 12.8.0 functions “cplexlp” and

“cplexmilp.” The prediction of response to selection in environ-

ments with glycerol and ammonium and ethanol and ammonium

was performed using Matlab R2019b v. 9.7.0 with IBM ILOG CPLEX

v. 12.10.0. For the determination of reaction coverage with positive

response to selection (response to selection as above difference to

synthetic defined medium with glucose and ammonium as the sole

carbon and nitrogen sources, respectively, under carbon catabolite

repressed respiration > 0.001) during respirative metabolism in

environments of all combinations of two or three common nutrients

out of 22 in total with or without seven inhibitors of eukaryotic cen-

tral metabolic enzymes and a transporter (i.e., inhibitors of glucose

6-phosphate isomerase, hexokinase, phosphoglucomutase, succi-

nate dehydrogenase, pyruvate transporter, ATP synthase, pyruvate

kinase) EvolveX response to selection prediction was implemented

and run in Python v. 3.6.13 importing packages cplex v. 12.8.0.0, co-

bra v. 0.22.0, numpy v. 1.19.5, and pandas v. 1.1.5.

Strains and culture media
Both evolution environments were created by modifying the defined

minimal yeast growth medium by Verduyn et al (1992). The evolu-

tion environment media contained 6.6 g/l K2SO4, 3 g/l KH2PO4,

0.5 g/l (MgSO4)7H2O, and the vitamins and trace elements as in

Verduyn et al (1992). The vitamin solution was composed of

50 mg/l of d-biotin, 200 mg/l of para-amino benzoic acid, 1.0 g/l of

nicotinic acid, 1.0 g/l of Ca-pantothenate, 1.0 g/l of pyridoxine-HCl,

1.0 g/l of thiamine-HCl, and 25 mg/l of myo-inositol and the trace

minerals solution of 3 g/l of FeSO4�7H2O, 4.5 g/l of ZnSO4�7H2O,

4.5 g/l of CaCl2�6H2O, 0.84 g/l of MnCl2�2H2O, 0.3 g/l of

CoCl2�6H2O, 0.3 g/l of CuSO4�5H2O, 0.4 g/l of NaMoO4�2H2O, 1 g/l

of H3BO3, 0.1 g/l of KI, and 15 g/l of Na2EDTA�2H2O. The nitrogen

and carbon sources were specific for a particular evolution environ-

ment medium. The ethanol environment contained 7.5 g/l of

ethanol, 1.7 g/l of arginine, and 0.8 g/l of glycine. The glycerol

environment contained 5 g/l of glycerol, 5 g/l of phenylalanine, and

1.2 g/l of threonine. The pH of the media were set to 6 and the

media were sterile filtered.

Initially, 12 different S. cerevisiae wine strains (commercial and

vineyard isolates) were tested for their ability to grow in the two

selected evolution environments. The majority of the strains were

able to grow sufficiently in ethanol environment after 4 days of cul-

ture; however, only four strains were able to grow in glycerol envi-

ronment even after a week of culture had passed. We selected as a

parental strain for adaptive laboratory evolution a commercial

diploid wine strain S. cerevisiae obtained from Lallemand, which

was able to grow in both evolution environments.

Precultures and cells for genomic DNA extraction were grown

overnight in rich medium (YPD) containing 10 g/l of yeast extract,

20 g/l of peptone, and 20 g/l of glucose sterilized through autoclav-

ing. Single strain isolations were performed using YPD or synthetic

wine must mimicking medium (WMM) plates containing 2% agar

as solidifying agent. The WMM composition was 100 g/l of glucose,

100 g/l of fructose, 5 g/l of citric acid, 0.5 g/l of malic acid, 0.25 g/l

of MgSO4, 0.75 g/l of KH2PO4, 0.5 g/l of K2SO4, 0.155 g/l of CaCl2,

0.2 g/l of NaCl, 0.15 g/l of NH4Cl, 2 ml/l of anaerobic factors

(1.5 g/l of ergosterol, 0.5 g/l of oleic acid, 50 g/l of Tween 80, and

5 g/l of ethanol), 3.5 ml/l of amino acid solution (1.95 g/l of tyro-

sine, 17.5 g/l of tryptophan, 3.25 g/l of isoleucine, 4.42 g/l of aspar-

tic acid, 11.95 g/l of glutamic acid, 44.5 g/l of arginine, 4.8 g/l of

leucine, 7.54 g/l of threonine, 1.82 g/l of glycine, 49.92 g/l of glu-

tamine, 14.56 g/l of alanine, 4.42 g/l of valine, 3.12 g/l of methion-

ine, 3.77 g/l of phenylalanine, 7.8 g/l of serine, 4.57 g/l of histidine,

2.11 g/l of lysine, 2.7 g/l of cysteine, and 59.93 g/l of proline),

5 ml/l of vitamin solution (2 g/l of myo-inositol, 0.15 g/l of Ca-

pantothenate, 0.025 g/l of thiamine-HCl, 0.2 g/l of nicotinic acid,

0.036 g/l of pyridoxine-HCl, and 0.03 g/l of biotin), and 5 ml/l of

trace elements solution [4 g/l of MnSO4, 4 g/l of ZnSO4, 1 g/l of

CuSO4, 1 g/l of KI, 0.4 g/l of CoCl2, 1 g/l of H3BO3, and 1 g/l of (

NH4)Mo7O24] and the pH was set to 3.3.

Adaptive laboratory evolution
The adaptive laboratory evolution experiment was initiated by inoc-

ulating both evolution environments in triplicate from overnight sin-

gle colony precultures of the parental S. cerevisiae strain on YPD to

starting OD600 of 0.2. The adaptive laboratory evolution was per-

formed for the triplicate lineages on each evolution environment as

a serial transfer experiment with 7 ml of liquid cultures in 50-ml

shake flasks at 30°C with shaking at 180 rpm. The shake flasks were

capped with cotton plugs for enhanced aeration. When culture tur-

bidity was visually observed, the lineages were transferred to fresh

medium initially to a starting OD600 of 0.2 and later, after the growth

had improved to OD600 of 0.1, measured with a spectrophotometer

(Ultrospec 2100, Biochrom). Intermediate lineage samples were col-

lected to 30% w/v glycerol and stored at −80°C.
The adaptive laboratory evolutions were initially performed for

approximately 107 generations in ethanol environment and 100 gen-

erations in glycerol environment after which single colonies were

picked and the isolates performing the best in the corresponding

evolution environment characterized as described below. The num-

ber of generations was calculated back using the following formula

[Log10(Af/Ai)]/0.3, where Af is the OD600 before the transfer and Ai

is the OD600 that was initially inoculated. A second round of adap-

tive laboratory evolution was initiated with the individual strains

when they showed positive aroma profile development in the char-

acterization (two lineages in ethanol environment, one lineage in
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glycerol environment), and with the last population stocks in case

aroma profile improvement was not yet observed (one lineage in

ethanol environment, two lineages in glycerol environment). The

second round of evolution was continued approximately for addi-

tionally 97 and 65 generations in evolution environments with

ethanol and glycerol, respectively. Then, single colonies were again

picked and the isolates performing the best in the corresponding

evolution environment characterized as described below.

Characterization of evolved strains
For discarding nongenetic adaptation and for ensuring wine fermen-

tation performance, single colonies were picked from the evolved

lineages following growth on WMM + 2% agar plates for 48 h. Nine

single colonies were isolated from each lineage and cultured over-

night in liquid cultures on WMM. From these overnight cultures,

stocks were prepared to 30% w/v Glycerol and stored at −80°C. The
overnight cultures on WMM were also used to inoculate correspond-

ing evolution environment as in adaptive laboratory evolution. Cell

growth was monitored with turbidity (OD600) measurements. One

arbitrarily selected strain from each evolution environment was

characterized in wine fermentation mimicking conditions.

Yeasts were maintained at 4°C on YPD plates (2% glucose, 2%

peptone, 1% yeast extract, and 2% agar), or as glycerol stocks at

−80°C. Inocula were grown on YPD for 48 h at 25°C, washed and

suspended in water.

Natural white must from the 2017 harvest was kept frozen. This

must contained 215.8 g/l of sugar, density 1,088.3 g/l. Enough vol-

ume for the experiment was thawed and pasteurized. In the pasteur-

ization process the natural must was heated to 105°C and then it

was allowed to cool down inside the closed autoclave. The same

batch of natural white must was used for the aroma profiling and

RNA-sequencing and proteomics experiments.

Aliquots of 25 ml of pasteurized grape must were inoculated at

0.2 final OD600. Fermentation was carried at 25°C in Falcon tubes

(50 ml nominal volume), capped with air locks, and performance

monitored by weight loss. After 8 days, weight was constant, and

samples were centrifuged and supernatants were kept frozen for

HPLC analysis of sugars and the main fermentation byproducts (i.e.,

ethanol, glycerol, acetate) of the cultures (Table EV5) and GC–MS

analysis of volatile compounds (Table EV6). All experiments were

performed in triplicate.

Determination of metabolite concentration
The concentration of glucose, fructose, glycerol, ethanol, and acetic

acid was determined using a Surveyor Plus liquid chromatograph

(Thermo Fisher Scientific, Waltham, MA) equipped with a refraction

index and a photodiode array detector (Surveyor RI Plus and Sur-

veyor PDA Plus, respectively) on a 300 × 7.7 mm PL Hi-Plex H+
(8 μm particle size) column (Agilent Technologies, Santa Clara, CA)

and 4 × 3 mm ID Carbo-H guard (Phenomenex, Torrance, CA). The

column was maintained at 50°C and 1.5 mM of H2SO4 were used as

the mobile phase at a flow rate of 0.6 ml/min. Prior to injection in

duplicate, the samples were filtered through 0.22 μm pore size

nylon filters (Micron Analitica).

Analysis of volatile compounds
Samples for gas chromatography–mass spectrometry (GC–MS) anal-

ysis contained 2,000 μl of sample, 1 g of NaCl, and 20 μl of internal

standard, in 20-ml flasks. Internal standard contained 1,000 ppm

each of 4-methyl 2-pentanol and heptanoic acid, and 100 ppm 1-

nonanol, in water, prepared from 10,000 ppm individual solutions

in ethanol. Sample was preincubated for 10 min at 45°C, followed

by 30 min at 45°C with 50/30 μm DBV/CAR/PDMS SPME fiber

(Stableflex, SUPELCO, Bellefonte, PA). Fiber was desorbed for

5 min at 250°C.
GC–MS was carried out in a Thermo TRACE GC Ultra apparatus

coupled to a Thermo ISQ mass detector, equipped with a Thermo

TriPlus autosampler. Gas chromatography was carried in a Thermo

Scientific fused-silica capillary column TG-WAXMS A (30 m long;

0.25 mm OD; 0.25 μm film thickness). Chromatographic conditions

were as follows: 5 min at 40°C, 3°C/min up to 200°C, 15°C/min up

to 240°C, 10 min at 240°C. Helium was used as carrier gas at a flow

rate of 1 ml/min, operating in split mode (ratio 30). Total analysis

time was 71 min. Detection was performed with the mass spectrom-

eter operating in the Full Scan mode (dwell time 500 ms), with

70 eV ionization energy, and source and quadrupole temperatures

of 250°C. Detection was stopped during the time interval for ethanol

elution. Peak identification was made by comparison of ion spectra

with NIST mass spectral library. For each compound, including

internal standards, the sum of the areas of the peaks of selected

characteristic ions was obtained. Area of each compound was

referred to one selected internal standard.

Whole genome sequencing of populations and isolates
Genomic DNA was extracted from parental strains grown in YPD,

lineages grown in evolution environments, and single colony iso-

lates grown in YPD using Phenol–Chloroform-based extraction.

Specifically, total volume of 7 ml overnight cultures was centrifuged

at 1,100 g for 3 min and the pellets were washed with sterile ddH2O.

The cells were resuspended in 2 ml of TrisEDTA solution (0.1 M

Tris and 0.1 M EDTA) and transferred to Eppendorf tubes, with

1.5 U lyticase. The pellets were then incubated at 37°C for 30 min.

Next the spheroplasted cells were centrifuged at 550 g for 2 min

(Eppendorf centrifuge), the supernatant was removed and the cells

were resuspended in 400 μl of breaking buffer which contained

10 mM of Tris, 1 mM of EDTA, 100 mM of NaCl, 2% Triton X-100,

and 1% SDS. The cell suspensions were transferred to FastPrep Cap

tubes with 200 μl of glass beads (400 nm acid washed, Sigma) and

the cells were broken with three rounds of bead beating at 4.5 Mhz/

s for 20 s with 1 min cooling intervals or through vortexing only.

The cell lysates were transferred to a new tube that contained 400 μl
of phenol–chloroform/isoamyl alcohol and 400 μl of TE buffer (Tris

50 mM, EDTA 20 mM) and were centrifuged briefly until an emul-

sion was formed. The emulsions were centrifuged at 20,000 g for

5 min at room temperature. The aqueous phase of each tube was

transferred to a new Eppendorf, it was mixed with 1 ml of cold

100% ethanol and incubated at room temperature for 10 min to help

precipitation. In the next step, the tubes were centrifuged at 20,000

g for 5 min at room temperature, the ethanol was removed and the

DNA pellet was resuspended at 400 μl of TE buffer with 2 μl of

RNAse solution (20 mg/ml) and incubated for 15 min at 37°C, fol-
lowed by a second incubation step at 65°C for 15 min, in order to

deactivate the RNAse. The DNA solution was mixed with 400 μl of
phenol–chloroform/isoamyl alcohol and the extraction step was per-

formed again as described above. DNA was precipitated from the

aqueous phase with 1 ml of cold 100% ethanol and centrifugation

12 of 18 Molecular Systems Biology 18: e10980 | 2022 � 2022 The Authors

Molecular Systems Biology Paula Jouhten et al



at 20,000 g for 5 min at room temperature. The pellet was left to dry

for 30 min at 55°C, next was resuspended with 50 μl of H2O and

was left overnight at 4°C for the pellet to dissolve completely.

The quality of the extracted DNA was evaluated with elec-

trophoresis in a 1% [w/v] agarose gel. DNA concentrations were

measured using a Qubit (Thermo Fisher Scientific, USA). Equal

amounts of DNA from all samples were used for library preparation,

which was done with the NEBNext DNA Ultra2 Library Preparation

Kit (New England Biolabs). The preparation of the library was per-

formed on an automated liquid handling system (Hamilton

Robotics), the quality of the library was tested on a 2100 BioAna-

lyzer (Agilent Technologies), and the DNA concentration was mea-

sured using a Qubit. Sequencing was performed at the Genomics

Core Facility (EMBL Heidelberg) with use of the HiSeq2500 platform

(Illumina, San Diego, USA) and the run produced 250 bp paired-end

reads.

The sequenced samples are listed in Table EV11, and the raw

reads are deposited in ENA database (https://www.ebi.ac.uk/ena/

browser/home) in study PRJEB40761 with accession numbers

ERS5457098 and ERS5290477–ERS5290502 for the parental and

evolved samples and in study PRJEB41108 with accession numbers

ERS5293678–ERS5293725 for the Panel of Normals (PoN)-samples.

Whole genome sequence data analysis
The quality of the obtained reads was checked using Fastqc v.

0.11.4 (Andrews, 2010). Adapter removal and low-quality read fil-

tering was performed using cutadapt v. 1.9.1 (Martin, 2011). The

trimmed reads were aligned to S. cerevisiae EC1118 reference

genome (Novo et al, 2009) with the Burrows-Wheeler Aligner v.

0.7.12 mem (Li & Durbin, 2009) using default parameters. The align-

ments were processed (added read groups, sorted, reordered, and

indexed) and duplicate reads were marked using Picard Tools v.

1.129 (Van der Auwera et al, 2013; preprint: Poplin et al, 2018). Sin-

gle nucleotide variant (SNV), and insertion–deletion (indel) variant

calling was performed against the parental sample with GATK4 v.

4.1.0.0 (Van der Auwera et al, 2013; preprint: Poplin et al, 2018)

Mutect2 using the S. cerevisiae EC1118 as the reference and default

parameters. PoN for the variant calling was compiled of 47 wild-

type S. cerevisiae strains (winery isolates and commercial wine

strains, including the parental) sequenced on the same platforms as

the actual samples. Variant calling was first performed for the wild-

type strains by running Mutect2 in tumor-only mode and then the

panel of normal was created with GATK4 v. 4.1.0.0 (Van der Auw-

era et al, 2013; preprint: Poplin et al, 2018) CreateSomaticPanelOfNor-

mals. The variant calls were filtered using GATK4 v. 4.1.0.0 (Van der

Auwera et al, 2013; preprint: Poplin et al, 2018) FilterMutectCalls

using default thresholds and by keeping the variants at PoN sites.

Copy number variant (CNV) analysis was performed on read

counts and B-allele frequencies (baf) using GATK4 v. 4.1.0.0 (Van

der Auwera et al, 2013; preprint: Poplin et al, 2018) tools. First, the

read counts were binned for 1,000 bp intervals with Col-

lectReadCounts. These read counts were denoised with DenoiseRead-

Counts using the parental sample as a matched normal. The allelic

counts were collected using CollectAllelicCounts and combined with

the binned read counts for modeling the CNV segments using

ModelSegments with number-of-changepoints-penalty-factor of

eight. CNVs were called using CallCopyRatioSegments. In major

copy number aberrations, the default centralization of the log2 copy

ratios to median across all contigs, misplaced the zero level to devi-

ate from the conserved copy number. As there were major differ-

ences in the copy number aberrations between the samples, the

copy ratios were re-normalized to the level of FN393086.1 contig

with conserved copy number across samples. The contig was identi-

fied using the minor allele frequencies and the copy ratio differences

between modeled segments. After the re-normalization, CNV’s were

called for segments longer than 10 kb with −0.6 ≤ log2 copy ratio ≥
0.3. Each CNV call was evaluated against baf data. The calls were

corrected conservatively if the baf data did not support the log2

copy ratio call. The population sample calls were corrected only if

the call could not be explained even by partial loss-of-

heterozygosity, identified as baf zero/one segments. The log2 copy

ratios of modeled segments, their copy number calls, and the loss-

of-heterozygosity identified in the samples are provided in Table

EV7. Heatmap of contig median copy ratios was plotted using R v.

4.0.3 (R Core Development Team, 2021) gplots package v. 3.1.1

(Warnes et al, 2020).

Small scale fermentation of natural wine must (microvinification)
for transcriptomics and proteomics analysis
A single colony of the parental strain, two evolved isolates originat-

ing from the ethanol environment and two evolved isolates originat-

ing from the glycerol environment were grown overnight in 50 ml

Falcon® tubes with 15 ml of YPD. The overnight grown cells were

washed three times with PBS and diluted to an initial OD600 of 0.1

in 55 ml of natural white must from the 2017 harvest (see above,

the same natural white must batch used as for aroma profiling). For

the microvinification process, 50-ml Erlenmeyer flaks were used,

filled to the maximum, in order to create microanaerobic conditions.

Maintaining the anaerobic conditions meant that the growth could

not be estimated based on changes in the optical density, but it was

correlated with the observed weight loss, which occurs from the

release of CO2, the end product of carbon metabolism. Release of

CO2 is possible through a small needle which is pierced through

rubber plugs, which in turn were sterilized and used to seal the

Erlenmeyer flaks, while a small piece of gauge prevents anything

from the environment to fall inside the flask through the needle.

The growth stage of the cultures was estimated based on weight loss

which correlates to the consumption of glucose and release of CO2

as suggested by (Harsch et al, 2010). For this reason, the initial

weight of the cultures was measured and followed once every day

until no more weight loss was observed, at which point the cultures

had entered stationary phase. After the establishment of the growth

kinetics with weight loss, same cultures as described above were

prepared, weight loss was once again followed and the cells were

harvested at mid exponential phase for RNA-sequencing and pro-

teomics analysis.

RNA-sequencing sample preparation and data analysis
All the RNA samples were prepared according to the following pro-

cedure. Total volume of 20 ml from each culture was transferred to

a 50 ml Falcon® filled with ice and was immediately centrifuged at

1,100 g for 3 min at 4°C (Eppendorf centrifuge). Next the super-

natant was discarded and the cell pellet was snap frozen into liquid

nitrogen and stored at −80°C, until the extraction. Total RNA from

the pellets was extracted with the RNAeasy kit (Qiagen) according

to the manufacturer’s recommendations. In brief, 594 μl of RTL
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buffer plus 6 μl of β-Mercaptoethanol were used to resuspend the

frozen cell pellet which was left on ice. The resuspended cells were

transferred to an ice cold FastPrep Cap tube which contained 600 μl
glass beads (400 nm acid washed, Sigma). The cells were then lysed

with 2 cycles of bead beating, each cycle lasted 10 s at 6 Mz/s with

15 s cooling interval. Cell lysates were transferred to a new tube

and were centrifuged for 2 min at full speed (Eppendorf centrifuge)

and the supernatant was carefully mixed with 1 volume of 70%

HPLC-grade ethanol. Next, the total volume of the sample was

transferred to an RNAeasy column and the manufacturer’s instruc-

tions were followed. Total RNA was eluted with 60 μl of RNAse free

water and Turbo DNAse (Invitrogen Ambion) was used to digest

leftover DNA according to the manufacture instruction. Finally, one

more step of RNA clean-up was performed with the same kit.

RNA library was prepared using the NEBNext® UltraTM II Direc-

tional RNA Library Preparation Kit for Illumina: polyA transcripts

capture. Briefly, barcoded stranded mRNA-seq libraries were pre-

pared from high-quality total RNA samples (~200 ng/sample) using

the NEBNext Poly(A) mRNA Magnetic Isolation Module and

NEBNext Ultra II Directional RNA Library Prep Kit for Illumina

(New England Biolabs (NEB), Ipswich, MA, USA) implemented on

the liquid handling robot Beckman i7. Obtained libraries that passed

the QC step were pooled in equimolar amounts; 2 pM solution of

this pool was loaded on the Illumina sequencer NextSeq 500 and

sequenced uni-directionally, generating ~500 million reads, each 85

bases long.

The quality of the obtained RNA-sequencing reads was assessed

and summarized with Fastqc v. 0.11.5 (Andrews, 2010). Adapter

trimming, to remove the standard lllumina TrueSeq Index adapter

sequences, was performed using cutadapt v. 2.3 (Martin, 2011).

Subsequently, quality read filtering and trimming was performed

with FaQCs v. 2.08 (Lo & Chain, 2014), with the following parame-

ters: -q 20 -min_L 30 -n 3. After trimming and filtering steps total

number of reads were, in average, 31 million. Trimmed reads were

then aligned to the reference genome of S. cerevisiae EC1118

(EnsemblFungi: annotation number GCA_000218975.1) using STAR

v. 2.5.2a (Dobin et al, 2013). On average, 85% of reads uniquely

mapped to an annotated feature in the reference genome. Only

uniquely mapped reads were then used to generate the gene level

count tables with HTSeq v. 0.9.1 (Anders et al, 2015). Statistical

analysis was performed with R v. 3.6.1 (R Core Development Team,

2019). Differential expression analysis, including multiple testing

correction and independent filtering, was performed with Biocon-

ductor package: DESeq2 v. 1.12.0 (Love et al, 2014). False discovery

rate (fdr) was calculated with fdrtool v. 1.2.15 (Strimmer, 2008)

using the raw P values returned by DESeq2. Genes with fdr < 0.05

and log2 fold change (log2fc) > 1 or < −1 were considered as signif-

icantly differentially expressed. Unless specified, all packages were

used with default parameters.

Proteomics sample preparation and data analysis
For the extraction of total proteome 10 mL of each culture were

transferred into ice-cold 15-ml Falcon® tubes which were cen-

trifuged immediately at 1,100 g for 3 min at 4°C (Eppendorf cen-

trifuge). The supernatant from the centrifugation was discarded and

the cell pellets were washed once with 1 ml of cold PBS buffer. The

washed pellets were snapped frozen with liquid nitrogen and stored

at −80°C. For the extraction, the cell pellets were lysed with 0.1%

RapiGest (Waters) in 100 mM of ammonium bicarbonate, followed

by mechanical disruption with three rounds of sonication (1 cycle:

10 s sonication and 10 s rest on ice per round). Sonication was fol-

lowed by 2 cycles of bead beating (200 μl glass beads, 400 nm acid

washed, Sigma), each cycle lasting 20 s at 4 Mz/s with 1 min cool-

ing intervals between the cycles.

Reduction of disulfide bridges in cysteine containing proteins

was performed with dithiothreitol (56°C, 30 min, 10 mM in 50 mM

HEPES, pH 8.5). Reduced cysteines were alkylated with 2-

chloroacetamide (room temperature, in the dark, 30 min, 20 mM in

50 mM HEPES, pH 8.5). Samples were prepared using the SP3 pro-

tocol (Hughes et al, 2019) and trypsin (sequencing grade, Promega)

was added in an enzyme to protein ratio 1:50 for overnight digestion

at 37°C. Peptides were labeled TMT10plex (Werner et al, 2014) Iso-

baric Label Reagent (Thermo Fisher) according the manufacturer’s

instructions. For further sample clean up an OASIS® HLB μElution
Plate (Waters) was used. Offline high pH reverse phase fractiona-

tion was carried out on an Agilent 1200 Infinity high-performance

liquid chromatography system, equipped with a Gemini C18 column

(3 μm, 110 �A, 100 × 1.0 mm, Phenomenex; Reichel et al, 2016),

resulting in 12 fractions.

After fragmentation, the peptides were separated using an Ulti-

Mate 3000 RSLC nano LC system (Dionex) fitted with a trapping car-

tridge (μ-Precolumn C18 PepMap 100, 5 μm, 300 μm i.d. × 5 mm,

100 �A) and an analytical column (nanoEaseTM M/Z HSS T3 column

75 μm × 250 mm C18, 1.8 μm, 100 �A, Waters). Trapping was car-

ried out with a constant flow of trapping solution (0.05% trifluo-

roacetic acid in water) at 30 μl/min onto the trapping column for

6 min. Subsequently, peptides were eluted via the analytical column

running solvent A (0.1% [v/v] formic acid in water) with a constant

flow of 0.3 μl/min, with increasing percentage of solvent B (0.1%

[v/v] formic acid in acetonitrile) from 2 to 4% in 4 min, from 4 to

8% in 2 min, then 8 to 28% for a further 37 min, in another 9 min.

From 28 to 40%, and finally 40–80% for 3 min followed by re-

equilibration back to 2% B in 5 min. The outlet of the analytical

column was coupled directly to an Orbitrap QExactiveTM plus Mass

Spectrometer (Thermo) using the Nanospray FlexTM ion source in

positive ion mode.

The peptides were introduced into the QExactive plus via a Pico-

Tip Emitter 360 μm OD × 20 μm ID; 10 μm tip (New Objective) and

an applied spray voltage of 2.2 kV. The capillary temperature was

set at 275°C. Full mass scan was acquired with mass range 375–
1,200 m/z in profile mode with resolution of 70,000. The filling time

was set at maximum of 100 ms with a limitation of 3 × 106 ions.

Data-dependent acquisition (DDA) was performed with the resolu-

tion of the Orbitrap set to 17,500, with a fill time of 50 ms and a lim-

itation of 2 × 105 ions. A normalized collision energy of 32 was

applied. Dynamic exclusion time of 20 s was used. The peptide

match algorithm was set to “preferred” and charge exclusion “unas-

signed,” charge states 1, 5–8 were excluded. MS data were acquired

in profile mode.

The acquired data were processed using IsobarQuant (Franken et

al, 2015) and Mascot v. 2.2.07. A Uniprot S. cerevisiae proteome

database (UP000002311) containing common contaminants and

reversed sequences was used. The search parameters were the fol-

lowing: Carbamidomethyl (C) and TMT10 (K; fixed modification),

Acetyl (N-term), Oxidation (M), and TMT10 (N-term; variable modi-

fications). A mass error tolerance of 10 ppm was set for the full scan
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(MS1) and for MS/MS (MS2) spectra of 0.02 Da. Trypsin was

selected as protease with an allowance of maximum two missed

cleavages. A minimum peptide length of seven amino acids and at

least two unique peptides were required for a protein identification.

Differential abundance was performed with limma (Ritchie et al,

2015). Protein with P value < 0.01 and −1 > log2fc > 1 were con-

sidered significantly differentially abundant. GO-process enrich-

ments were determined using https://www.yeastgenome.org/

goTermFinder with the metabolic enzymes annotated in S. cere-

visiae consensus genome-scale metabolic model v. 7.6 (Herrgard et

al, 2008; Aung et al, 2013) at P value 0.1. Hypergeometric test was

performed to compute the significance of the overlaps of the model-

predicted flux bases, tacking traits, and fluxes positively selected in

a particular evolution environment and the transcripts found in

higher abundance (fdr < 0.05, log2fc > 1) and proteins found in

higher abundance (P value < 0.01, log2fc > 1) in the evolved clones

than in parental strain. The test was performed using R v. 4.1.2

function phyper (R Core Development Team, 2020) and overlaps

with P value < 0.05 were reported.

Data analysis and visualization
Growth profiles were analyzed by first smoothing the log-

transformed data (i.e., backscattered light or CO2 loss) using uni-

variate spline with polyorder = 3. Then, the maximum growth rate

was calculated as the maximum value of the smoothed curve

derivative. The highest biomass level was calculated as the maxi-

mum of the Euler’s number elevated to the smoothed values over

time. Finally, the lag phase was estimated as the time before 10 or

25% (glycerol environment) of the maximum smoothed value is

reached after having passed the minimum level of the smoothed

curve. This growth profile analysis was performed using python 3.6

and the UnivariateSpline function from the scipy library v. 1.1.0.

Principal component analysis was performed using R v. 4.0.3 (R

Core Development Team, 2021) and factoextra package v. 1.0.7

(Kassambara & Mundt, 2017). Data processing was performed using

readr package v. 1.4.0 (Wickham & Hester, 2020), dplyr package v.

1.0.2 (Wickham et al, 2020) and tidyr package v. 1.1.2 (Wickham,

2020). For statistical plotting ggplot2 package v. 3.3.2 was used, the

euler diagrams were generated using eulerr package v. 6.1.0

(Larsson, 2020), CNV heatmap was plotted using heatmap.2 func-

tion from gplots package v. 3.1.1 (Warnes et al, 2020), using hclust

as the clustering function with complete linkage method, and the

color schemes were obtained from RColorBrewer package v. 1.1–2
and v. 1.1–3 (R v. 4.1.2; Neuwirth, 2014), and ggsci package v. 2.9

(Xiao, 2018). Tukey’s test was performed with R v. 4.1.2 function

TukeyHSD.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

i Modeling computer scripts: GitHub (https://github.com/

ptjouhten/EvolveX).

ii Whole genome sequencing data: European Nucleotide

Archive (ENA: https://www.ebi.ac.uk/ena/browser/home) study

PRJEB40761 with accession numbers ERS5457098 and ERS5290477–
ERS5290502 for the parental and evolved samples and in study

PRJEB41108 with accession numbers ERS5293678–ERS5293725 for

the Panel of Normals (PoN)-samples.

iii GC–MS data: Metabolights database MTBLS2208 https://www.

ebi.ac.uk/metabolights/

iv RNA-sequencing data: ArrayExpress database E-MTAB-10019

https://www.ebi.ac.uk/arrayexpress/

v Proteomics data: ProteomeXchange Consortium via the PRIDE

(Perez-Riverol et al, 2019) partner repository PXD023171

https://www.ebi.ac.uk/pride/

Expanded View for this article is available online.
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