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Abstract

The purpose of this study was to test the effect of subconcussive head impacts on acute

changes in plasma S100B. In this randomized controlled trial, 79 healthy adult soccer play-

ers were randomly assigned to either the heading (n = 41) or kicking-control groups (n = 38).

The heading group executed 10 headers with soccer balls projected at a speed of 25 mph,

whereas the kicking-control group performed 10 kicks. Plasma samples were obtained at

pre-, 0h post-, 2h post- and 24h post-intervention and measured for S100B. The primary

hypothesis was that there would be a significant group difference (group-by-time interaction)

in plasma S100B at 2h post-intervention. Secondary hypotheses included (1) no significant

group differences in plasma S100B concentrations at 0h post- and 24h post-intervention; (2)

a significant within-group increase in S100B concentrations in the heading group at 2h post-

intervention compared to pre-intervention; and (3) no significant within-group changes in

plasma S100B in the kicking-control group. Data from 68 subjects were available for analy-

sis (heading n = 37, kicking n = 31). There were no differences in S100B concentrations

between heading and kicking groups over time, as evidenced by nonsignificant group-by-

time interaction at 2h post-intervention (B = 2.20, 95%CI [-22.22, 26.63], p = 0.86) and at all

the other time points (0h post: B = -11.05, 95%CI [-35.37, 13.28], p = 0.38; 24h post: B =

16.11, 95%CI [-8.29, 40.51], p = 0.20). Part of the secondary outcome, the heading group

showed elevation in plasma S100B concentrations at 24h post-intervention compared to

pre-heading baseline (B = 19.57, 95%CI [3.13, 36.02], p = 0.02), whereas all other within-

group comparisons in both remained nonsignificant. The data suggest that 10 bouts of

acute controlled soccer headings do not elevate S100B concentrations up to 24-hour post-

heading. Further dose-response studies with longer follow-up time points may help deter-

mine thresholds of acute soccer heading exposure that are related to astrocyte activation.

The protocol was registered under ClinicalTrials.gov (NCT03488381; retrospectively

registered.).
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Introduction

Exposure to subconcussive head impacts, or impacts to the cranium that do not result in

clinical signs and symptoms of concussions [1, 2], has the potential to lead to long-term

neurological consequences, including neurocognitive impairments [3] and chronic traumatic

encephalopathy (CTE) [4, 5]. In contact sports such as American football, soccer, ice hockey,

and rugby, athletes are prone to experiencing hundreds to thousands of these subconcussive

head impacts each season [1, 6, 7]. Particularly, in soccer, frequent subconcussive head impacts

occur both intentionally and unintentionally through contact with other players, the ground,

and the ball [8]. For example, retrospective questionnaires estimate that a collegiate soccer

player performs up to 500 headers during a single season and over 3,000 during the course of a

career [9, 10]. Recently, Saunders et al. prospectively collected head impact kinematic data and

video-verified all impacts in 28 men’s and women’s Division III collegiate soccer players across

an entire season, finding that approximately 614 headers (ball-to-head contact) occurred per

1000 athlete-exposures in practices and games which comprised the majority of all types of

head impacts that occurred during play [11]. It is critical to note that the authors believe the

generalizability of this investigation’s results are limited by the small sample size and strict

criteria used by the research team to verify each impact; thus the reported incidence rate may

certainly be an underestimation of header frequency in collegiate soccer players [11]. Further-

more, there is a great need to understand acute and chronic consequences of subconcussive

head impact exposure since over 3 million high school and college athletes engage in contact

sports in the United States each year [12].

Blood biomarkers have been explored as potential objective diagnostic tools to gauge the

severity of brain injury, with some biomarkers are currently incorporated in clinical practice

for the detection of brain injury [13–15]. In particular, S100B, a calcium-binding protein

enriched in astrocytes, has emerged as blood biomarker for traumatic brain injury (TBI) [16–

18]. For instance, elevated S100B is a strong predictor of mortality after sustaining TBI [19]

and a recent meta-analysis concluded that acute S100B concentrations (<3h post-injury) are

useful in predicting intracranial bleeding in children after concussion with sensitivity and

specificity of 97% and 37.5%, respectively [20]. Previous studies have detected elevations in

S100B after acute exposure to subconcussive head impacts during practices and games in soc-

cer and American football players [21–24]. However, an opposing line of research indicates

that S100B in blood can be elevated not only from the mechanical forces to the brain, but also

from exercise and bodily hits [23, 25–27]. For instance, Straume-Næsheim et al. recruited 535

professional soccer players and identified similar levels of S100B elevation after high-intensity

exercise, heading drills, and collision during soccer match [28]. In an effort to replicate the

data derived from field studies, Dorminy et al. conducted a pilot laboratory study and reported

that 5 acute bouts of soccer headings resulted in non-significant elevations in plasma S100B

concentrations [29]. However, the former study failed to control for the frequency and magni-

tude of head impacts and was unable to differentiate the effects of head impacts from exercise,

whereas the latter study included 11 total soccer players without a control group. As result, the

isolated effect of acute subconcussive head impacts on circulating S100B concentrations over

an acute time period has never been rigorously investigated.

Therefore, we conducted a randomized controlled trial to study the time-course response

of S100B after acute subconcussive head impacts. Our soccer heading paradigm [30] was used

to induce 10 controlled subconcussive head impacts while eliminating extraneous influences

that are inherent in field studies, such as bodily hits, fatigue, strenuous exercise, perspiration,

and hydration. The heading quantity of 10 was selected to minimize risk to participants while

maximizing ecological validity based on head impact frequency reported in field studies of
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soccer and American football players [31–34]. The primary outcome was to determine the

between-group differences (group-by-time interaction) in change in plasma S100B concentra-

tions at 2h post-intervention after 10 soccer headings. We hypothesized that the heading

group will show significantly greater changes in S100B concentrations between pre- and 2h-

post intervention compared to the kicking-control group. This primary time point of 2h-post

intervention was determined based on the half-life of S100B and previous reports on S100B’s

diagnostic utility for concussion [20, 22, 35]. We also tested three secondary hypotheses: (1)

there would be no significant between-group differences in change in S100B concentrations at

0h post- and 24h post-intervention (2) there would be a significant within-group increase in

plasma S100B in the heading group at 2h post-intervention, while within-group changes in

plasma S100B in the heading group at 0h post- and 24h-post would be nonsignificant; and (3)

there would be no significant within-group changes in plasma S100B concentrations in the

kicking-control group at any time point.

Methods

Trial design and randomization

This single-blind, randomized controlled clinical trial examined the changes in plasma S100B

in response to an acute bout of ten soccer headers. Participants were randomly assigned to

either the soccer heading or kicking-control group using a simple, dice-based randomization

method. Subjects were unblinded to their assigned group, but biomarker experimenters were

blinded from the group assignment information. Plasma samples were collected at four time

points: pre-, 0h post-, 2h post-, and 24h post-intervention. Between the pre and 0h post-inter-

vention time points, participants in the heading group performed ten soccer headers (see Soc-

cer heading intervention section below), and participants in the kicking-control group kicked

the soccer ball. Between the 0h post- and 2h post-intervention time points, participants

remained in the laboratory and were instructed to refrain from strenuous physical or cognitive

activities. Participants returned to the laboratory approximately 24h after the intervention for

the final time point. The Indiana University Institutional Review Board (IU IRB) approved the

study, and study procedures were performed in accordance with regulations of the IU IRB

(protocol registered under ClinicalTrials.gov: NCT03488381). Written informed consent was

obtained from all participants.

The trial protocol was registered 7 months after the commencement of the study. This late

registration was due to the authors’ misunderstanding of the use of the soccer heading protocol

being categorized as an interventional trial until one of federal agencies suggested otherwise.

The trial registration occurred on April 5, 2018, and the first participant was enrolled on

August 31, 2017. Thirty-seven participants were enrolled in the study prior to the registration,

which accounts for 55% of the final sample size. No interval analysis was conducted prior to

the registration. The authors confirm that all ongoing and related trials for this intervention

are registered.

Participants

From August 2017 until May 2019, using a convenient sampling strategy, we recruited poten-

tial participants who were enrolled at Indiana University—Bloomington, met the following

inclusion criteria, and were free of exclusion criteria. Inclusion criteria included being between

18 and 26 years old and having at least five years of soccer heading experience, which ensures

their proficiency to perform soccer headings [35, 36]. Exclusion criteria included a history of

head injury within 12 months prior to data collection, a history of vestibular, ocular, or visual

dysfunction, a history of neurological disorders, or a clinical diagnosis of a learning disability.
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Our sample size calculation, based on results from previous studies [21, 37] and a minimal

clinical important difference of 25 pg/mL, suggested a total of 56 participants (28 participants

per intervention) to yield a statistical power of at least 0.80 with a level of significance

of = 0.05. We estimated a worst-case dropout rate of 25%. As a result, a total of 79 participants

were recruited in the study and were randomly assigned into the heading (n = 41) and kick-

ing-control (n = 38) groups. Participants were instructed to refrain from any activity that

involved head impacts during the study period. At timepoints pre- and 24h post-intervention,

participants verified that they had not participated in any head impact activities 24 hours prior

to the 24h post-intervention timepoint.

Soccer heading intervention

A standardized soccer heading intervention was used to induce ten subconcussive head

impacts in the form of soccer heading [30, 38]. Bevilacqua et al. [38] contains the video version

of the soccer heading intervention. A triaxial accelerometer (SIM-G, Triax Technologies, Inc.,

Norwalk, CT) was held in place at the occipital protuberance with a custom headband to quan-

tify the linear and rotational acceleration of each head impact. A JUGS soccer machine (JPS

Sports, Tualatin, OR) projected a size 5 soccer ball, reaching the participant at a speed of about

25 mph (11.2 m/s). The ball speed is on the slower-scale end of rising balls kicked by adult soc-

cer players [39]. An average linear head acceleration from a header ranges between 26 and 32 g
[2], while regular corner or goal kicks (~50mph) yield accelerations above 50 g [40]. This study

agreed with our previous studies [2, 41] in that 10 headings did not increase concussion-

related symptoms in study participants, ensuring that our intervention is in fact “subconcus-

sive.” All participants stood approximately 40 ft (12.2 m) in front of the JUGS machine. Partic-

ipants in the heading group were instructed to head the soccer ball with their forehead and

aim the ball towards a researcher standing approximately 16 ft (4.9 m) in front of the partici-

pant. For the heading group, the JUGS machine was set at an angle of 40 degrees from the hor-

izontal by elevating it four inches off the ground. Participants in the kicking-control group

were given the same set of instructions, except to kick the ball towards the researcher instead

of heading. Participants performed 10 headers or kicks with one-minute intervals between

each header or kick. Ten headers was chosen based on previous studies that show soccer play-

ers head the ball on average 6–12 times per game [42]. Furthermore, a collegiate American

football players incurs on average of 7 to 10 hits per practice, with a mean peak linear accelera-

tion per impact ranging from 28 to 32 g [21, 43]. Therefore, our subconcussive intervention

that consists of 10 headers with 33 g per header is translatable beyond soccer.

Plasma sampling and S100B measurement

At each time point, four milliliters of venous blood were collected into EDTA vacutainer tubes

(BD Biosciences, San Jose, CA). Plasma was separated by centrifugation (1500 x g, 15 min,

4˚C) and stored at -80˚C until analysis. Plasma S100B concentrations were measured using an

enzyme-linked immunosorbent assay (ELISA) kit (Human S100B ELISA, EMD Millipore Cor-

poration, Billerica, MA). The lower detection limit of the assay is 2.7 pg/mL using a 50 μL

plasma sample size, and the assay covers a concentration range of up to 2000 pg/mL, with an

inter-assay variation of 1.9–4.4% and an intra-assay variation of 2.9–4.8%. Samples were

loaded in duplicate into the ELISA plates according to manufacturer instructions. Fluores-

cence was measured by a microplate reader (BioTek EL800, Winooski, VT) and converted

into pg/mL as per the standard curve concentrations. To eliminate the inter-assay effect on

within-subject data, all samples from each participant were assayed on the same plate. The bio-

marker experimenters were blinded from the group assignment information.
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Past literature has estimated that S100B is cleared rapidly following mTBI, with the half-life of

circulating S100B to be approximately 60 to 120 minutes [17, 22, 44–46]. For example, in a study

examining mTBI patients, Townend et al. estimated the elimination half-life of S100B from cir-

culation after mTBI to be 97 minutes [44]. This estimated half-life is well within the duration of

our acute timepoints used in this study (0h post-, 2h post-, and 24h post-intervention).

Primary and secondary outcomes

The primary outcome was the between-group difference in change in plasma S100B at 2h post-

intervention. The secondary outcomes were: (1) between-group differences in change in S100B

concentration at 0h post- and 24h post-intervention (group-by-time interaction); (2) within-

group changes (time effects) in plasma S100B concentrations in the heading group; and (3)

within-group changes (time effects) in plasma S100B concentration in the kicking-control group.

Statistical analysis

Demographic differences between the heading and kicking-control groups were assessed using

Mann-Whitney U tests for not normally distributed continuous variables (age, BMI, number

of previous concussions, years of soccer heading experience) or Fisher’s exact test for a cate-

gorical variable (sex). The effect of soccer heading on acute plasma S100B concentrations was

assessed using a mixed effects regression model (MRM). A MRM was constructed to regress

time, intervention, and time by intervention interaction on the plasma S100B concentrations.

The model was adjusted for BMI. Participants were treated as a random effect to account for

individual S100B differences at the baseline. Cook’s distance was calculated to examine

unusual influence of individual data points on the fit of the model. Two data points were iden-

tified as outliers, such that plasma S100B concentrations were found to be greater than 700 pg/

mL, well above high levels observed in previous S100B studies of subconcussive head impacts

[22, 33, 34, 47, 48] and TBI [49–51], and the model was refit without these two points. All

Mann-Whitney U tests were two-tailed, and the significance level was set a priori to 0.05. Any

measurements below the detection limit of the assay were treated as missing data points. The

analysis approach was intention-to-treat (ITT). Missing data points were treated as Missing

Completely At Random (MCAR), and thus missing values were not imputed. All analyses

were conducted using R (version 3.4.1) with packages “lmer” and “lmerTest.”

Results

Demographics and head impact kinematics

Eighty-four individuals were evaluated for eligibility. Seventy-nine participants, who met

inclusion criteria and were free of exclusion criteria, proceeded to randomization. There were

11 voluntary withdrawals (heading n = 4, 22.5 (1.0) years old, 0% male; kicking-control n = 7,

20.9 (1.1) years old, 57% male) prior to the pre-intervention time points. Data from 68 partici-

pants (n = 37 heading, n = 31 kicking-control) were available for analysis (Fig 1). Demograph-

ics and head impact kinematics are presented in Table 1. There were no significant differences

in any of the demographic variables between groups.

Primary outcome: Between-group difference in change in S100B at 2h post-

intervention

Ten acute soccer headings did not result in group difference in change in S100B concentra-

tions at 2h post intervention, as evidence by non-significant group-by-time interaction

(B = 2.20, 95%CI [-22.22, 26.63], p = 0.86; Fig 2).
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Fig 1. Study flow chart of eligibility assessment, randomization, data collection, and analysis.

https://doi.org/10.1371/journal.pone.0239507.g001

Table 1. Demographics and impact kinematics by group.

Variables Heading Group Kicking-control group P-value

Demographics
n 37 31 -

Sex 19M 18F 14M 17F 0.635

Age, y 21 (19–22) 21 (20–22) 0.294

BMI, kg/m2 23.4 (21.5–25.2) 23.4 (22.5–25.8) 0.389

No. of previous concussion 0 (0–1) 0 (0–0) 0.215

Soccer heading experience, y 9 (6–11) 9 (6–12.8) 0.599

Head impact kinematics, mean ± SD
PLA, g 33.2 ± 6.8 - a -

PRA, krad/s2 3.6 ± 1.4 - a -

Note: All data are presented as median (interquartile range), unless otherwise specified. BMI, body mass index. PLA,

peak linear acceleration. PRA, peak rotational acceleration. krad, kiloradian.
aSoccer kicking did not cause a detectable level of head acceleration.

https://doi.org/10.1371/journal.pone.0239507.t001

PLOS ONE Plasma S100B and soccer heading

PLOS ONE | https://doi.org/10.1371/journal.pone.0239507 October 23, 2020 6 / 15

https://doi.org/10.1371/journal.pone.0239507.g001
https://doi.org/10.1371/journal.pone.0239507.t001
https://doi.org/10.1371/journal.pone.0239507


Secondary outcome: Between-group differences in change in S100B at 0h

and 24h post-intervention and within-group change over time

There was no significant group-by-time interaction in change in S100B concentrations at 0h

or 24h post-intervention (0h post: B = -11.05, 95%CI [-35.37, 13.28], p = 0.38; 24h post:

B = 16.11, 95%CI [-8.29, 40.51], p = 0.20; Fig 2). There was a significant within-group elevation

in plasma S100B at 24h post-intervention in the heading group (B = 19.57, 95%CI [3.13,

36.02], p = 0.02). There were no other significant time effects for both groups (see Table 2).

Discussion

To our knowledge, this is the first randomized controlled trial to examine an acute time-course

expression of plasma S100B after subconcussive head impacts across three post-head-impact

time points (0h, 2h, and 24h). Although the implication of the data is limited to the acute

post-impact phase, we provide evidence to suggest that 10 controlled soccer headers are not

Fig 2. Plasma S100B concentrations in the heading and kicking-control groups at each study time point (pre-, 0h

post-, 2h post-, and 24h post-intervention). Data are presented as means with the error bars representing the 95%

confidence intervals. There was a significant within-group increase in plasma S100B in the heading group at 24h post-

intervention relative to pre-intervention (p = 0.02). There were no other significant time, group, or group-by-time

effects of soccer heading on plasma S100B concentrations.

https://doi.org/10.1371/journal.pone.0239507.g002

Table 2. Within-group time effects.

Estimate (B) 95%CI P-value

Heading group
0h post-intervention -0.27 [-17.06, 16.52] 0.98

2h post-intervention 0.99 [-15.94, 17.92] 0.91

24h post-intervention 19.57 [3.13, 36.02] 0.02�

Kicking-control group
0h post-intervention 10.78 [-6.83, 28.39] 0.23

2h post-intervention -1.22 [-18.82, 16.38] 0.89

24h post-intervention 3.47 [-14.56, 21.49] 0.71

Note: Within group changes are in reference to S100B concentrations at pre-intervention baseline.

� p < 0.05,

�� p < 0.01, ��� p < 0.001.

https://doi.org/10.1371/journal.pone.0239507.t002
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sufficient to provoke astrocyte activation, as reflected by a lack of significant change in S100B

concentration in the heading group relative to the kicking-control group.

Although we failed to distinguish S100B elevation in soccer headings from a kicking con-

trol, S100B has been demonstrated to significantly correlate with severity, recovery outcomes

(e.g., mortality, disability), and cerebrovascular and neuronal cellular damage from TBI and

subconcussive head impacts [19, 52–54]. In a cohort of 92 patients with TBI admitted within

12 hours of injury, Pelinka et al. detected a relationship between S100B and mortality rates, as

evidenced by significantly higher S100B concentrations in non-survivors compared to survi-

vors at all six time points, ranging from admittance to 108h post-injury [19]. The authors also

found a significant positive relationship between S100B concentrations and the severity of

intracranial bleeding through CT scans [19, 55]. These findings were consistent with Ingeb-

rigtsen et al., who detected a significant association between elevated S100B concentrations

and abnormal neuroradiological findings, such as cranial fractures and brain contusions (CT

and MRI) [56]. The same group examined S100B concentrations in 278 patients with TBI and

found that higher S100B concentrations were associated with worse injury severity as deter-

mined by lower Glasgow Coma Scale scores. Bazarian et al. found that white matter alterations

were associated with both concentrations of S100B autoantibodies and head impact kinematic

variables in a cohort of collegiate football players over the course of one season [52]. Despite

the increasing literature, thresholds identifying what type and magnitude of head impacts elicit

concussion and subconcussion remain unclear. Concussion symptom provocation can be

influenced by additional factors such as age, sex, location of impact, and recovery periods [1].

The lack of a definite threshold underscores the need for objective measures, such as blood

biomarkers, to capture the consequences of subconcussive head impacts.

Despite the clinical utility of S100B as a biomarker of brain injury, it has long been in debate

that S100B can also be translocated to the bloodstream from several extracranial cellular

sources, such as Schwann cells, ganglion cells, adipocytes, and skeletal myofibers [57, 58].

Aside from neurotrauma, additional variables, such as exercise [25–27, 59], race [60], mood

disorder diagnosis [61], and alcohol consumption [62], have been shown to have an influence

on plasma S100B concentrations. Physical exertion has been shown to result in acute increases

in serum S100B concentrations, pointing to the difficulty of accurate interpretation when ath-

letes incur head trauma and exhibit elevations in serum S100B [25–27, 59]. Dietrich et al.

recruited 16 elite swimmers and observed a significant elevation in serum S100B concentra-

tions from pre- (70.7±17.7 pg/mL) to post-competition (108.1±19.5 pg/mL) [25]. Further-

more, acute elevations in S100B concentrations have been detected across a wide range of

running intensities and durations [26, 27]. However, Kiechle et al. were able to distinguish the

proportional increase in serum S100B concentration after sport-related concussions from

sport-related non-contact exertion levels in young adult athletes (AUC 0.904), suggesting that

TBI-induced elevations of S100B are far beyond those of physical exercise effects.

Our motivation to conduct the current randomized controlled trial was to validate the

growing number of studies supporting the use of circulating S100B concentrations to examine

the effects of subconcussive head impacts [21–23, 29, 33, 34, 47, 63]. Acute increases in serum

S100B concentration have been detected from pre- to post-game in both male and female soc-

cer players, and the magnitude of S100B increase has been correlated with the number of head-

ers that each player performed in the game [33, 34]. For example, studies by Kawata et al.,

Zonner et al., and Marchi et al. reported that serum S100B concentrations increase after high

school and collegiate American football games and practices by nearly 300% compared to pre-

game/practice baseline, with the degree of S100B elevation correlating to the number and mag-

nitude of head impact sustained during game/practice [21, 22, 24]. However, despite our previ-

ous effort to control for muscle damage through creatine-kinase levels and exercise effects
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through excess post-exercise oxygen consumption (EPOC) [22], “true” head impact effects on

circulating S100B concentrations can only be tested in a controlled environment, such as our

soccer heading intervention. Clinical studies have reported that the magnitude of soccer head-

ings by collegiate female soccer players can reach as high as 71.2 g (90th percentile head impact

of any type by PLA) [64], and male soccer players perform as many as 19 headers per game

[34]. Using the Head Impact Telemetry System, Duma et al. identified that the average PLA of

head impacts during American football practices and games is 32 g, with nearly 90% of all

head impacts falling below 60 g [43]. Collegiate American football players incur frequent head

impacts during practices and games in an intensity-dependent manner: shell-only practice,

avg. 12.7 impacts/player; full gear practice, avg. 16.8 impacts/player; game, avg. 25 impacts/

player, with an similar head impact magnitude of 28 g across any type of practice and game

[32, 65]. Therefore, our soccer heading model, which was comprised of 10 soccer headers with

an average PLA of 33.2 g, is representative of a bout of subconcussive head impacts sustained

in contact sports while also minimizing risk to participants and maximizing feasibility and

ecological validity.

In addition to the present study, previous laboratory studies, using soccer heading models

in an attempt to isolate subconcussive head impacts from confounding variables such as exer-

cise, have been unable to replicate the findings of clinical studies. Namely, Dorminy et al. did

not detect significant changes in serum S100B concentrations in 11 college-aged soccer players

following a bout of 5 headers, despite investigating three different ball speeds (30, 40, and 50

mph) [29]. These results corroborated the findings of Stålnacke et al., who found that S100B

concentrations did not differ from baseline at 0.5h, 2h, or 4h post-heading [47]. Furthermore,

the serum S100B concentrations in the heading group did not differ from a non-heading con-

trol group at all time points. In agreement with the aforementioned studies, the current study

did not detect significant between-group differences in changes in S100B concentrations fol-

lowing an acute bout of soccer heading, despite increasing the sample size, including a kick-

ing-control group, and extending the study time frame to 24h post-intervention. The within-

group elevation in plasma S100B in the heading group at 24h post-intervention merits some

discussion, despite the lack of between-group difference at the same timepoint. The 24h post-

intervention timepoint lies outside the half-life of S100B in the blood, suggesting that either

the effect of 10 soccer headers may take considerably longer than anticipated to result in a

peripheral increase in S100B or there were behaviors or factors that we did not account for

between the 2h and 24h post-intervention timepoints driving this increase withing the heading

group. The prolonged time for expression and translocation to the bloodstream could suggest

that the mechanism by which S100B from astrocyte activation increases in the periphery is pre-

dominantly through clearance by the glymphatic system rather than blood-brain barrier (BBB)

disruption [17]. The presumable low level of neural damage from a short bout of soccer head-

ing may not be sufficient to disrupt the BBB as seen with more severe head injuries [66, 67].

The glymphatic system, which is more active during sleep [68], could be the predominant ave-

nue by which S100B is cleared from the interstitial space through paravenous space after 10

subconcussive head impacts in the form of controlled soccer headers, explaining why we

observed an increase when participants returned the next day for the 24h post-intervention

blood sample collection. Furthermore, astrocyte activation has been previously noted to con-

tinue for up to 20 hours post trauma [69]. Therefore, the timeline of observed S100B elevation

could surpass the half-life. The other possible explanation, albeit less likely, for the within-

group increase in plasma S100B at 24h post-intervention in the heading group may be that

before returning for the last timepoint, some or many participants within the heading group

partook in activities that have been shown to result in elevations in peripheral S100B, such as

swimming, running, or weight training [23, 25, 26]. We feel that this is unlikely due to the fact
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that participants were randomized to one of the two conditions, reducing the likelihood of this

potential explanation for a late increase in plasma S100B in just the heading group. Again, it is

important to note that we did not detect a between-group difference in change in plasma

S100B at this timepoint, thus we can cannot conclude that soccer heading resulted in a mean-

ingful increase in plasma S100B. Future research should explore reasons for this delayed eleva-

tion in S100B.

Clinical implication

The use of blood biomarkers in the diagnosis of brain injury is emerging due in part to its

objectivity. The results of the present study contribute to the body of head injury literature that

should be considered when monitoring athletes and making clinical decisions. When investi-

gating possible neural damage in response to subconcussive head impacts, the use of S100B

should not be relied upon alone. Especially in low head impact exposure such as ~10 headings,

S100B may not be useful to surrogate neurologic stress. Nonetheless, it is important that practi-

tioners pair S100B with additional objective methods, such as neuroimaging or other blood

biomarkers (e.g., neurofilament light [NF-L], tau, glial fibrillary acidic protein [GFAP]) [70],

in addition to subjective symptom reporting from the patient. Furthermore, emerging data on

salivary-based S100B, which has shown to adequately differentiate concussion patients from

controls (AUC = 0.74) [71], may have a direct implication to clinical practice in near future.

Nonetheless, multimodal validation of biomarker findings is needed.

Limitations

The results of the present study should be interpreted in light of several limitations. We did

not monitor participants’ behavior or activity between 2h and 24h post-intervention time

points, although participants were instructed to avoid situations where they might sustain sub-

concussive head impacts. There is a possibility that factors about which we were unaware out-

side the study protocol may have contributed to the response of S100B concentration. Other

potential confounding variables, such as malignant melanoma [72], major depression disorder

[73], sleep quality and quantity, diet, or menstrual cycle phase, were not accounted for; how-

ever, our repeated measures study design with participant randomization and a linear mixed

effects regression model should minimize any potential subject-level influences on plasma

S100B concentrations. We acknowledge that there are other assay methodologies for the detec-

tion of S100B such as the Elecsys and Cobas systems (Roche Diagnostics). However, our

ELISA method has been utilized in a number of previous studies including Dorminy et al. [29]

and our studies [21, 37], and the majority of S100B concentrations in the present study were

well within the threshold for CT referral. Our study used a standardized frequency of 10 soccer

headings, thus our data can only suggest that 10 headings or fewer do not significantly elevate

S100B concentrations. As we do not know the consequence of headings beyond 10 hits, it

should not be generalized or concluded that acute subconcussive head impacts are safe. Lastly,

we encountered a 15% dropout rate, which was mostly attributed to changes in participants’

schedules during the semester or loss of interest, given that all participants were full-time col-

lege students. The present study was conducted in a single-site setting, which limits generaliz-

ability of the finding.

Conclusion

There is growing concern that even mild head impacts can cause significant insidious neuro-

trauma if sustained repetitively. S100B has been suggested to be effective in identifying concus-

sion and more severe forms of TBI; however, subtle changes caused by subconcussive head
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impacts are more challenging to detect. Our data suggest that plasma S100B is not sensitive

enough to monitor acute exposure to subconcussive head impacts from 10 controlled soccer

headers. Future studies should continue to investigate S100B and other promising blood bio-

markers for subconcussive head impact exposure.
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