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F-actin mechanics control spindle centring
in the mouse zygote
Agathe Chaigne1,w, Clément Campillo2, Raphaël Voituriez3,*, Nir S. Gov4,*, Cécile Sykes5,6,7,

Marie-Hélène Verlhac1 & Marie-Emilie Terret1

Mitotic spindle position relies on interactions between astral microtubules nucleated

by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess

centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to

position their spindle off-centre and undergo asymmetric divisions. While the first mouse

embryonic division also occurs in the absence of centrosomes, it is symmetric and not much

is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary

approaches, we demonstrate that zygotic spindle positioning follows a three-step process:

(1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork;

(2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive

maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics

operate the switch between asymmetric to symmetric division required at the oocyte to

embryo transition.
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M
ouse oocytes undergo a very asymmetric division in size
during meiosis I. This asymmetry is a consequence of
the migration of the microtubule spindle from the cell

centre towards the closest cortex1. Oocytes are devoid of
centrioles and astral microtubules2. As such, spindle positioning
does not depend on microtubules3 as in most mitotic cells4, but
on two actin networks. One is an F-actin cytoplasmic meshwork,
nucleated by the cooperation between two types of actin
nucleators, Spire1/2 and Formin-2 (refs 5–10). It is present in
Prophase I and dismantled at nuclear envelope breakdown
(NEBD), maybe favouring meiotic spindle assembly in the
absence of mechanical constraints11. This meshwork reforms
progressively as meiosis I progresses. It is then composed of a
dense and dynamic cytoplasmic F-actin meshwork and of an
actin cage surrounding the microtubule spindle, connecting it to
the cortex5,9,12,13. The other actin network shown to function
during meiotic spindle positioning is a cortical F-actin thickening
nucleated progressively by the Arp2/3 complex, which triggers the
removal of Myosin-II from the cortex, promoting a drop of
cortical tension12,14. The Arp2/3 complex lies downstream of a
signalling cascade activated by Mos, a MAPKKK specific to the
female gamete15,16. Myosin-II, localized at the poles of the actin
cage9,17, pulls the spindle towards the cortex. However, since the
spindle does not form at the exact cell centre18,19, one pole is
closer to the cortex and thus pulled harder. The decrease in
cortical tension allows the cortex to deform and to constitute a
large overlap on which Myosin-II can further exert pulling forces,
accelerating spindle migration14.

The first embryonic mitosis following fertilization in the mouse
also occurs in the absence of true centrosomes and astral
microtubules since the centrioles brought by the sperm are
rapidly degraded20 and rebuilt de novo at the 64-cell stage21. This
division is peculiar because the male and female DNAs are
present in two different nuclei called pronuclei (we will refer to
the period where both pronuclei are present as Pronucleus stage).
They migrate from the periphery towards the centre of the
embryo for several hours22,23 and are located roughly in the
central region of the embryo at mitosis onset. They further
undergo NEBD simultaneously, and then the two sets of
chromosomes migrate and merge at the exact embryo centre,
forming the metaphase plate. This division is symmetric, and
requires F-actin since depolymerizing microfilaments before
metaphase leads to an asymmetric division24,25. However, it is
not known how F-actin is organized and controls the geometry of
the division, how central positioning of the spindle is achieved
and specifically whether spindle positioning also depends on the
mechanical properties of the cortex as in oocytes. Yet, any
deviation in spindle centring could perturb the symmetry of the
division and compromise further embryo development and
viability. We show here that F-actin-dependent mechanics are
crucial for zygotic spindle positioning, ensuring first the coarse
centring of pronuclei and second the fine centring of the
metaphase plate, which is then maintained at the exact cell centre
by a passive mechanism.

Results
Coarse centring of pronuclei depends on an F-actin meshwork.
To investigate the mechanism ensuring proper central position of
the spindle, we performed in vitro fertilization and followed
the first embryonic division in live confocal microscopy
(Supplementary Movie 1, Fig. 1a). Following fertilization,
the two pronuclei assemble at the periphery of the embryo
(Supplementary Movie 1, Fig. 1a) and migrate towards the
embryo centre in 12–15 h (Supplementary Movie 1, Fig. 1a).
At the end of their migration, the two pronuclei are rarely at the
perfect centre of the zygote, represented by the theoretical central

position of the female and male pronuclei (Fig. 1b right panel,
pink- and purple-dotted circles, respectively, as measured in
ref. 26). They can be far apart as observed, for example, in the
30 mm distance separating the two orange spots (Fig. 1b right
panel). Although it was hypothesized previously that the coarse
centring could be F-actin dependent22, the precise mechanism
for pronuclei centration has never been addressed. We first
confirmed that the migration of the two pronuclei was indeed
dependent on microfilaments by depolymerizing actin with
1 mg ml� 1 Cytochalasin D after pronuclei formation but during
their migration (Fig. 1c, right panel). In these embryos, NEBD
occurred normally as seen on Fig. 1c (left panel) but pronuclei
migration was abolished, leading to embryos with off-centred sets
of chromosomes (Fig. 1c). Both male and female pronuclei end
up mis-positioned with respect to the embryo centre and with
respect to each other (Fig. 1d). Mis-positioning the pronuclei is
sufficient to perturb the symmetry of the first zygotic division
since when Cytochalasin D is washed out before NEBD there
is a higher occurrence of asymmetric divisions (Supplementary
Fig. 1a, quantification of the proportion of asymmetric divisions
on Supplementary Fig. 1b).

Since the migration of the two pronuclei is dependent on actin,
we followed the dynamics of microfilaments in Pronucleus stage
embryos (Supplementary Movie 2, Fig. 2a) using a green
fluorescent protein–UtrCH (GFP–UtrCH) probe that specifically
binds to F-actin27. At the Pronucleus stage, the embryo is filled
with a very dense and dynamic F-actin mesh that seems to
emanate from discrete foci, which could correspond to vesicles
(Supplementary Movie 2) as described in oocytes10,28,29. These
dots move at a mean speed of 10.55±3.70 mm min� 1, a speed
similar to the motion of actin-positive vesicles present in
Prophase I oocytes (B13 mm min� 1)28,29. In Prophase I, the
movement of the nucleus towards the cell centre is promoted by
the active diffusion of actin-positive vesicles that establish a
pressure gradient and is favoured by non-directed global
cytoplasmic flows fluidizing the cytoplasm29. We thus checked
for the presence of similar cytoplasmic flows in the zygote
(Supplementary Movie 3) using spatiotemporal image correlation
spectroscopy (STICs) analysis. As in Prophase I oocytes,
we could detect the presence of non-organized cytoplasmic
flows presenting a maximum speed of 2 mm min� 1 (Fig. 2b).
Consistent with the presence of cytoplasmic flows, inert
fluorescent beads injected in early Pronucleus stage were
found to move at a mean velocity of 18.2±7.8 mm min� 1 from
2 to 3 h after pronuclei assembly (Supplementary Movie 4), close
to the speed of the actin-positive foci.

In Prophase I, the active diffusion mechanism responsible for
nucleus centring depends on the F-actin motor Myosin-Vb29.
Indeed the movement of actin-positive vesicles induced by the
activity of Myosin-Vb has a global effect, indirectly putting the
cytoplasm in motion by dragging the fluid around moving
vesicles30,31. To test if the same mechanism could be at play here,
we expressed a Myosin-Vb tail which acts like a dominant
negative construct for Myosin-Vb10. Myosin-Vb tail expressing
embryos no longer display cytoplasmic flows (Supplementary
Movie 5, Fig. 2c right panel), indicating that their cytoplasmic
activity depends on Myosin-Vb activity. These embryos display
massive cortical deformations (Supplementary Movies 6 and 7,
Fig. 2d), but their pronuclei do not move from their cortical
positions (Fig. 2d). Thus, when they undergo NEBD, they are
mis-positioned with respect to the embryo centre and with
respect to each other (Fig. 2d,e). Depending on the entry site of
the spermatozoid, the two sets of chromosomes will start far or
close from one another. When the two sets of chromosomes are
close (Supplementary Movie 6, Fig. 2d, upper panel), they do
gather after Myosin-Vb tail expression, but are improperly
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positioned since the metaphase plate ends up 10 mm away from
the embryo centre, instead of 2 mm in controls (Fig. 2f). Strikingly,
when the two sets of chromosomes are far away from each other
(Supplementary Movie 7, Fig. 2d, lower panel), they are not able
to merge and each pronucleus undergoes anaphase
independently, leading to the formation of four haploid nuclei
(Fig. 2d, lower panel). This phenotype recapitulates the
Cytochalasin D phenotype (Fig. 1c,d) but with cortical

deformations, which suggests that these cortical deformations
are not responsible for the defects in pronuclei positioning
observed after Myosin-Vb tail expression.

Altogether, these results argue that F-actin- and Myosin-Vb-
driven cytoplasmic flows induce the motion of the two pronuclei
during the Pronucleus stage, as it is the case in Prophase I oocytes
that centre their nucleus. We then searched for what gives the
directionality towards the centre to the movement.
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Figure 1 | The coarse centring of the two pronuclei is F-actin dependent. (a) Control embryo expressing His–RFP (upper panel: purple, overlay on

transmitted light, Z-projection over 20mm; lower panel: black). The first two frames are 12 h apart then one picture is shown every 1 h (Scale bar: 10mm).

(b) Left panel: control embryo expressing His–RFP (purple, overlay on transmitted light, Z-projection over 20mm) at the Pronucleus stage (scale bar,

10mm). Right panel: dot plot showing the position of the centroid of the two pronuclei in the referential of the embryo (0 being the centre) 1 h before NEBD

for 10 control embryos. The scale is represented by the white box on the left panel. Each colour represents an embryo, the circle is the female pronucleus

and the triangle is the male pronucleus. The mean size of the maternal (pink) and paternal (purple) pronuclei is represented by the two dotted circles at the

embryo centre. (c) Embryos just after NEBD expressing His–RFP (left panel, purple, overlay on transmitted light, Z-projection over 20mm) and GFP–utrCH

(right panel, black, one Z-plane is shown). Upper panel: control embryo; lower panel: embryo treated during pronuclei migration with 1 mg ml� 1

Cytochalasin D (CCD). Scale bar, 10mm. (d) Bar graph showing the male and female pronuclei distance to the embryo centre and to each other at NEBD for

control embryos (black bars) or embryos treated during pronuclei migration with 1 mg ml� 1 CCD (orange bars). Mean is shown of 12 controls and 11

CCD-treated embryos from 6 independent experiments. s.e.m. is plotted on each bar. Statistical significance of differences is assessed with t-test or t-test

with Welch correction (P values: female pronuclei/embryo centre: 0.0004; male pronuclei/embryo centre o0.0001; between pronuclei: 0.0035).
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Mesh heterogeneities could drive coarse pronuclei centring.
What could be the mechanism for coarse pronuclei centring?
To address this question, we first searched for an anisotropy that
could drive directional motion. Interestingly, the cytoplasmic
actin meshwork does not seem homogeneous. Specifically, once
the pronuclei have assembled under the cortex (Fig. 2a and
referred in Fig. 2g as off-centred), the meshwork between the
pronuclei and the adjacent cortex seems to be denser than the
meshwork on the other side of the pronuclei (Fig. 2a red arrow).
We then measured the fluorescence intensity of the F-actin

probe (GFP–UtrCH) as a proxy for filament density between the
pronuclei and the adjacent cortex (Fig. 2a red arrow) and on the
other side of the pronuclei (see Methods). Before pronuclei
migration, more actin is indeed present between pronuclei and
cortex (Fig. 2g, the ratio is 41 for off-centred pronuclei). This is
not the case once the pronuclei have migrated in the central
region of the embryo, (Fig. 2g, the ratio is o1 for centred
pronuclei). Close observation of the actin-positive foci revealed
that there are no heterogeneities in their speed, but in their
density, with more foci close to the cortex and less in the central
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Figure 2 | F-actin and Myosin-Vb-driven cytoplasmic flows position the pronuclei in the central region of the embryo. (a) Control embryo expressing

GFP–UtrCH (black, one Z-plane is shown). The red arrow points at actin enrichment. Scale bar, 10 mm. (b,c) Left panels: embryos expressing (c) or not

(b) Myosin-Vb tail. Right panels: associated vector maps of cytoplasmic flows obtained using STICS analysis. Heat bar unit in micrometres per minute.

Scale bars, 10mm. One example is shown out of 11 controls and 13 Myosin-Vb tail embryos. (d) Embryos expressing His–RFP (purple or black, Z-projection

over 20mm). Upper panels: pronuclei close; lower panels: pronuclei far. Scale bar, 10mm. (e) Bar graph showing the pronuclei distance to the embryo centre

and to each other 1 h before NEBD for controls (black bars) or Myosin-Vb tail-expressing embryos (purple bars). Mean is shown of 12 controls and

10 Myosin-Vb tail embryos. s.e.m. is plotted on each bar. Statistical significance of differences is assessed with a t-test or a t-test with Welch correction

(P values: female pronuclei/embryo centre: 0.0005; male pronuclei/embryo centre o0.0001; between pronuclei: 0.0009). (f) Bar graph showing the

chromosome mass distance to the embryo centre in metaphase for controls (black bar) and Myosin-Vb tail-expressing embryos (purple bar). Mean is

shown for 23 controls and 8 Myosin-Vb tail embryos. s.e.m. is plotted on each bar. Statistical significance of differences is assessed with a Mann–Whitney

test (P value o0.0001). (g) Graph bar showing the ratio of GFP–UtrCH fluorescent intensity between the pronucleus and the cortex and on the other side

of the pronucleus. Mean is shown for 6 centred and 13 off-centred pronuclei embryos. s.e.m. is plotted on each bar. Statistical significance of the difference

is calculated with a Mann–Whitney test (P value 0.0014). (h) Graph bar showing the mean percentage of actin-positive foci in each region of the embryo

normalized by the effective surface of the region. Mean is shown from 9 embryos out of 2 independent experiments. s.e.m. is plotted on each bar. Statistical

significance of the difference is calculated with a Mann–Whitney test (P values 0.007).
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region of the embryo (Fig. 2h). We can model the actin-positive
foci as active particles propelled by Myosin-Vb, like for Prophase
I oocytes29. Heterogeneities in actin density could be responsible
for pronuclei centring. Indeed, similarly to a perfect gas, an
assembly of n self-propelled particles induces a pressure that can
be written: P¼ nkBTe, with kB the Bolzmann constant and Te the
effective temperature of the particles. kBTe is a measure of the
agitation energy of the particles, and can be inferred from their
mean squared speed (ov24). The mean square speed of the
actin-positive foci in embryos is uniform, however, their density
is not (Fig. 2h). Such a gradient in the number of particles n
would then result in a pressure gradient (rP).

What would be the characteristics of such a pressure gradient?
Here the resulting active force on a test object would be
Fa¼rP.V, with V the volume of the object to be moved. V is
proportional to R3 with R the radius of the object. The force is
counteracted by a friction force Ff proportional to RZvp (with Z the
viscosity and vp the speed of the object). Hence, vp/ov24rn R2

Z ,
which means that the speed of an object moving in the density
gradient would be proportional to the square radius of this object:
the bigger the object the higher the speed. This strong size
dependence of the velocity predicted by the model may explain
why pronuclei are effectively centred, while fluorescent beads are
not (small fluorescent latex beads of 0.1mm in diameter are not
centred 10 to 12 h after pronuclei assembly, Supplementary Movie
8). Altogether, this suggests that a gradient of density of the actin-
positive foci could be responsible for the coarse centring of big
objects such as the two pronuclei.

Chromosome merging determines the metaphase plate position.
At mitosis onset, the two pronuclei are apposed more or less in
the central region of the embryo (Fig. 1b). At NEBD, the two sets
of chromosomes condense separately and are brought together in a
slow but directed motion (roughly 1 h) (Supplementary Movie 9,
Fig. 3a). The one-cell zygote is unique in this respect, having to
achieve the fusion of maternal and paternal chromosome com-
plements on a single metaphase plate32. Then the chromosome
mass stays aligned in metaphase for roughly another hour before
anaphase is triggered (Supplementary Movie 9, Fig. 3a). We
followed precisely the position of the chromosomes during
the first of these two phases, namely from NEBD to metaphase
(Fig. 3b). During the migration of both sets of chromosomes
(Fig. 3b), the two masses are brought almost towards the exact
embryo centre (0 on the graph in Fig. 3b) with a mean maximum
distance travelled of B10mm both for the male and the female
chromosomes (Supplementary Fig. 1c). At the end of this phase,
the metaphase plate is positioned in close proximity with the exact
embryo centre (Fig. 3b, almost all the curves converge around 0).

Merging depends on microtubules but its position on F-actin.
Since in mouse oocytes, spindle positioning depends on
F-actin5–10,12, we investigated its role during mitosis in the
zygote. We followed actin organization throughout the first
mitosis (Supplementary Movie 10, Fig. 3c). At the Pronucleus
stage, an F-actin meshwork fills the cytoplasm of the embryo
(Figs 2a and 3c). The meshwork is dismantled around NEBD
(Figs 1c and 3c, Supplementary Fig. 1d,e). Interestingly, such a
dismantlement of F-actin meshwork has also been observed at
meiosis resumption in oocytes11. The cytoplasmic meshwork then
reforms and includes an F-actin cage, probably around the
microtubule spindle (Fig. 3c), that is anchored at the cortex in
metaphase (Fig. 3d). To test if F-actin plays any role in the
merging of parental chromosomes, we acutely treated embryos
just after NEBD with 1mg ml� 1 Cytochalasin D, sufficient to
induce massive depolymerization of cytoplasmic F-actin (Fig. 3e,
upper panel). Interestingly, F-actin depolymerization alters the

location of the merging of chromosome (Supplementary Movie 11,
Fig. 3e,f). Indeed, tracking of chromosomes indicates that their
merging occurs on time (Fig. 3e) but rarely at the embryo centre
(Fig. 3f). To assess the efficiency of the centring process, we
measured the distance between the merged chromosomes and the
embryo centre. In controls, the chromosomes merged around
2 mm away from the centre of the embryo (Fig. 3g, black bar).
However, in embryos treated with CCD around NEBD, the
chromosomes merge rather 4 mm away from the embryo
centre (Fig. 3g), suggesting that F-actin is important for the
proper positioning of the chromosome merge. Also, we measured
the amplitude of chromosome displacement and observed
that paternal chromosomes undergo a movement of smaller
amplitude than controls (Fig. 3h). Altogether, these results show
that F-actin participates in precise metaphase plate centring.

Microtubules play a crucial role in spindle morphogenesis
and positioning in most cells33, thus we decided to investigate
their contribution to the process of chromosome merging.
We therefore treated embryos after pronuclei migration, around
NEBD, with 1 mM Nocodazole and monitored the position of
chromosome complements (Supplementary Movie 12, Fig. 4a).
The Nocodazole treatment induced extensive microtubule spindle
depolymerization after 30 min (Fig. 4a). Strikingly, parental
chromosomes never merge onto a unique metaphase plate in
the absence of microtubules (Supplementary Movie 12, Fig. 4a,b).
Precise tracking of the two sets of chromosomes indicates that
they undergo a non-oriented motion (Fig. 4b), with a maximum
distance travelled smaller than in controls (Fig. 4c). Altogether,
these results suggest that maternal and paternal chromosomes are
brought together in a microtubule-dependent manner. Since
Myosin-Vb tail expressing embryos harbour pronuclei that can be
close or far apart (Fig. 2d), following chromosome merging in
these embryos allows to gain insight into the reach of
microtubules. Indeed, when the two sets of chromosomes are
separated by o40mm they are able to merge, whereas when they
are 440mm apart their merging fails (Fig. 2d, quantification
on Fig. 4d). Therefore the microtubules are not capable of
bridging a longer distance than 40mm, possibly explaining
why the pronuclei have first to be coarsely centred via an
F-actin-dependent mechanism in order to merge.

Myosin-II drives cortical tension increase at NEBD. Cortical
tension being essential for spindle positioning in mouse
oocytes12,14, we decided to investigate whether it also regulates
spindle centring in embryos. Like other cell types, mouse zygotes
round up at mitosis onset (Supplementary Movie 13 and
Fig. 5a,b). Opposite to the measurements made in oocytes
where cortical tension decreases during the division12,34, cortical
tension does increase during mitosis (Table 1) as in other mitotic
cells35. Interestingly, even if the increase in cortical tension is
modest (2-fold, Table 1) compared with the important (30-fold)
drop experienced by oocytes during meiosis I (Table 1)12 it is
sufficient to induce the rounding up of extremely deformed
embryos. This is the case, for example, in embryos expressing the
Myosin-Vb tail (Fig. 2d and Supplementary Movies 6 and 7).
To decipher the molecular basis for this change in cortex tension,
we followed the localization of Myosin-II36, a major regulator of
tension in cells37–39, in particular in oocytes12,14,34. Myosin-II is
present in the cytoplasm both at the Pronucleus stage and
throughout the first mitotic division (Supplementary Movie 14,
Fig. 5c). However, during mitosis it is slightly enriched at the cell
cortex (Supplementary Movie 14, Fig. 5c,d, a ratio closer to 1
corresponds to cortex enrichment). The cortical recruitment of
PhosphoMyosin-II at mitosis onset was also observed on fixed
embryos (Fig. 5e). The cortical recruitment of Myosin-II is
modest compared with its enrichment in Prophase I oocytes12.
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This is consistent with the amplitude of cortical tension variations
observed during meiosis I in oocytes versus the one observed here
in the zygote (Table 1). Altogether, our results suggest that
differently from oocytes12,14 and similarly to other cell types39,
Myosin-II is recruited at the cortex at mitosis onset in one-cell
embryos, leading to an increase in cortical tension.

Central merging relies on a high cortical tension. To investigate
the role of the increase in cortical tension, we decided to
artificially decrease it using a membrane-targeted cVCA,
a construct promoting F-actin nucleation exclusively at the cortex
and triggering cortical Myosin-II removal, thus lowering cortical

tension, as observed in oocytes14. The cVCA efficiently decreased
cortical tension during zygote’s mitosis (Fig. 6a). The amplitude
of the decrease in cortical tension due to cVCA expression
was, however, smaller compared with the one measured during
meiosis (3-fold decrease compared with 100-fold14). Interestingly,
the mechanism responsible for the drop in cortical tension was
comparable to the one present in oocytes. First, cVCA-expressing
embryos harboured a cortical F-actin thickening (Supplementary
Fig. 2a) of 2.5 mm compared with a thickness of 1 mm in controls
(Supplementary Fig. 2b). The size and width of the actin
cage were unchanged arguing that here, as for oocytes, the
membrane-targeted cVCA construct acted mostly at the cortex
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20mm). Scale bar, 10mm. (f) Same as b for embryos treated with CCD around NEBD. (g) Bar graph showing the position of the centroid of the merged
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s.e.m. is plotted on each bar. Statistical significance of differences is assessed with a Mann–Whitney test (P value 0.0175). (h) Graph showing the

maximum distance (that is, the distance between the points furthest apart on the trajectories) of chromosome motion in controls (black bars, from
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and not indirectly on the cytoplasmic actin mesh (Supple-
mentary Fig. 2c). Second, cVCA expression was sufficient to
impair Myosin-II recruitment at the cortex (Supplementary
Fig. 2d,e: the level of Myosin-II at the cortex is constant in
embryos expressing cVCA between Pronucleus stage and mitosis,
whereas it increases in mitosis in control embryos). cVCA-
expressing embryos harbour properly positioned pronuclei
(Supplementary Fig. 2f), reinforcing the idea that pronuclei
centring could depend on F-actin-driven active diffusion, this
process being also tension independent in oocytes29. Importantly,
none of the defects are due to the presence of Ezrin in the cVCA
construct, since embryos solely overexpressing Ezrin behave like
controls (Supplementary Figs 2f and 4h).

In cVCA-expressing embryos, the two chromosome comple-
ments merge with timings comparable to controls
(Supplementary Movie 15, Fig. 6c, quantification on
Supplementary Fig. 2g). However, the position of the merge is
not at the exact cell centre (Fig. 6b–d). Indeed, precise
quantification of the trajectories shows that parental chromo-
somes merge up to 10mm away from the embryo centre (Fig. 6b,
purple curve, for example; almost no curves converge at 0). This
was very different to what was observed in controls (Fig. 3b).
Interestingly, the lack of precise centring is not due to a reduction
in chromosome motion since the mean maximal distance
travelled by chromosomes is comparable to controls
(Supplementary Fig. 2h). These results demonstrate that a high
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cortical tension defines the exact embryo centre where maternal
and paternal chromosomes will eventually merge.

Both decreasing cortical tension as well as depolymerizing
F-actin lead to merging of the chromosomes away from the
perfect embryo centre. This suggests that cortical tension is
transmitted to the chromosomes via microfilaments. The F-actin
cage surrounds the chromosomes and is connected to the cortex,
it could thus transmit forces to the spindle. What is the molecular
mechanism ensuring this relay of tension from the cortex to the
spindle? To address this question, we observed Myosin-II
localization, which is responsible for F-actin-based force genera-
tion, in particular in mouse oocytes9,12,14. A closer inspection of
the active form of Myosin-II staining in mitosis, PhosphoMyosin-
II, showed that it is present at spindle poles, colocalizing with
pericentrin (Supplementary Fig. 3a, yellow foci at the poles of the

spindle) as in meiosis I where it is responsible for spindle traction
to the cortex9,12,17. We thus wondered whether Myosin-II could
put this F-actin cage under tension. To address this question, we
treated one-cell zygotes in metaphase with ML-7, which reduces
Myosin-II activity40. Less than 20% of embryos treated with
30 mM ML-7 undergo normal cytokinesis (Supplementary
Fig. 3b), consistent with a role for Myosin-II in cytokinesis41.
Embryos treated with ML-7 have shorter actin cages (Fig. 6e,f),
suggesting that Myosin-II puts the actin cage under tension.
ML-7 does not act on the actin cage by modulating the amount of
microfilaments connected to the cage, since the density of F-actin
(relative to the size of the cage), quantified using the fluorescence
level of GFP–UtrCH, is comparable in controls versus
ML-7-treated embryos (Supplementary Fig. 3c). Therefore,
Myosin-II may put the actin cage under tension in metaphase.
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Table 1 | Cortical tension and viscosity in oocytes and embryos.

Early meiosis I oocyte Late meiosis I oocyte Pronucleus stage embryo Mitotic stage embryo

Cortical tension (nN mm� 1) 0.92±0.2 (from ref. 12) 0.034±0.1 (from ref. 12) 0.35±0.04 0.61±0.05
Cytoplasmic viscosity (Pa � s) 4.4� 102±40 12� 102±300

For cortical tension in embryos, mean of 13 Pronucleus stage and 9 mitotic embryos is shown, measured over 8 independent experiments. The statistical significance of differences is assessed with a
t-test (P value 0.0011). The values of cortical tension for early and late oocytes are extracted from ref. 12. For cytoplasmic viscosity, mean of 16 Pronucleus stage and 15 mitotic embryos is shown,
measured over 6 independent experiments. Statistical significance of differences is assessed with a Mann–Whitney test (P value o0.0001).
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Altogether, these results suggest that Myosin-II could transmit
the forces exerted by the increase in cortical tension to the
microtubule spindle via the F-actin cage, placing it at the exact
embryo centre.

Maintenance of the chromosomes at the cell centre is passive.
Once the chromosomes have merged and are positioned at the
exact embryo centre, they stay at this position until
anaphase (Figs 1a and 3a). We precisely monitored and tracked
the position of the chromosomes during metaphase in control
embryos (Fig. 7a,b) and showed that they undergo very little

motion until anaphase (Fig. 7a,b). Thus, the position where the
chromosomes merge specifies the division plane. To test whether
F-actin is involved in maintaining the metaphase plate at the
embryo centre, we acutely depolymerized cytoplasmic F-actin
in metaphase with 1 mg ml� 1 Cytochalasin D (Fig. 7c, lower
panel). This treatment has little incidence on the motion of
chromosomes (Supplementary Movie 16; Fig. 7c, right panel;
Supplementary Fig. 4a), despite more variability in the
amplitude of chromosomes movements in CCD-treated
embryos (Supplementary Fig. 4a). However, the position of
chromosomes before anaphase is comparable to controls
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chromosomes merge. One time point is shown every 30 min. (c) Embryos expressing His–RFP alone (left panels) or together with cVCA (right panels).

Upper panel: cVCA (red), one Z-plane is shown; middle and lower panels: His–RFP, purple or black, Z-projection over 20mm. One frame is shown every
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independent experiments. s.e.m. is plotted on each bar. Statistical significance of differences is assessed with a Mann–Whitney test (P value 0.2203).
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(Fig. 7d). Thus the overall maintenance of the spindle at
the cell centre is actin independent. Consistent with this result,
when Myosin-II is inhibited, the chromosomes stay centrally
located (Supplementary Fig. 4b), indicating that the tension
imposed by Myosin-II to the cage is not necessary for the
maintenance of the spindle at the centre of the cell.

We then tested the contribution of microtubules in this process
by adding 1mM Nocodazole in metaphase. Similarly, we could
not detect any effect on the position of the metaphase plate
(Supplementary Movie 17, Fig. 7e,f, Supplementary Fig. 4c).
These results show that the global spindle maintenance at the
embryo centre is microtubule independent. Eventually, when
both microfilaments and microtubules were depolymerized in
metaphase, the central position of the chromosomes was
unaffected (Supplementary Movie 18, Supplementary Fig. 4d,e).
In this condition, however, the chromosomes moved slightly less
than in controls (Supplementary Fig. 4f), probably due to the fact
that the microtubule spindle promotes slight chromosomes
oscillations as in mitotic cells42.

We also followed metaphasic chromosomes in embryos with
artificial reduction in cortical tension. As shown above, their
chromosomes do merge, but not at the embryo centre
(Supplementary Movie 15, Figs 6b,c,8a). Following their gather-
ing, during metaphase the chromosomes undergo small move-
ments as in controls (Supplementary Movie 15, Fig. 8b), with a
maximal amplitude similar to controls (Supplementary Fig. 4g).
Thus in metaphase, the chromosomes stay at the position where
they merged, that is, slightly off-centre (Supplementary Movie 15,
Fig. 8b). Altogether, these results suggest that a high cortical
tension is essential for accurate merging of maternal and paternal
chromosomes at the exact embryo centre, but is not necessary for
spindle maintenance there.

Since spindle maintenance at the cell centre does not seem to
be achieved via active cytoskeletal mechanics, we wondered
whether viscosity could be impeding on spindle motion. We thus
measured viscosity using a micropipette aspiration technique (see
Methods) and observed that it increases in metaphase up to
threefold its value at the Pronucleus stage (Table 1). Accordingly,
when beads were injected in embryos they were found to move
fast at the early and late Pronucleus stages (Supplementary
Movies 4–8; mean bead velocity of 18.5±7.8 mm min� 1 for
early and 17.2±9.4 mm min� 1 for late Pronucleus stage) but
significantly slower during mitosis (Supplementary Movie 19;

mean bead velocity of 13.8±9.9 mm min� 1; Mann–Whitney
test P values: early versus mitosis o0.0001; late versus mitosis
0.0013). Therefore maintenance of spindle position during
metaphase could be due to a passive mechanism, a consequence
of an increased viscosity in mitosis.

Discussion
Mouse zygotes are not polarized, and the positioning of the first
cleavage plane depends only on the position of the two
pronuclei43. However, how the two pronuclei are positioned
has never been precisely addressed. Some studies suggested that it
was actin dependent22 whereas studies in other model systems
pointed to a microtubule-dependent mechanism44. Here we
unambiguously show that coarse pronuclei centring in mouse
embryos depends on a dynamic F-actin/Myosin-Vb meshwork
but not on cortical tension, suggesting that pronuclei centring
could occur via an actin-based mechanism similar to the one
described in Prophase I mouse oocytes (Supplementary Fig. 5)29.
Interestingly, in Arabidopsis thaliana, also lacking centrosomes,
the male nucleus migrates toward the female nucleus in an actin-
myosin dependent manner45. This suggests that mechanisms of
nucleus positioning that rely only on F-actin could be common to
all cells that are devoid of centrioles.

Importantly, previous works using in vitro systems established
that in metaphase, due to the dynamic instability of microtubules,
spindle size scales with cell size, suggesting an upper limit for
spindle reach around 40 mm in cells of a size comparable to
oocytes46–48, which is exactly the maximal distance for proper
chromosome merging in vivo here. Altogether, this strongly
argues that the F-actin-dependent coarse centring of pronuclei is
absolutely required to bring the two chromosome complements
within range of microtubule reach. Indeed, even in the huge
starfish oocyte that does possess centrioles, the microtubules are
too short to capture the chromosomes and an F-actin fishnet is
responsible for their gathering49,50.

However, this is a rather coarse centring and how the perfect
symmetry is achieved has never been investigated. We propose
that the main event controlling acute centring of the spindle is a
centrally oriented gathering of the two sets of chromosomes,
which requires F-actin and a Myosin-II-dependent increase in
cortical tension (Supplementary Fig. 5). The gathering itself relies
on microtubules, but the position of the gathering depends on an
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increase of cortical tension and the presence of F-actin. The
formation of an F-actin cage connected to the cortex (Fig. 3c,d),
probably put under tension by Myosin-II at its poles
(Supplementary Fig. 3a, Fig. 6e,f) and thus relaying cortical tension,
could therefore allow the chromosomes to be centrally positioned
when they merge, acting like a spring. The precise mechanism
remains to be determined. Interestingly, chromosome mis-position-
ing is never drastic (Figs 3f and 6b), which likely results from the
inherent geometry of the system: a long microtubule spindle
(Fig 4a) and a long F-actin cage (Figs 3c and 6e) anchored to the
cortex that cannot move from more than a few microns.

We also hypothesize here how, after chromosome merge, they
are maintained at their central position. Neither F-actin nor
microtubules or cortical tension play any role in this process. We
show that a passive mechanism relying on an increase in
cytoplasmic viscosity could be at play. Interestingly, this is very
different from meiosis I where the spindle is dragged from the
centre towards the cortex of the oocyte in an B10 times less
viscous cytoplasm14. Thus the viscosity of the cytoplasm could be
differently modulated in these two systems to allow opposite
functions regarding spindle positioning. In the future, it will be
interesting to determine how actin meshes organized during
M-phase can end up increasing or reducing cytoplasmic viscosity
to influence organelle positioning.

Strikingly, similar cellular processes involving F-actin and
cortical tension are used to position the spindle at the cell
periphery in oocytes and at the cell centre in one-cell embryos.
One difference is the presence or not of the upstream regulator,
Mos, which is absent in embryos15,16. Thus, it could imply that
Mos, a specificity of the female gamete from jelly fish to
mammals1,51, degraded after fertilization52–54, could participate
in the switch from an oocyte to an embryo mode of division.

Methods
In vitro fertilization microinjection and live imaging. In vitro fertilization was
performed by releasing the sperm in home-made Fraser medium55 and letting it
capacitate for 1.5–2 h, then releasing 5–10 ml of capacitated sperm on Metaphase II
oocytes from 5–8-week-old OF1 females stimulated around 19:00 with 50 IU
of pregnant mare serum and 50 IU human chorionic gonadotropin at 48-h interval.
Fertilization was allowed for 2–4 h typically from 14:00 to 16:00 and then embryos
were transferred and cultured in M2 medium. Embryos were micro-injected at the
Pronucleus stage with complementary RNAs (cRNAs) using an Eppendorf
Femtojet micro-injector56. Culture and imaging were carried out under oil at 37 �C.
Due to asynchrony of fertilization, embryos initiated mitosis during a 4-h period.
The chromosome state was observed to infer mitotic progression. Two different
females minimum were used for each experiment, and experiments were replicated
at least twice to confirm the reproducibility of the results. The animal facility
scientific council of the CIRB granted permission for the animal experiments
described here.

Measurements of cortical tension in embryos were performed as previously
described for oocytes12. Briefly, the zona pellucida of embryos was removed using
acid tyrod (pH¼ 2.3), and embryos were analysed at desired stages. Embryos were
loaded onto a chamber equilibrated with M2þBSA medium. A glass micropipette
of a diameter five times smaller than the embryo diameter was connected to a water
reservoir of adjustable height to apply a defined aspiration pressure. Zero aspiration
pressure was set prior to each experiment by checking the absence of visible flow
inside the pipette. Observations were made through an inverted microscope
(Axiovert 200, Zeiss) equipped with a � 40 immersion oil objective (Neofluar 1.3
numerical aperture (NA)) and connected to a charge-coupled device (CCD)
camera (XC-ST70CE, Sony, Japan). For every applied pressure, we monitored the
length L of the embryo portion aspirated in the pipette as a function of time and
derived the speed dl/dt at which the embryo cortex enters the pipette. Then, we
extrapolated the critical aspiration pressure DPc at which dl/dt¼ 0 from the plot
dl/dt versus the aspiration pressure. To obtain the cortical tension Tc, we used the
‘viscous drop’ model previously used for cells12 that gives,

Tc ¼
RDPc

2 1� R
Rc

� �

where R is the pipette radius and Rc is the cell radius.
Spinning disk images were acquired using a Plan-APO � 40/1.25 NA objective

on a Leica DMI6000B microscope enclosed in a thermostatic chamber (Life
Imaging Service) equipped with a CoolSnap HQ2/CCD camera (Princeton

Instruments) coupled to a Sutter filter wheel (Roper Scientific) and a Yokogawa
CSU-X1-M1spinning disc57. The Metamorph software (Universal Imaging) was
used to collect data and ImageJ (NIH) to analyse and process data. Since the
embryo is a round cell with two objects of interest, the two sets of parental DNA,
all analysis were performed in two dimensions in the medial plane formed by these
two objects.

Plasmids and in vitro transcription of cRNAs. We used the following constructs:
pspe3–GFP–UtrCH5, pRN3-histone–red fluorescent protein (pRN3-histone–RFP)58,
pRN3-SF9–GFP36, pRN3-EB3–GFP59, pRN3-EzTD-mCherry-VCA14,
pRN3-histone–GFP14 and pGEMHE-mCherry-Myosin-Vb (gift from Melina
Schuh, MRC Cambridge, UK)10,29.

In vitro synthesis of capped cRNAs was performed using the mMessage
mMachine kit (Ambion) and the RNeasy kit (Qiagen) following the manufacturer’s
instructions60. cRNAs were centrifuged at 4 �C for 45 min at 20,000g before
microinjection.

Trajectories, STICS analysis and trackings. Embryos were followed from NEBD
until anaphase in two dimensions and only the ones with chromosomes moving in
the focal plane and that divided in the focal plane were quantified. The position
of the centroid of the two sets of chromosomes (male and female) was tracked
using Metamorph until their merging, then the position of the centroid of the
chromosome mass was recorded. The position of the centroid of the embryo was
recorded at each time point. The trajectories were drawn by calculation of the
coordinates of the centroid of chromosomes in the embryo frame of reference. The
tracking of actin-positive foci and STICS analysis were performed as previously
described29. Briefly, GFP–UtrCH-expressing embryos were denoised using the Safir
plugin for Metamorph, background was subtracted, the images were realigned
using the StackReg plugin of Fiji for embryos expressing GFP–UtrCH and Linear
Stack Alignment with SIFT for transmitted images, and corrected for bleaching if
required on Fiji. Tracking was performed using the TrackMate plugin of Fiji.
Heat maps were generated using the ImageJ plugin ‘ICS tools: STICS map jru v2’
using regions avoiding the cortex. Controls are taken from different experiments
(the black bars on Figs 3h and 4c, and Supplementary Fig. 2h come from
Supplementary Fig. 1c; the controls on Figs 3g and 6d are the same; the controls on
Fig. 7d,f and Supplementary Fig. 4b are the same; the controls on Supplementary
Fig. 4a,c,f,g are the same).

Actin vesicles density analysis. To assess the difference in actin intensity
between cortex and cytoplasm close to the pronuclei, GFP–UtrCH fluorescence
intensity was measured in embryos in a defined round region. For each pronucleus,
four measures were taken between the cortex and the pronucleus, and four between
the pronucleus and the adjacent cytoplasm, all around the pronucleus. The ratio
between the sum of fluorescence intensities on the cortex side and the sum of
fluorescence intensities on the cytoplasm side is then calculated.

To assess the density of actin-positive foci on each region, the number of foci in
each region was extracted using the Trackmate analysis described above. The
percentage of foci in each region over the total number of foci in each embryo was
calculated. The effective surface of the region was calculated by measuring the
surface occupied by each pronucleus. The actin-positive foci density is the ratio of
these two values.

Drug treatments. Embryos were treated with 1 mM Nocodazole1,5 (Sigma,
Ref. M1404), 1 mg ml� 1 Cytochalasin D (Life Technologies, Ref PHZ1063)1,5 or
30 mM ML-7 (refs 9,12) (Sigma, Ref. I 2764), diluted in M2 medium. Treatments
were performed during pronuclei migration, around NEBD or in early metaphase.
The controls presented in all panels represent control embryos extracted from
different experiments.

Latex fluorescent beads (0.1 mm; Life Technologies, F8803) were rinsed several
times in nuclease-free water before use to remove traces of sodium azide and
diluted 500 times before injection to avoid aggregates.

Myosin-II and F-actin measurements. The overall thickness of both the
cortical outer bright layer and the cortical inner dimmer layer (which increases in
cVCA-expressing embryos) was measured manually in Metamorph. All measures
were taken on one focal plane corresponding to the embryo’s biggest diameter to
avoid projection artifacts as done in ref. 9.

To assess the cortical enrichment of Myosin-II, SF9–GFP fluorescence intensity
was measured in embryos, after background subtraction, in a defined square region
smaller than cortex width. For each embryo, six measures were taken in the cortex
and six in the cytoplasm, all around the embryo. The cortical enrichment is then
defined as the ratio between the sum of fluorescence intensities in the cortex and
the sum of fluorescence intensities in the cytoplasm as done in ref. 9.

Volume measurements. Pictures were taken 2 mm apart along 100 mm to cover all
embryo volume on GFP–UtrCH-expressing embryos as a marker for cortex
borders. The volume of the two daughter cells was calculated using the Measure
stack plugin for ImageJ (Copyright (c) 2002, 2005, OptiNav, Inc.).
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Shape ratio measurements. For each embryo, the inner and outer radius were
measured. The shape ratio is defined as the ratio between these inner and outer
radius, such as the closer the ratio to 1, the rounder the cell.

Immunofluorescence. The zona pellucida of Pronucleus stage or mitotic embryos
was removed using Acid Tyrod (pH¼ 2.3) and embryos were fixed on coated
slides61 in 3.7% formaldehyde and stained with PhosphoMyosin-II (Cell Signaling
TECHNOLOGY, Ref #3671) diluted 1:200, pericentrin (BD Biosciences, Ref
611814) diluted 1:500 and mounted in Prolongold with DAPI7. Images were
acquired using a Leica SP5 confocal inverted microscope using a Plan-APO
� 63/1.25 NA objective with Z-steps every 1 mm.

Viscosity measurements. The zona pellucida of embryos was removed using
Acid Tyrod (pH¼ 2.3). Cells were aspirated in a 50-mm diameter micropipette
until they were completely inside the pipette. Great care was taken that all cells stay
inside the pipette for the same duration (B100 s). They were then released and the
shape recovery was recorded. The curve representing the evolution of the reduced
diameter L

l � 1 with L the bigger diameter and l the smaller diameter was plotted as
a function of time and fitted as an exponential. The characteristic time t was
extracted and the viscosity Z was deduced from the formula t ¼ ZRc

k with Rc as
the cell radius and k as the cortical tension.

Statistical analysis. The statistical analysis was performed using GraphPad Prism
version 6.00 for MacOS, GraphPad Software, La Jolla, CA, USA (www.graph-
pad.com). For comparison of several means, the normality of the variables was
checked and parametric (Student’s t-tests with Welch correction where indicated or
one-way analysis of variance) or non-parametric comparison tests were performed
with a confidence interval of 95%. For contingency analysis, w2 or Fischer exact
tests were used with a confidence interval of 95%. In all figures, ‘*’ corresponds to a
P value o0.05, ‘**’ to a P value o0.005, ‘***’ to a P value o0.0005 and ‘****’ to a
P value o0.0001; NS, not statistically significant. In all figure legends, s.e.m. stands
for standard error of the mean and s.d. for standard deviation.
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