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Abstract: The development of adsorbents with high adsorption capacity and fast separation is of
utmost importance for the environmental management of dye-bearing wastewaters. Within this scope,
crosslinked hydrogels including poly(vinylphosphonic acid) (PVPA) and bis[2-(methacryloyloxy)ethyl]
phosphate (BMEP) were designed with varying mole ratios of BMEP (5–40%). The Fourier transform
infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM),
transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) results revealed that the
fabrication of crosslinked PVPA-BMEP hydrogels enhanced: (i) functionalities of PA groups in the
structure of hydrogels, (ii) thermal stabilities up to 250 ◦C, and (iii) interaction between methylene blue
(MB) molecules and hydrogels. The pseudo second-order kinetic model best described the experimental
adsorption data. The behaviors of the isotherms were more appropriate for Langmuir than Freundlich
isotherm for the experimental data. PVPA-BMEP (40%) hydrogel indicated a fast and an outstanding
MB adsorption capacity of 2841 mg g−1, which has not been reported yet for polymer hydrogels,
to the best of our knowledge. The thermodynamic studies concluded that MB adsorption process
was spontaneous and exothermic in nature. The overall results suggest that the designed and
fabricated PVPA-BMEP hydrogels have great potential for the efficient removal of coloring materials
from wastewaters.

Keywords: poly(vinylphosphonic acid); methylene blue adsorption; wastewater dye removal;
adsorption kinetic; adsorption isotherm

1. Introduction

The discharge of dye-bearing wastewaters arising from various industries such as textile, paper,
printing, and leather into surface waters and groundwater is one of the most important environmental
concerns due to the harmful effects on public health and the aquatic environment [1,2]. The dissolution
of dyes in natural waters weakens the penetration of sunlight through water, and accordingly,
photosynthetic capacities of aquatic plants decrease [3,4]. In addition to this, most of the synthetic
dyes introduce their toxic, carcinogenic, and mutagenic properties into the food chain once they enter
receiving water bodies as a result of their uncontrolled discharge or insufficient treatment [5,6].

The treatment process of synthetic dyes is a challenging task because of their complex, inert,
non-biodegradable, and toxic structures [4,7]. Several methods, including adsorption, ion exchange,
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chemical coagulation, flotation, chemical oxidation, membrane filtration, reverse osmosis, ozonation,
and photochemical degradation, have been used to treat synthetic dyes in wastewaters [1,8–15].
Adsorption has been proven to be a promising dye treatment process due to its substantial efficiency,
simplicity, low cost, fast adsorbate/adsorbent contact time, etc. [1,8,9,16]. The removal capacity of the
adsorption method may reach be up to 99.9%. The United States Environmental Protection Agency
(USEPA) classified adsorption as one of the best wastewater treatment methods [17]. Disadvantages
of the adsorption process are the regeneration capacity and regeneration cost of the adsorbent,
biodegradability and disposal of the end-of-life adsorbent [18].

The ultimate fate of dyes, persistent pollutants in wastewater, is the marine environment.
Consequently, they enter the food chain and reach the human at the top of the chain. The toxicity
levels of cationic dyes are more than those of anionic dyes since they rapidly and easily interact with
the surfaces of cell membranes, which are negatively charged [19]. Methylene blue (MB), one of the
commonly used cationic dyes, is a significant basic dye with an aromatic structure. It has been widely
used in medical, pharmaceutical, textile, chemical, aquaculture, and paper industries by virtue of
its versatility. The growing demand for MB from these industries is expected to boost its supply in
the market. Eye burns, skin irritation, irregular breathing, mental confusion, nausea, vomiting, and
methemoglobinemia have been reported to be adverse health effects of MB unless its discharge to the
environmental compartments is properly managed [20].

The academic and industrial domains have paid much attention to designing and manufacturing
novel eco-friendly adsorbent materials with high adsorption capacity at a low dosage and fast adsorption
kinetics in order to treat large volumes of MB-bearing wastewaters. The removal of MB from wastewater
via an adsorption process has been investigated in numerous studies using various adsorbents such
as activated carbon [2,21], clays [3,22], siliceous materials [23–25], bio-adsorbents [26,27], waste
materials [28], nanoparticles [29,30], nanoadsorbents [31], and polymer hydrogels [32–38]. Polymer
hydrogels have been found to be superior to other adsorbent materials mentioned here for the
adsorption of MB in terms of outstanding adsorption capacities of over 2000 mg g−1.

There has been a remarkable effort to develop new polymer hydrogels with efficient dye adsorption
characteristics. Among various functional polymer hydrogels, the interest in phosphorus-bearing
polymers functionalized either at the side chain or at the main chain has recently been increasing due
to their wide range of applications. Poly(vinylphosphonic acid) (PVPA) has solely represented the
phosphorus-containing polymers in the commercial market so far [39]. The synthesis of PVPA from
vinylphosphonic acid (VPA) is usually practiced by two common methods: (i) free-radical polymerization
of VPA and (ii) VPA acid alkyl esters polymerization. The rigidity of the PVPA can be modified by
adjusting the fraction of the phosphonic acid groups [40]. The PVPA indicates challenging properties
because of the presence of phosphonic acid functional groups at every repeating unit in its structure. The
PVPA-based products have been used in many applications such as polymer electrolyte membranes in fuel
cells [41–44], drug delivery [45], dental cement [46], and corrosion and scale inhibition [47]. However, the
existing literature indicates that very few studies have been performed on the dye adsorption capabilities
of phosphonic acid-based hydrogels. Deka, et al. [48] developed highly phosphonic acid-functionalized
organosilicas and tested their performances on removing different types of dyes. Their MB adsorption
capacities reached 524 mg g−1 within 320 min. Sengel and Sahiner [49] designed PVPA nanogels with
tailored properties and investigated their possible uses in biomedical and environmental applications.
The MB adsorption capacity of the synthesized PVPA nanogels was found to be 14 mg g−1 at the end
of 5 min of contact time. Nakhjiri, et al. [50] investigated the isotherm, kinetic, and thermodynamic
parameters of MB adsorption by poly(acrylic acid-co-VPA) hydrogel cross-linked with N-maleyl chitosan,
which resulted in 67 mg g−1 of adsorption capacity throughout 100 min. Herrera-Gonzalez, et al. [51]
reported 417 mg g−1 of MB adsorption capacity within 360 min for the poly(VPA-co-triethylene glycol
dimethacrylate) composite material that they developed.

In this study, PVPA and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP)-bearing crosslinked
hydrogels were designed and characterized. The used architectures containing phosphonic acid
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functional groups have the potential to enhance: (i) the flexibility and thermal stability of the hydrogels,
(ii) the functionalities and pathways of the phosphonic acid groups in the structure of the hydrogels,
and (iii) dye adsorption capacities of the hydrogels. The structural and morphological properties of
PVPA hydrogels prepared with varying mole ratios of BMEP (5–40%) were characterized by Fourier
transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron
microscopy (SEM) techniques for the first time. Thereafter, the removal of MB from an aqueous
solution by adsorption onto PVPA-BMEP hydrogels was investigated through kinetic, isotherm, and
thermodynamic models.

2. Materials and Methods

2.1. Chemicals

Vinylphosphonic acid 97% (VPA), Bis[2-(methacryloyloxy)ethyl] phosphate (BMEP),
2,2′-azobis(isobutyroic acid amidine)dihydrochloride (AIBA), methylene blue (C16H18ClN3S·3H2O),
sulfuric acid (H2SO4, 95–97%), and sodium hydroxide (NaOH) pellets were purchased from Merck©

(KGaA, Darmstadt, Germany). All chemicals were used without further purification. The MB solutions
required for batch adsorption experiments and calibration of spectrophotometer were prepared daily
by dissolving the desired amount of MB in distilled water, which was produced by using a Milli-Q©

water purification system (Bedford, MA, USA).

2.2. Preparation of Poly(Vinylphosphonic Acid)-Bis[2-(methacryloyloxy)ethyl] Phosphate (PVPA-BMEP) Hydrogels

The crosslinked PVPA-BMEP hydrogels were synthesized via free-radical polymerization of VPA
in the presence of BMEP as a crosslinker and AIBA as an initiator (Figure 1). Several molar fractions of
BMEP, from 5% to 40% with respect to VPA, were used in order to reveal the effect of BMEP on the
flexibility, functionalities, and dye adsorption capacities of the crosslinked hydrogels. For instance,
PVPA-BMEP (5%) was produced by using the following receipt: 1.0 g of VPA (9.3 mmole), 0.15 g of
BMEP, 2.5 mg of AIBA (9.2 × 10−3 mmole), and 1.15 mL of distilled water were placed into a Schlenk
flask that was evacuated and backfilled with Argon before the polymerization. The temperature of
the reaction mixture was maintained at 80 ◦C for three hours. The solution was washed several times
with ethanol to remove possible unreacted BMEPs. The insolubility and crosslinking of the PVPA with
BMEP were tested by keeping the material in water. Then all the materials were dried under vacuum.
The same preparation method was applied to synthesize the PVPA-BMEP (10%), PVPA-BMEP (20%),
and PVPA-BMEP (40%) hydrogels by using 0.30 g, 0.59 g, and 1.19 g of BMEP during the synthesis,
respectively. For the produced materials, high yields were obtained: 84% for PVPA-BMEP (5%), 88%
for PVPA-BMEP (10%), 92% for PVPA-BMEP (20%), and 96% for PVPA-BMEP (40%).
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rate of 20 mL min−1. The SEM (Inspect S50, FEI Company, Oregon, USA) was used to investigate the 
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over hydrogels were performed by using transmission electron microscopy (TEM) (Morgagni 268, 
FEI Company, Brno, Czech Republic). Quantachrome Nova 2200e instrument (Anton Paar GmbH, 
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of 10 mM NaCl and varying pH values from 2 to 12. The final pH and zeta potential values were 
measured after each solution was suspended by stirring for 24 h. 
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different amounts of PVPA-BMEP hydrogels (5–100 mg) and 50 mL of MB solution with varying 
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Figure 1. Schematic illustration for the synthesis of poly(vinylphosphonic acid)-bis[2-(methacryloyloxy)
ethyl] phosphate (PVPA-BMEP) hydrogels.

2.3. Characterization of PVPA-BMEP Hydrogels

FT-IR spectra of hydrogels were measured in the range of 400–4000 cm−1 with a resolution
of 4 cm−1 at room temperature by using a FT-IR spectrophotometer (Spectrum Two, PerkinElmer
Inc., Massachusetts, USA). The TGA of the hydrogels were conducted by employing a simultaneous
thermal analyzer (STA 6000, PerkinElmer Inc., Massachusetts, USA). The TGA data of hydrogels were
acquired from 25 ◦C to 650 ◦C at a heating rate of 10 ◦C min−1 under N2 atmosphere with a flow
rate of 20 mL min−1. The SEM (Inspect S50, FEI Company, Oregon, USA) was used to investigate
the morphology of hydrogels. The hydrogels were coated with graphite prior to SEM imaging. The
detailed surface morphology, structure analysis, and observation of the loading of MB molecules over
hydrogels were performed by using transmission electron microscopy (TEM) (Morgagni 268, FEI
Company, Brno, Czech Republic). Quantachrome Nova 2200e instrument (Anton Paar GmbH, Graz,
Austria) was used for the determination of Brunauer-Emmett-Teller (BET) surface area, pore volume,
and pore size of the hydrogels. The hydrogels were degassed at 100 ◦C for 6 h in N2. Multi-point
BET measurements were done using N2 adsorption/desorption at 77 K. Zeta potential values of the
hydrogels were determined by using a ZetaSizer instrument (Nano ZS, Malvern, UK). For zeta potential
analysis, 20 mg of hydrogel was added into 10 mL solution with an ionic strength of 10 mM NaCl
and varying pH values from 2 to 12. The final pH and zeta potential values were measured after each
solution was suspended by stirring for 24 h.

2.4. Adsorption Studies

Batch adsorption experiments were performed in a set of 50 mL of amber glass Erlenmeyer
flasks in order to minimize the possible photodegradation of MB molecules. The flasks containing
different amounts of PVPA-BMEP hydrogels (5–100 mg) and 50 mL of MB solution with varying
initial concentrations (100–1500 mg L−1) were stirred using digital magnetic stirrers with heating
(Hei-Standard, Heidolph Instruments, Schwabach, Germany) at a stirring rate of 300 rpm and different
temperatures of 25, 35, 45, and 55 ◦C for 180 min of contact time. The initial pH of the solution was
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adjusted using 1N of NaOH or 1N of H2SO4 solution. At pre-determined contact time intervals,
aliquots were withdrawn, centrifuged at 5000 rpm for 5 min, and then the residual MB concentration
in each solution was determined at 670 nm using a Hach-Lange DR 3900 spectrophotometer (Hach
Company, Colorado, USA). The spectrometer was calibrated for each set of experiments by using six
MB solutions with concentrations ranging from 0.5 to 50 mg L−1. The linear analytical curve was found
to be [MB] (mg L−1) = 25.3 × Absorbance with R2 value of 0.999. The amount of MB adsorbed (mg)
per gram of absorbent (qt) and MB removal efficiency of the absorbent at a specific contact time were
calculated using Equations (1) and (2), respectively:

qt

(
mg g−1

)
=

(C0 − Ct) V
M

(1)

RE (%) =
C0 − Ct

C0
× 100 (2)

where C0 is the initial MB concentration and Ct is the MB concentration at a specific contact time (t)
in the solution (mg L−1); V is the volume of the solution (L); and M is the mass of the PVPA-BMEP
hydrogel in the solution (g).

2.5. Adsorption Kinetics

The adsorption process of dyes on adsorbents follows multi-stages; (i) surface reaction, (ii) diffusion
through external and internal surfaces, and (iii) diffusion and interpenetration into the solid pores [52].
The kinetics and mechanisms of MB adsorption on PVPA-BMEP hydrogels were investigated using
pseudo first-order (PFO) [53], pseudo second-order (PSO) [54], intraparticle diffusion (IPD) [55], and
Elovich models [56]. The kinetic models, their linear forms in Equations (a)–(d), and the plot types
to calculate the kinetic parameters of each model are shown in Table 1. In the Equations (a)–(d),
qe (mg g−1) is the amount of MB adsorbed at equilibrium time; k1 (min−1) is the equilibrium rate
constant of the PFO model; k2 (g mg−1 min−1) is the equilibrium rate constant of the PSO model;
kd (mg g−1 min−0.5) is the constant rate and C (mg g−1) is the constant related to the resistance to
diffusion of the IPD model; α (mg g−1 min−1) is the initial adsorption rate constant and β (g mg−1) is
the desorption process constant of the Elovich model.

Table 1. The kinetic models, their linear forms, and plot types to calculate the model parameters.

Kinetic Model Linear Form Equation No Plot

Pseudo first-order ln
(
qe − qt

)
= ln

(
qe

)
− k1t (a) ln(qe − qt) vs. t

Pseudo second-order t
qt

= 1
k2 qe

2 + t
qe

(b) t
qt

vs. t

Intraparticle diffusion qt = kd t0.5 + C (c) qt vs. t0.5

Elovich qt =
1
β ln(αβ) + 1

β ln(t) (d) qt vs. ln(t)

2.6. Adsorption Isotherms

The adsorption isotherm model study is necessary to elicit; (i) the interactions between an adsorbent
and dye molecules, and (ii) the distribution of dye molecules in a liquid and solid phases until the
equilibrium is reached [4,21]. The most widely applied isotherm models, including Langmuir [57],
Freundlich [58], and Redlich–Peterson [59] were employed to assess the equilibrium data. The
Langmuir model assumes that a monolayer adsorption process occurs on a homogeneous surface of
an adsorbent while the Freundlich model depends on the assumption that an adsorption process on
a surface of an adsorbent is governed by heterogeneous multilayer adsorption. The linear forms of
Langmuir and Freundlich models are expressed in Equations (3) and (4), respectively:

Ce

qe
=

Ce

qm
+

1
qmKL

(3)
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ln
(
qe

)
= ln(KF) +

1
n

ln(Ce) (4)

where Ce is the equilibrium concentration of MB in the solution (mg L−1), qm (mg g−1) is the theoretical
maximum adsorption capacity of the adsorbent, and KL (L mg−1) is the constant of the Langmuir
model; KF (mg g−1) is the isotherm constant and 1/n is the dimensionless adsorption intensity of the
Freundlich model.

The dimensionless constant regarding the favorableness of the adsorption, also known as the
separation factor or equilibrium parameter (RL), can be determined using the Langmuir isotherm and
represented in Equation (5):

RL =
1

1 + KLCo
(5)

The RL value suggests that the adsorption process to be irreversible if RL = 0, favorable if 0 < RL < 1,
linear if RL = 1, and unfavorable if RL > 1 [4].

The Redlich–Peterson isotherm, an empirical three-parameter model, is a combination of the
elements from both Langmuir and Freundlich isotherms. Thus, this isotherm model is practicable for
either homogenous or heterogeneous adsorption systems. The Redlich-Peterson isotherm model is
defined by the following non-linear expression in Equation (6):

qe =
KrpCe

1 + αrpCβ
e

(6)

where Krp (L g−1) and αrp (L mg−1) are the Redlich-Peterson constants and β is the dimensionless
exponent ranging between 0 and 1. The above equation becomes the Langmuir isotherm if β = 1, while
it is reduced to the Freundlich isotherm if β = 0.

The convenience of these three models to describe the kinetic data was confirmed by calculating
the normalized standard deviation (∆qe (%)) given in Equation (7):

∆qe = 100

√√∑[(
qe,exp − qe,cal

)
/qe,exp

]2

n− 1
(7)

where qe,exp (mg g−1) is the experimental adsorption capacity of the hydrogels, qe,cal (mg g−1) is the
calculated adsorption capacity by the isotherm model, and n is the number of experiments.

2.7. Adsorption Thermodynamics

Throughout the adsorption process, the mechanism and feasibility of the adsorption process
are dominated by the variations in the thermodynamic parameters including standard free Gibbs
energy (∆G◦), the standard enthalpy change (∆H◦), and the standard entropy change (∆S◦). These
thermodynamic parameters are computed using the Van’t Hoff equations Equations (8) and (9) [60]:

ln(KD) = −
∆H◦

R
1
T

+
∆S◦

R
(8)

∆G◦ = ∆H◦ − T∆S◦ (9)

where KD is the thermodynamic equilibrium constant which is calculated by plotting ln(qe/Ce) against
qe where qe is extrapolated to zero [7,61]; R is the universal gas constant (8.314 J K−1 moL−1); T is the
absolute temperature. The thermodynamic parameters ∆H◦ and ∆S◦ are calculated by plotting ln(KD)
against 1/T.
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3. Results and Discussion

3.1. Characterization of PVPA-BMEP Hydrogels

3.1.1. Fourier Transform Infrared (FT-IR) Spectra

The FT-IR spectra of MB and PVPA-BMEP hydrogels with 5 and 40% of BMEP fractions before and
after MB adsorption are represented in Figure 2a. The characteristic broad peak appearing between
1000 and 900 cm−1 can be assigned to the (P-O)-H stretching of phosphonic acid groups of the PVPA.
The peak at 1155 cm−1 is ascribed to the P-O stretching of BMEP and becomes more intense with
increasing BMEP fraction in the matrix. The absorption band at 1404 cm−1 is assigned to the stretching
vibration of C=O in BMEP. The phosphonic acid group gives additional broad band in the region of
1620 cm−1. The carboxyl group (C=O) stretching is clearly seen at 1725 cm−1, which becomes more
intense as the fraction of BMEP in hydrogel increases [62]. The narrow and weak bands at 2880 cm−1

and 2950 cm−1 are due to the CH2 stretching vibrations in methyl and methylene groups of BMEP.
The broadening peak within 3300–2000 cm−1 is attributed to hydrogen bonding network formation
among phosphonic acid groups [63]. These results confirm that the crosslinking of the PVPA with
BMEP was successfully performed to produce PVPA-BMEP hydrogels. After MB adsorption onto the
hydrogels, the characteristic twin bands between 1000–900 cm−1 due to the stretching vibrations of the
P-OH group were masked by MB peaks. The band at 1155 cm−1 (P-O) and the broad peak centered at
1620 cm−1 (phosphonic acid group) disappeared after MB adsorption [64]. It is also evident that the
intensities of the peaks at 1404 cm−1 (C=O) and 1725 cm−1 (C=O) decreased after the adsorption [50].
The main distinction of MB FTIR spectra is the presence of a broad and intense band between the region
3100–3600 cm−1 due to the vibrations of OH groups bonded with nitrogen atoms of the MB heterocycle
and nitrogen atoms of the unsaturated (CH3)2 group. In addition to this, MB shows major spectral
absorptions at 1595 cm−1 (for C=C and C=N bonds), 1330 cm−1 (for N-(CH3)2), and 1130 cm−1 (for
C–N bonds) [24,34,65]. The appearance of these distinct MB bands on hydrogels after the adsorption
confirms the effective MB adsorption by hydrogels. The distinct MB peaks become more intense as the
BMEP content in the hydrogels increases. This efficient interaction could be clarified by the electrostatic
attraction between MB molecules and deprotonated phosphonic acid units. It is well known that
phosphonic acid has capability to deprotonate to form P-O-ions which attract cationic MB molecules to
form a complex throughout the hydrogel matrix.Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 24 
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3.1.2. Thermogravimetric Analysis (TGA) Study

Figure 2b depicts the TGA curves of PVPA-BMEP hydrogels. The hydrogels indicate similar
three-step weight loss pattern within the temperature range of measurement. In the first step, a slight
weight loss is observed for all hydrogels up to 100 ◦C, which is attributed to the loss of absorbed
humidity. Beyond this point, the weight loss rate of hydrogels becomes faster up to 320 ◦C due to the
loss of free water and further condensation reactions among phosphonic acid groups in the polymer
matrix. Then, this step is followed by the degradation of the whole cross-linked material above 450 ◦C.
The TGA results conclude that (i) thermal stabilities of the hydrogels are enhanced by increasing
the BMEP fraction and (ii) all hydrogels have promising thermal stabilities for the dye adsorption
applications. Besides these, the thermal stability of PVPA-BMEP (40%) hydrogel has been found to be
superior to others up to 250 ◦C.

3.1.3. Scanning Electron Microscope (SEM) Images

SEM images of PVPA-BMEP (5%) and PVPA-BMEP (40%) hydrogels before and after MB adsorption
are illustrated in Figure 3. Figure 3a shows the SEM image of PVPA-BMEP (5%) hydrogel with a
smooth surface morphology bearing bright domains on the crosslinked polymer. A similar structure
can be observed for PVPA-BMEP (40%) hydrogel (Figure 3c). However, it is evident that the surface
roughness of PVPA-BMEP (40%) is more than that of PVPA-BMEP (5%), which could be described by
the existence of higher crosslinker fraction in PVPA-BMEP (40%) that affected the surface morphology.
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Figure 3. Scanning electron microscope (SEM) images of hydrogels: (a): PVPA-BMEP (5%),
(b): PVPA-BMEP (5%) after MB adsorption, (c): PVPA-BMEP (40%), and (d): PVPA-BMEP (40%)
after MB adsorption. Red arrows: MB molecules.

After MB adsorption, the surface roughness of each hydrogel becomes apparent with certain
porosity where the MB absorption is more feasible (Figure 3b,d). Additionally, the surface roughness
and surface coverage by MB molecules (red arrows in Figure 3b,d) identified for the PVPA-BMEP
(40%) hydrogel are considerably higher than those of PVPA-BMEP (5%). This result could lead to
enhanced MB adsorption capacity for the hydrogels as the BMEP fraction increases.
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3.1.4. Transmission Electron Microscope (TEM) Images

TEM images of PVPA-BMEP (5%) and PVPA-BMEP (40%) hydrogels are illustrated in Figure 4. It
is evident that there is not a significant change in the morphology of PVPA-BMEP (5%), which could be
described by a homogeneous character of the final material with low porosity and mere aggregation. In
the meantime, PVPA-BMEP (40%) hydrogel comprising the highest BMEP fraction exhibited spherical
agglomerations and numerous cross-linked polymeric particles with a diameter ranging between
50–100 nm. This behavior could explain more efficient MB adsorption of PVPA-BMEP (40%) where the
particles have bigger surface area to interact with more MB molecules. These findings are in a good
agreement with the BET results where the surface area of the PVPA-BMEP (40%) hydrogel (10.2 m2 g−1)
is bigger compared to that of PVPA-BMEP (5%) hydrogel (7.17 m2 g−1).
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3.2. Effect of Adsorption Parameters

3.2.1. Initial Solution pH

Solution pH is one of the most significant factors governing the dye adsorption process due to
its substantial effects on the ionization and electrical charge of functional groups on the adsorbent
surface [4,25,33,34]. The effect of the initial solution pH on the MB removal efficiencies of hydrogels
was studied within the pH range between 2 and 12 (Figure 5a). Other parameters such as hydrogel
mass, contact time, initial MB concentration, and temperature were kept constant at 25 mg, 180 min,
100 mg L−1, and 25 ◦C, respectively. Figure 5a indicates that MB removal capacities of hydrogels show
similar behavior against the initial solution pH. The MB removal by hydrogels represents an important
increasing pattern up to the pH value of 6, and then it remained almost constant with further pH increase
up to 10. The MB removal efficiencies of hydrogels decreased about 11% when the initial solution
pH = 12. The lowest MB removal rates of the PVPA-BMEP (5%), PVPA-BMEP (10%), PVPA-BMEP
(20%), and PVPA-BMEP (40%) hydrogels were found to be 55, 64, 73, and 79%, respectively, at the
initial solution pH value of 2. On the other hand, PVPA-BMEP (5%), PVPA-BMEP (10%), PVPA-BMEP
(20%), and PVPA-BMEP (40%) hydrogels indicated their highest removal efficiencies as 92%, 96%, 97%,
and 98%, respectively, at pH = 7.

In order to explain this behavior, the difference between the initial solution pH and the final
solution pH after MB adsorption (∆pH = pHfinal − pHinitial) was plotted against the initial solution
pH (Supplementary Figure S1). The point where ∆pH = 0 was considered to be the pH at the point
of zero charge (pHPZC) [21,61,66]. The electrical charge density of an adsorbent’s surface is assumed
to be zero at pHPZC value. Zeta potential values of PVPA-BMEP (40%) hydrogel were also depicted
against the initial solution pH (Figure S1). The pHPZC value of PVPA-BMEP (40%) hydrogel was
found to be 3 by using both methods mentioned above. When the solution pH < pHPZC, the electrical
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charge of hydrogel becomes positive due to the protonation of phosphonic acid functional groups on
the adsorbent surface. Thus, hydrogels start to repulse the cationic MB molecules. Meanwhile, MB
molecules compete with the high concentration of hydrogen ions for the available adsorption sites on
the hydrogels. These two mechanisms could explain the poor MB removal capacity of hydrogels at
lower pH values. On the other hand, the surface of the hydrogels holds negatively charged binding
sites because of the deprotonation of surface functional groups when the solution pH > pHPZC. Hereby,
a strong electrostatic interaction between cationic MB molecules and anionic hydrogels could be
ensured. For this reason, MB removal efficiencies of the hydrogels significantly enhanced up to pH 10.
The further pH increase considerably weakened the MB removal due to the: (i) limited movement
of MB molecules shielded by abundant OH- to the hydrogels, and (ii) neutralization of cationic MB
molecules with plenty of present OH- in the solution [33,66–68].
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Based on these results, pH value of 7 was determined as the optimal initial solution pH and, it
was applied for further experiments. Most of the previous studies also reported the optimal pH value
as 7 for MB adsorption by various types of hydrogels such as chitosan-g-poly (acrylic acid)/vermiculite
composite [69], gum Ghatti and acrylic acid-based biodegradable hydrogels [70], sodium alginate-based
organic/inorganic superabsorbent composites [71], poly(acrylic acid-co- vinylphosphonic acid) hydrogel
cross-linked with N-maleyl chitosan [50], and natural clay mineral [3]. In conclusion, the results
obtained from the effect of solution pH on MB removal studies revealed that the MB removal
efficiencies of the hydrogels are significantly dependent on the solution pH. The physical adsorption
via electrostatic interaction is probably the most important mechanism that controls the adsorption
capacities of the hydrogels.

3.2.2. Adsorbent Dose

The effect of adsorbent dose on the MB adsorption was studied by implementing various amounts
of hydrogels ranging from 5 to 100 mg at an initial MB concentration of 250 mg L−1 and temperature
of 25 ◦C for 3 h of contact time. It is evident from Figure 5b that the increase in doses from 5 to
25 mg significantly improves the MB removal efficiencies of all hydrogels. This could be explained
by that the availability of the surface area and adsorption sites of the adsorbent and dye-adsorbent
interactions are enhanced by increasing the adsorbent dose. On the other hand, the further increase
in adsorbent dosage slightly improves the MB removal, suggesting the unsaturated adsorption sites
through the adsorption process. The MB removal efficiencies of PVPA-BMEP (5%), PVPA-BMEP (10%),
PVPA-BMEP (20%), and PVPA-BMEP (40%) against increasing dose indicate similar patterns and reach
90.8%, 95.2%, 96.6%, and 97.3%, and respectively at 25 mg of dosage. These results also point to the fact
that increasing the BMEP fraction enhances MB removal efficiency most probably due to the increased
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number of phosphonic acid functional groups on the surface of the hydrogel. It is worth mentioning
that increasing the adsorbent dose from 25 mg to 100 mg improves the MB removal efficiency only by
1.6%, which may not be a cost-effective and environmentally friendly approach. Therefore, 25 mg of
adsorbent amount was selected as the optimal dose and implemented in further experiments.

3.2.3. Contact Time

The MB removal efficiencies by PVPA-BMEP hydrogels at the contact times throughout 10 and
180 min at three levels of initial MB concentrations (100, 500, and 1500 mg L−1) were investigated and
depicted in Figure 6a–c, respectively. The results for initial MB concentrations of 100 and 500 mg L−1

reveal that MB removal efficiencies of all hydrogels are quite fast within the first 30 min of contact
time and do not significantly improve with further increase in contact time. On the other hand, the
hydrogels reach the adsorption equilibrium at 60 min of contact time for initial MB concentration of
1500 mg L−1. Thus, the optimal contact time was chosen as 60 min for the following experiments. The
instantaneous MB adsorption behaviors of the hydrogels could be attributed to the fast diffusion of
MB molecules at high concertation gradient and available active adsorption sites of the hydrogels.
Following this, the decrease in the number of adsorption sites of the hydrogels due to the saturation
and MB concentration in the solution results in lower adsorption rates. It can also be concluded from
Figure 6 that the hydrogels with lower BMEP fractions (5% and 10%) provide faster MB removal
until the equilibrium time while MB adsorption performances of hydrogels at adsorption equilibrium
improve as their BMEP fractions increase (20% and 40%). PVPA-BMEP (40%) hydrogel indicated the
best MB removal efficiencies of 97.7%, 96.5%, and 93.2% for initial MB concentrations of 100, 500, and
1500 mg L−1, respectively.Nanomaterials 2019, 9, x FOR PEER REVIEW 12 of 24 

 

 
Figure 6. Effect of contact time (a–c) and initial MB concentration (d) on MB adsorption. 

3.3. Adsorption Kinetics 

Adsorption kinetic studies were thoroughly investigated at three levels of C0 (100, 500, and 1500 
mg L−1), contact times from 10 to 180 min, and temperature of 25 °C. The kinetic parameters and the 
coefficient of determination (R2) values of PFO, PSO, IPD, and Elovich models were calculated by 
using the equations, and the plot types listed in Table 1 and the results are represented in Table 2 
accordingly. The linear fits of kinetic models to the experimental data for C0 = 100 mg L−1 are shown 
in Figure 7. Table 2 reveals that, in all cases, the experimental data fit best to PSO kinetic model (R2avg 
= 0.997 ± 0.005) then followed by PFO (R2avg = 0.858 ± 0.066), Elovich (R2avg = 0.792 ± 0.075), and IPD 
(R2avg = 0.636 ± 0.091) kinetic models, respectively. In addition to this, the calculated qe values of the 
PSO model are quite closer to the experimental qe values than those of other kinetic models. These 
results estimated by using kinetic models might be an indication that MB adsorption onto hydrogels 
is possibly governed by chemisorption, comprising exchanging or sharing of electrons between the 
MB cations and surface phosphonic acid functional groups of the hydrogels [28,52,73]. 

The IPD model was further employed to examine the kinetic data in order to specify whether 
IPD is the rate-limiting step in the MB adsorption on the hydrogels. Figure 7c indicates multilinear 
plots of the IPD process of MB adsorption onto hydrogels, suggesting that the adsorption process 
follows two distinct stages. The kd, C, and R2 values of IPD model for these two stages of MB 
adsorption onto hydrogels could be found in Supplementary Table S1. The first linear region is 
ascribed to the external diffusion, where MB molecules quickly diffuse from solution to the exterior 
surface of hydrogels. The second linear region is commonly linked to the IPD stage if an adsorbent 
has a rough surface and available pores with active adsorption sites [21,61,74,75]. The slopes of the 
linear plots (kd1 values) of the first region are substantially higher than kd2 values of the second 
region for all hydrogels at each C0 level, explaining that surface adsorption is the dominating 
mechanism rather than the IPD. The highest kd1 values accompanied by lowest C1 values for the 
hydrogels with 20% and 40% BMEP fractions points out that these hydrogels have more adequate 
adsorption sites and surface area. Consequently, IPD is not the rate-limiting step since the values of 

Figure 6. Effect of contact time (a–c) and initial MB concentration (d) on MB adsorption.



Nanomaterials 2020, 10, 131 12 of 23

3.2.4. Initial Dye Concentration

Figure 6d shows the effect of initial MB concentration ranging from 100 to 1500 mg L−1 on the
equilibrium adsorption capacities of the hydrogels. Obviously, the qe value of each hydrogel linearly
increases when the initial MB concentration is increased, suggesting that the initial MB concentration
dominates the adsorption process. This could be linked to (i) higher driving force at elevated MB
concentration to cope with the mass transfer resistance of MB [26,72]; (ii) enhanced interaction between
MB molecules and hydrogels [28]; (iii) availability of more functional sites on surface of hydrogels
and surface roughness, as confirmed from FT-IR and SEM characterization results. Besides these,
the slopes of the curves for qe against C0 (Figure 6d) start to gradually decrease when C0 value
increases. In particular, the declines in the slopes become more notable as the BMEP fraction of
the hydrogel decrease. These adsorption capacity tendencies of the hydrogels are supported by the
results shown in Figure 6a–c where the MB removal efficiencies of hydrogels decrease as the C0 value
increases. This could be a result of the initiation of the available binding sites on the hydrogel’s surface
for saturation [73]. It was found that qe values of PVPA-BMEP (20%) and PVPA-BMEP (40%) are
higher than those of hydrogels with lower BMEP fractions and their qe values improve from 195.1 to
2766 mg g−1 and from 195.4 and 2805 mg g−1, respectively, as C0 increases from 100 to 1500 mg L−1.

3.3. Adsorption Kinetics

Adsorption kinetic studies were thoroughly investigated at three levels of C0 (100, 500, and
1500 mg L−1), contact times from 10 to 180 min, and temperature of 25 ◦C. The kinetic parameters and
the coefficient of determination (R2) values of PFO, PSO, IPD, and Elovich models were calculated
by using the equations, and the plot types listed in Table 1 and the results are represented in Table 2
accordingly. The linear fits of kinetic models to the experimental data for C0 = 100 mg L−1 are shown
in Figure 7. Table 2 reveals that, in all cases, the experimental data fit best to PSO kinetic model
(R2

avg = 0.997 ± 0.005) then followed by PFO (R2
avg = 0.858 ± 0.066), Elovich (R2

avg = 0.792 ± 0.075),
and IPD (R2

avg = 0.636 ± 0.091) kinetic models, respectively. In addition to this, the calculated qe

values of the PSO model are quite closer to the experimental qe values than those of other kinetic
models. These results estimated by using kinetic models might be an indication that MB adsorption
onto hydrogels is possibly governed by chemisorption, comprising exchanging or sharing of electrons
between the MB cations and surface phosphonic acid functional groups of the hydrogels [28,52,73].

The IPD model was further employed to examine the kinetic data in order to specify whether IPD
is the rate-limiting step in the MB adsorption on the hydrogels. Figure 7c indicates multilinear plots of
the IPD process of MB adsorption onto hydrogels, suggesting that the adsorption process follows two
distinct stages. The kd, C, and R2 values of IPD model for these two stages of MB adsorption onto
hydrogels could be found in Supplementary Table S1. The first linear region is ascribed to the external
diffusion, where MB molecules quickly diffuse from solution to the exterior surface of hydrogels. The
second linear region is commonly linked to the IPD stage if an adsorbent has a rough surface and
available pores with active adsorption sites [21,61,74,75]. The slopes of the linear plots (kd1 values) of
the first region are substantially higher than kd2 values of the second region for all hydrogels at each C0

level, explaining that surface adsorption is the dominating mechanism rather than the IPD. The highest
kd1 values accompanied by lowest C1 values for the hydrogels with 20% and 40% BMEP fractions
points out that these hydrogels have more adequate adsorption sites and surface area. Consequently,
IPD is not the rate-limiting step since the values of C, C1, and C2, representing the intercept of the
linear plot or the thickness of boundary layer, are not equal to zero for all hydrogels at each C0 level
(Table 2 and Table S1).

The Elovich model’s principle assumes that the removal of adsorbate from a solution ensues
from chemical adsorption on an energetically heterogeneous surface of an adsorbent [21,75]. It
can be concluded from Table 2 and Figure 7d that the Elovich model is not able to predict the
experimental adsorption data well since the R2 values varies between 0.699 (for PVPA-BMEP (20%) at
C0 = 500 mg L−1) and 0.924 (for PVPA-BMEP (5%) at C0 = 1500 mg L−1) with an average R2 value of
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0.792 ± 0.075 for the whole kinetic data. On the other hand, R2 values have an increasing trend as the C0

values increases, resulting in improvement in the model’s fitting performance. Moreover, a remarkable
decline in both α and β values for all hydrogels resulting from the increase in the C0 values could be
attributed to desorption and possibly represent irreversible MB adsorption onto hydrogels [21,75].
Hereby, the heterogeneous chemisorption character of the hydrogels at elevated MB concentrations
could be noteworthy, although the entire kinetic dataset does not agree well with the Elovich model.
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3.4. Adsorption Isotherms

The theoretical maximum adsorption capacity of the adsorbent (qm) and the constant of the
Langmuir model (KL) were calculated from the plot Ce/qe against Ce while the isotherm constant (KF)
and the dimensionless adsorption intensity (1/n) of the Freundlich model were calculated from the plot
ln(qe) against ln(Ce). The Krp, αrp, and β parameters of the Redlich–Peterson model were calculated by
using the non-linear regression method of the Solver tool in Microsoft Excel software. Table 3 shows
the calculated parameters of the isotherms and their respective R2 and ∆qe values. The adsorption
isotherms of MB on the hydrogels at initial MB concentrations varying between 100 and 1500 mg L−1

are depicted in Figure 8.
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Table 2. Parameters of kinetic models for MB adsorption on PVPA-BMEP hydrogels.

Adsorbent C0 qe,exp
Pseudo First-Order Pseudo Second-Order Intraparticle Diffusion Elovich

qe,cal k1 R2 qe,cal k2 × 10−3 R2 kd C R2 α β × 10−3 R2

PVPA-BMEP (5%)
100 184 16.3 0.055 0.821 185 5.72 0.999 1.48 168 0.607 1.39 × 1012 168 0.758
500 899 101 0.043 0.852 909 0.877 0.999 8.90 799 0.667 2.73 × 1010 28.0 0.822

1500 2562 1407 0.059 0.990 2632 0.102 0.999 56.2 1915 0.804 2.27 × 105 4.59 0.924

PVPA-BMEP (10%)
100 193 14.4 0.048 0.793 192 5.63 0.999 1.66 175 0.552 1.10 × 1011 146 0.723
500 934 118 0.045 0.853 943 0.764 0.999 10.1 820 0.675 3.65 × 109 24.7 0.830

1500 2673 792 0.052 0.844 2703 0.114 0.999 56.1 2036 0.751 3.66 × 105 4.56 0.878

PVPA-BMEP (20%)
100 197 21.3 0.035 0.797 200 3.29 0.999 2.49 169 0.570 2.04 × 107 97.5 0.741
500 958 252 0.053 0.882 980 0.325 0.999 23.4 702 0.523 1.75 × 104 10.2 0.699

1500 2766 2405 0.058 0.971 2941 0.034 0.998 131 1285 0.724 9.24 × 102 1.92 0.871

PVPA-BMEP (40%)
100 197 42.4 0.060 0.878 200 2.03 0.999 3.90 154 0.543 3.10 × 104 62.0 0.711
500 966 282 0.058 0.750 1010 0.162 0.997 36.4 568 0.529 8.83 × 102 6.60 0.702

1500 2805 2753 0.063 0.869 3226 0.016 0.982 177 827 0.688 3.35 × 102 1.41 0.847

Table 3. Parameters, ∆qe, and R2 values of the isotherm models for MB adsorption on PVPA-BMEP hydrogels.

Adsorbent
Langmuir Freundlich Redlich-Peterson

qm kL × 10−3 ∆qe R2 kF 1/n ∆qe R2 krp αrp × 10−3 β ∆qe R2

PVPA-BMEP (5%) 2593 5.24 2.66 0.998 40.4 0.769 9.66 0.992 22.7 5.91 0.966 2.33 0.999
PVPA-BMEP (10%) 2724 11.1 3.15 0.997 76.0 0.721 11.3 0.989 45.2 10.3 0.980 3.31 0.992
PVPA-BMEP (20%) 2787 16.0 1.85 0.999 98.0 0.716 15.2 0.981 65.6 24.5 0.906 2.50 0.997
PVPA-BMEP (40%) 2841 19.2 2.45 0.998 116 0.710 12.3 0.987 85.9 35.4 0.888 0.32 0.999
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Figure 8. The adsorption isotherms of MB on (a): PVPA-BMEP (5%), (b): PVPA-BMEP (10%), (c):
PVPA-BMEP (20%), and (d): PVPA-BMEP (40%).

The R2 values of Langmuir, Freundlich, and Redlich–Peterson isotherm models reveal that each
model describes the experimental data well (R2

≥ 0.981). However, the Langmuir and Redlich–Peterson
isotherm models fit the experimental data better, considering the higher R2 (≥0.992) and lower ∆qe

values (≤3.31%). The MB adsorption onto PVPA-BMEP (10%) and PVPA-BMEP (20%) hydrogels are
described best by Langmuir model while Redlich–Peterson model explains the experimental data of
the PVPA-BMEP (5%) and PVPA-BMEP (40%) hydrogels quite well, on the basis of the highest R2 and
the lowest ∆qe values.

The Langmuir model results specify that increasing BMEP fraction in the hydrogels results in higher
qm values. The highest qm and KL values were calculated to be 2841 mg g−1 and 19.2 × 10−3 L mg−1,
respectively, for the PVPA-BMEP (40%) hydrogel because of the enhanced functionalities and pathways
of the phosphonic acidic groups in its structure. The calculated RL values for hydrogels shown in
Supplementary Figure S2 affirm that the MB adsorption process onto hydrogels is favorable because
all RL values are between 0 and 1. Additionally, the RL values of the hydrogels follow logarithmic
decrement pattern against increasing C0 values, implying that the adsorption is more favorable and
also more irreversible since RL values get closer to zero at higher C0 values. The lower RL values found
for the hydrogels with higher BMEP fractions (20% and 40%) over the whole C0 range further verify
stronger interaction with MB molecules.

The dimensionless adsorption intensity of the Freundlich model, 1/n, can be used to reveal the
favorability of an adsorption process and the surface heterogeneity of an adsorbent. The calculated 1/n
values of all hydrogels varying between 0 and 1 imply that MB molecules are favorably adsorbed by
the hydrogels. This is in good agreement with the results regarding the RL values of the Langmuir
model. The surface heterogeneity is expected to be greater when the value of 1/n gets close to zero. The
surface heterogeneity of the hydrogels slightly increases with increasing BMEP fraction. The 1/n values
of the PVPA-BMEP (5%), PVPA-BMEP (10%), PVPA-BMEP (20%), and PVPA-BMEP (40%) were found
to be 0.769, 0.721, 0.716, and 0.710, respectively. The SEM image of the PVPA-BMEP (40%) (Figure 3c)
corroborates the increased surface heterogeneity due to the highest number of functional phosphonic
acid groups existing on the surface of this hydrogel.
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The Redlich–Peterson model was applied to figure out a compromise between Langmuir and
Freundlich systems. The β values of the hydrogels obtained by the model were close to unity, presenting
that the behaviors of the isotherms are more appropriate for Langmuir than Freundlich isotherm. The
results here acquired by using adsorption isotherm models propose that the MB adsorption process
on the hydrogels’ surface is mainly dominated by the homogeneous monolayer adsorption with the
partial contribution of heterogeneous adsorption.

3.5. Adsorption Thermodynamics

The thermodynamic parameters, including KD, ∆H◦, and ∆S◦, and ∆G◦, were computed by
applying Equations (7) and (8) to the isotherm data obtained at temperatures 299, 308, 318, and 328 K
(Table 4). Accordingly, the thermodynamic parameters were evaluated in order to reveal the impact of
temperature on the MB adsorption onto hydrogels. The plots of ln(KD) against 1/T in Figure 9 resulted
linear lines with R2 values of 0.991, 0.990, 0.989, and 0.989 for PVPA-BMEP (5%), PVPA-BMEP (10%),
PVPA-BMEP (20%), and PVPA-BMEP (40%) hydrogels, respectively. The negative ∆G◦ values of all
hydrogels imply a feasible and spontaneous MB adsorption process. The ∆G◦ value of each hydrogel
increases against increasing temperature from 299 to 328 K, corroborating that qe values of hydrogels
reduce at elevated temperature. Temperature change from 299 to 328 K induces 30.7%, 15.2%, 10.9%,
and 8.6% relative reduction in qe values for PVPA-BMEP (5%), PVPA-BMEP (10%), PVPA-BMEP (20%),
and PVPA-BMEP (40%) hydrogels, respectively. This result suggests that the hydrogels with higher
BMEP fractions (20% and 40%) are more effective on MB adsorption at ambient temperature conditions.
The MB adsorption process on hydrogels is exothermic in nature since ∆H◦ values were found to
be negative. As shown in Table 4, the negative ∆S◦ values signify the reduction in the randomness
of solid/liquid interface through the adsorption process, which could be linked to the homogeneous
adsorption mechanism on the surface of hydrogels previously inferred in Sections “3.3. Adsorption
kinetics” and “3.4. Adsorption isotherms”. The results concluded here are similar to those reported
in the literature for chitosan-g-poly(acrylic acid) hydrogels [52], calcium alginate-bentonite-activated
carbon composite beads [23], bentonite-layered double hydroxide composite [73], starch-NiFe-layered
double hydroxide composites [76], and monolithic graphene oxide gels [77].

Table 4. Thermodynamic parameters of MB adsorption on PVPA-BMEP hydrogels.

Adsorbent T (K) ∆G◦ (kJ moL−1) ∆H◦ (kJ mL−1) ∆S◦ (J mL−1 K−1)

PVPA-BMEP (5%)

299 −7.42

−46.9 −132
308 −6.23
318 −4.91
328 −3.59

PVPA-BMEP (10%)

299 −9.12

−41.6 −109
308 −8.14
318 −7.06
328 −5.97

PVPA-BMEP (20%)

299 −9.94

−40.3 −102
308 −9.03
318 −8.01
328 −6.99

PVPA-BMEP (40%)

299 −10.5

−39.6 −97.3
308 −9.67
318 −8.69
328 −7.72
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3.6. Literature Comparison

The maximum MB adsorption capacities (qm) of hydrogels obtained in this study were compared
to those reported in the literature for phosphonic acid-based adsorbents, environmentally friendly
adsorbents, and highly efficient adsorbents with different compositions and structures (Table 5). The
adsorption isotherms and the adsorption kinetics of the studies listed in Table 5 were described
well by Langmuir and PSO models, respectively. The electrostatic attraction was reported to be the
main mechanism for the adsorption of MB on the adsorbents shown in Table 5. The adsorption
capacities of the adsorbents in Table 5 reached their maximum values in the MB solutions at neutral
pH. The qm values acquired in this study are much higher than those of phosphonic acid-based
adsorbents and environmentally friendly adsorbents, demonstrating qm values within the range of
14–524 mg g−1 [17,48–51,78–80]. The qm values of hydrogels prepared in this study are also higher
than those of adsorbents reported as highly efficient: chitosan-g-poly(acrylic acid) hydrogels improved
with cellulose nanowhiskers (qm = 2074 mg g−1) [52] and sodium alginate-based organic/inorganic
superabsorbent composite hydrogels (qm = 2257 mg g−1) [71]. The qm value of the sodium alginate-based
cross-linked beads reported by Shao, et al. [81] is 4.6% higher than that of PVPA-BMEP (40%) hydrogel.
However, the contact time to reach the qm value of 2977 mg g−1 by those beads is 24 times longer than
that needed for the hydrogels of this study. Such longer contact times usually requires more number
of tanks or larger tanks in case of application in continuous flow wastewater treatment plants with
high flow rates, which may not be economically feasible for MB treatment at an industrial scale. This
comparison suggests that the hydrogels produced in this study can be used as an effective adsorbent
for MB treatment in wastewaters due to their outstanding adsorption capacities and rapid adsorption
contact time compared to those reported in aforementioned studies.

The cost estimation for wastewater treatment is an important factor regarding the economic
feasibility and sustainability of the proposed treatment technology. The water treatment technologies
such as ion exchange, reverse osmosis, electrolysis, and electro-dialysis costs between 10 and
500 US$ per m3 of treated water. The water treatment cost by using adsorption technologies varies
between 5 and 200 US$ per m3 of treated water [82]. On the other hand, it was reported that the
cost of naturally available activated carbon-based adsorbents falls within the range between 0.02
and 20 US$ kg−1 [18,83]. The costs of commercially available activated carbon and the Filtrasorb 400
activated carbon were specified as 2 and 20 US$ kg−1, respectively [1,83]. The MB-bearing wastewater
treatment cost by using the produced hydrogels in this study is about 150 US$ per m3 of treated water.
Even though the estimated cost of the produced hydrogels is within the range as mentioned above
for adsorption technologies, it is higher than those of naturally and commercially available activated
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carbon -based adsorbents. The added value to the produced hydrogels is their superior adsorption
capacity and faster adsorption contact time compared to the previously reported adsorbents used for
MB treatment from wastewaters.

Table 5. Comparison of MB adsorption capacities of different adsorbents.

Adsorbent qm (mg g−1) C0 (mg L−1) te (min) Reference

PVPA nanogels 14 30 5 [49]

Brown macroalga (N. zanardinii) 35 200 120 [80]

Activated lignin-chitosan extruded blends 36 80 180 [17]

Poly(acrylic acid-co-VPA) hydrogel
cross-linked with N-maleyl chitosan 67 50 100 [50]

Chemically modified pine nut shells in
single and binary systems 137 200 90 [79]

Arginine modified activated carbon 220 250 120 [78]

PVPA-co-triethyleneglycol dimethacrylate 417 2100 360 [51]

Phosphonic acid functionalized
benzene-bridged periodic
mesoporous organosilicas

524 600 320 [48]

Chitosan-g-poly(acrylic acid) hydrogels
improved with cellulose nanowhiskers 2074 2000 60 [52]

Sodium alginate-based organic/inorganic
superabsorbent composite hydrogel 2257 600 400 [71]

Sodium alginate-based cross-linked beads 2977 160 1500 [81]

PVPA-BMEP (5%) 2593

1500 60 This studyPVPA-BMEP (10%) 2724
PVPA-BMEP (20%) 2787
PVPA-BMEP (40%) 2841

4. Conclusions

Our motivation to initiate this research was to design and fabricate unique polymer hydrogels with
outstanding dye adsorption capacities and fast adsorbate/adsorbent contact time for the management of
environmental colored pollutants arising from dye-bearing wastewaters. To achieve this, the crosslinker
bis[2-(methacryloyloxy)ethyl] phosphate was used in the synthesis of PVPA hydrogels adsorbent
via free-radical polymerization of VPA. The FT-IR, TGA, and SEM results revealed that increasing
BMEP fraction in the crosslinked PVPA-BMEP hydrogels leads to improvements in: (i) functionalities
and pathways of the phosphonic acidic functional groups in the structure of hydrogels, (ii) thermal
stabilities of hydrogels up to 250 ◦C, and (iii) interaction between MB molecules and hydrogels. The
initial solution pH was found to be a significant parameter acting on the MB adsorption which was
maximized at the neutral pH band, implying that the more available negatively charged functional
groups on the surface of the hydrogels enhanced the electrostatic attraction between MB molecules
and hydrogels. The experimental data obtained from batch adsorption experiments for MB removal
fit best to the PSO kinetic model. The results of isotherm models implied that the behaviors of the
isotherms are more appropriate for the Langmuir than the Freundlich isotherm for the experimental
data. The highest monolayer adsorption capacity was found to be 2841 mg g−1 for the PVPA-BMEP
(40%) hydrogel since it has more abundant phosphonic acidic functional groups in its structure. The
thermodynamic studies indicated that the MB adsorption process on the hydrogels is spontaneous and
exothermic in nature. The PVPA-BMEP (40%) hydrogel was found to be superior to the previously
reported phosphonic acid-based adsorbents and highly efficient adsorbents with different compositions
due to its outstanding adsorption capacity and fast adsorption equilibrium time. All these results rank
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the PVPA-BMEP hydrogels as a promising adsorbent for an efficient treatment of industrial dyes in
wastewaters. The future work of this study is to enhance the produced adsorbent material regarding
its cost, reusability, and biodegradability.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/1/131/s1,
Figure S1: Zeta potential and ∆pH plots of PVPA-BMEP (40%) hydrogel at different pHinitial values., Figure S2:
The change in RL value of each hydrogel within the studied C0 range., Table S1: Parameters and R2 values of
two-step linear plots of IPD model.
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