
insects

Article

Feed and Host Genetics Drive Microbiome Diversity with
Resultant Consequences for Production Traits in Mass-Reared
Black Soldier Fly (Hermetia illucens) Larvae

Matthew P. Greenwood 1, Kelvin L. Hull 1 , Marissa Brink-Hull 1, Melissa Lloyd 2 and Clint Rhode 1,*

����������
�������

Citation: Greenwood, M.P.; Hull,

K.L.; Brink-Hull, M.; Lloyd, M.;

Rhode, C. Feed and Host Genetics

Drive Microbiome Diversity with

Resultant Consequences for

Production Traits in Mass-Reared

Black Soldier Fly (Hermetia illucens)

Larvae. Insects 2021, 12, 1082.

https://doi.org/10.3390/

insects12121082

Academic Editor: Bessem Chouaia

Received: 2 October 2021

Accepted: 29 November 2021

Published: 1 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
19395787@sun.ac.za (M.P.G.); 17507537@sun.ac.za (K.L.H.); marissa.brink-hull@uct.ac.za (M.B.-H.)

2 Insect Technology Group Holdings UK Ltd., 1 Farnham Road, Guildford, Surrey GU2 4RG, UK;
melissalloyd1993@gmail.com

* Correspondence: clintr@sun.ac.za

Simple Summary: The development of edible insect farming is crucial for meeting agricultural
sustainability goals in the face of growing food demands, ongoing depletion of natural resources,
and global climate change. The black soldier fly is considered a promising candidate insect for
cultivation, with the larvae of this species being capable of converting agri-waste materials into
valuable products that can be used as alternatives to conventional, environmentally detrimental
animal feedstuffs, such as processed soy and fish commodities. The biodegradative performance of
this species is underscored by the activity of intestinal microorganisms, suggesting that knowledge
of larval microbial diversity may be valuable for ensuring sustainability and continual improvement
of commercial black soldier fly colonies. In this study, the factors that shape the identity and function
of larval gut microbial populations were evaluated. It was determined that both host genetics and
diet alter the diversity and metabolic potential of intestinal bacteria, with potential downstream
effects on economically important larval rearing traits. Therefore, the findings of this study provide a
foundation for expanding and exploiting knowledge of the interactions between black soldier flies
and their resident microbial communities for optimisation of insect farming practices.

Abstract: Mass rearing the black soldier fly, Hermetia illucens, for waste bioremediation and valori-
sation is gaining traction on a global scale. While the health and productivity of this species are
underpinned by associations with microbial taxa, little is known about the factors that govern gut
microbiome assembly, function, and contributions towards host phenotypic development in actively
feeding larvae. In the present study, a 16S rDNA gene sequencing approach applied to a study
system incorporating both feed substrate and genetic variation is used to address this knowledge
gap. It is determined that the alpha diversity of larval gut bacterial communities is driven primarily
by features of the larval feed substrate, including the diversity of exogenous bacterial populations.
Microbiome beta diversity, however, demonstrated patterns of differentiation consistent with an influ-
ence of diet, larval genetic background, and a potential interaction between these factors. Moreover,
evidence for an association between microbiome structure and the rate of larval fat accumulation
was uncovered. Taxonomic enrichment analysis and clustering of putative functional gut profiles
further suggested that feed-dependent turnover in microbiome communities is most likely to impact
larval characteristics. Taken together, these findings indicate that host–microbiome interactions in
this species are complex yet relevant to larval trait emergence.

Keywords: microbiome dynamics; black soldier fly; 16S rDNA; next-generation sequencing; mass-
rearing; complex trait
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1. Introduction

Insect mass rearing has recently gained traction as an alternative stream for the pro-
duction of animal feeds and human food. The emergence of this industry responds to
a global need to improve sustainability of food systems, while concurrently addressing
the rising food demand thresholds of an increasingly large and affluent human popula-
tion [1]. This particularly affects protein generation systems, where meeting ambitious
expansion milestones for livestock, aquaculture, and fishery sectors is challenged by limited
resource availability, excessive wastage, and disconcerting future environmental impact
projections [2–5]. In this regard, the rearing of insects affords many opportunities for
navigating obstacles that hinder growth of contemporary protein production systems,
including greater feed conversion rates, improved spatial efficiency, and a diminished
carbon footprint in comparison with many classical livestock species [6,7].

The black soldier fly (BSF), Hermetia illucens (Linnaeus, 1758), is a prominent candidate
for insect mass rearing [8,9]. The larvae of this species are remarkable degraders of organic
material capable of converting large fractions of their feed substrate into recoverable pro-
tein (e.g., for the production of animal feeds and human food), lipid (e.g., for use in animal
feeds and biofuel production), and chitin (e.g., for the production of textiles, cosmetics
and pharmaceuticals) biomass with vast applications in agricultural and biotechnolog-
ical spheres [10–12]. Additionally, the ability of these larvae to consume contaminated
organic matter from various levels of the food production chain enables the simultaneous
valorisation and bioremediation of waste material within food systems [13–15]. It is, there-
fore, unsurprising that BSF mass-rearing ventures have become increasingly prevalent
in recent years [16], with marked improvements in colony management strategies and
production rates attributable to ongoing elucidation of rearing optima [17–20]. However,
as with livestock sectors, it is likely that continued growth and sustainability of this nascent
industry will rely on the development and integration of advanced molecular technolo-
gies, such as genomic monitoring and selection tools, genetic transformation procedures,
and other next-generation omics data for expediting trait gain and informing managerial
decisions [21–25].

It is broadly acknowledged that the diversity of bacteria, archaea, protists, fungi, and
viruses harboured by animal gastro-intestinal tracts (GITs) makes notable contributions to
host fitness and survivability, primarily through the secretions of enzymes and compounds
that adjust gut metabolic function or modulate immune system responses [26,27]. Con-
sequently, the characterisation and manipulation of intestinal microbiota communities in
mass-reared insects may permit rapid improvement of biomass accumulation rates and
the identification of enzymes with medical, industrial, or other biotechnological signifi-
cance [16]. Nevertheless, the dynamic nature of gut microbial landscape in many insects
may complicate direct implementation of such methodologies, with layered interactions
between host immune factors, resident microbial populations, physicochemical properties
of the gut, intrinsic properties of the feed, and environmental microbial taxa continually
shaping enteric community structure and function [26]. Burgeoning evidence, therefore,
endorses consideration of the microbiome as a complex animal phenotype [28–30]. By
integrating the understanding that other canonical host traits may respond to particular
gut communities in a context-dependent manner [31], it becomes apparent that resolving
the interplay between host genetic and environmental variation in driving gut micro-
biota dynamics may be integral to the holistic description of exploitable microbiome–trait
relationships.

The inability of BSF to develop on sterile feed substrate indicates that digestive
efficiency and growth in this species is dependent on associations with symbiotic mi-
croorganisms [32]. It has further been established that supplementing larval diets with
specific companion bacteria can influence numerous marketable larval traits, including the
efficiency of feed substrate reduction and rates of biomass accumulation [33,34]. Moreover,
previous studies have observed phenotypic divergence in parallel with gut microbial com-
munity differentiation between BSF larvae [35], suggesting that trait emergence is mediated
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by features of the broader larval microbiome. However, these putative microbiome-trait
relationships have yet to be reproduced and contextualised with respect to drivers of gut
microbiome variability that may be relevant to mass-rearing systems. For example, it is
already recognised that the choice of larval diet (i.e., environmental variation) plays a sig-
nificant role in shaping gut microbial communities under both laboratory and mass-rearing
conditions [36]. However, there are substantial discrepancies between studies in terms
of diversity, structure, and identity of larval GIT communities, even when similar feed
substrates are utilised [35–37]. This implies that knowledge regarding the feed-related
abiotic and biotic drivers of microbiome diversity may be incomplete and that additional
deterministic factors could underpin variation in larval gut ecosystems. Given that BSF
colonies reared in different closed systems are also likely to be genetically distinct [38,39],
it is probable that strain-specific genetic features contribute a significant portion of such
between-study disparity in larval microbiome profiles. Therefore, in light of recent sug-
gestions that microbiome-mediated optimisation of BSF rearing stocks is feasible [16], it is
important to characterise the interplay between feed and host genetic background in driv-
ing microbiome assembly and influencing resultant microbiome-phenotype relationships
in BSF larvae.

This study aimed to investigate feed and host genetic background as drivers of BSF
larval gut microbiota diversity and simultaneously resolve potential associations between
microbiome and larval production traits. In order to address this aim, BSF larvae were
reared in a system encompassing both genetic and environmental variation and pheno-
typed for several economically important production traits, such as final mass, fat content,
and protein content. Genetic variation was captured by rearing a recently established
captive cohort (F2 generation; referred to as ‘wild’) in parallel with a longstanding, sepa-
rately domesticated colony (F62 generation; referred to as ‘factory’), while environmental
‘treatments’ were simulated by provision of different industry-relevant feed substrates
across the genetic BSF cohorts in a factorial experimental design. Among the larval dietary
options, a standard grain-based feed (‘Formulated’), a vegetable waste feed (‘Organic’)
and an enriched brewer’s spent grain diet (‘Brewer’s’), together representing a range of
nutritional indices, were utilised. An additional low bioburden feed substrate (‘Sterile’),
generated by autoclaving the Formulated diet, was included as a control for presence of
exogenous bacterial populations in the larval feed substrate. Using a 16S rDNA bacterial
community profiling approach, the BSF larval gut microbiome was investigated under a
complex trait analytical framework. Metagenomic profiles of the feed substrates, and com-
parisons between the Formulated-fed and Sterile-fed groups, were integrated in order to
clarify the importance of feed-derived biotic factors in shaping gut communities. Potential
independent and feed-specific impacts of gut microbiome structure, taxonomic identity,
and inferable function on the development of larval production traits were then assessed.

2. Materials and Methods
2.1. Larval Rearing, Sample Collection, and Gut Excision

All larvae were collected from experimental colonies established and reared under
standard commercial practices at AgriProtein Holdings Ltd. (Cape Town, South Africa).
The recently established captive cohort (F2), sourced from Grahamstown, Western Cape
(33.3106◦ S, 26.5256◦ E), is denoted as the ‘wild’ group. The second genetic background,
termed the ‘factory’ group, is represented by a long-standing colony (F62) originally de-
rived from a BSF population in Durban, KwaZulu-Natal (29.8587◦ S, 31.0218◦ E), and mass
reared under standard commercial conditions. Neonates from both genetic backgrounds
were reared on a high-fibre starter feed (prepared by AgriProtein) for four days prior to
commencement of this study. Experimental diets included a standard grain-based feed, a
mix of brewer’s spent grain and a plant-based sweetener, and a vegetable waste stream,
referred to as Formulated, Brewer’s, and Organic diets, respectively. These feeds were
selected as they represent common dietary options within the BSF mass-rearing indus-
try. Unpublished proximate analysis of crude compound fractions finds that the relative
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(%) protein:fat:carbohydrate levels in the feeds are as follows: Formulated—15.3:2.7:66.8;
Organic—17.6:9.4:45.2; Brewer’s—16.4:9.2:42.7. Additionally, a feed with minimal mi-
crobial contamination was generated by autoclaving the Formulated diet at 121 ◦C for
20 min; this is referred to in the text as the Sterile feed. This diet was intended to serve as a
control for potential influences of feed-borne microbial populations on the dynamics of gut
microbiome assembly.

In a factorial experimental design, 200 four-day old larvae of each genetic cohort
were placed in 105 × 105 × 145 mm rearing vessels with 336 g of each experimental
feed substrate, accounting for a feeding rate of 120 mg/larva/day for each diet without
replacement over the duration of the experiment. Larvae were reared in an incubator
at 30 ◦C and 64% relative humidity. All experimental groups were run in triplicate and
maintained in parallel. In order to ensure the capture of late instar, non-prepupal, larvae,
six white, and actively feeding individuals were sampled from each rearing vessel when
roughly 10–25% of larvae showed prepupal characteristics, as per Bruno et al. [35]. Sampled
larvae were rinsed with 70% ethanol and distilled water to remove excess feed substrate and
then stored individually in 1.5 mL Eppendorf tubes in 100% ethanol at 4 ◦C. Additionally,
feed substrate from each rearing vessel was collected in 15 mL centrifuge tubes and stored
at −80 ◦C.

The remaining larvae were weighed in batches of 30, in triplicate, for the estimation of
average larval weight per experimental group and replicate. Individuals from each experi-
mental group and replicate were then pooled in 15 mL centrifuge tubes and dispatched to
Quantum Analytical Services (Malmesbury, South Africa) for proximate analysis. Briefly,
the nitrogen content of larvae was estimated by using the Dumas method [40], which
relies on detection of N2 gas emissions following sample combustion under oxygen-rich
conditions [41]. Material protein content was then estimated by scaling total nitrogen
content by a factor of 6.25, as is deemed appropriate for insect tissue samples [42]. Crude
larval fat content was gravimetrically analysed by comparing sample weight before and
after a high temperature petroleum extraction [43] performed using the ANKOM XT15
Extractor system.

Larval gut tissue was excised from all collected larvae under standard sterile technique
conditions in a laminar flow cabinet. Whole larvae were washed twice briefly in a 10%
bleach solution, followed by a rinsing with 70% ethanol. Using an aseptic technique,
surgical scissors and tweezers (submerged in 100% ethanol and flame sterilised prior to
use) were used to remove the head and final abdominal tergal plate. Larvae were then
sectioned horizontally along the spiracles with scissors and teased open by using tweezers.
A second pair of tweezers was then used to grip and remove the entire digestive tract
bundle, keeping the foregut, midgut, and hindgut intact while removing the associated fat
body. Removed gut tissue was fixed in 100% ethanol and stored at −20 ◦C prior to DNA
extraction. All excised gut samples were stored for less than 48 h.

2.2. DNA Extraction and NGS Library Preparation

Genomic DNA (gDNA) was extracted from total larval gut samples using the RTP Bac-
teria Mini Kit (Stratec, Birkenfeldcity, Germany) reagents according to the manufacturer’s
instructions. Due to incompatibility with this extraction protocol, feed substrate gDNA
was extracted using the Quick-DNA™ Fecal/Soil Microbe Miniprep Kit (Zymo Research,
Irvine, CA, USA) with a sample input amount of 0.25 g. Sample DNA concentrations
were quantified using fluorometry with the Qubit 1× dsDNA HS assay kit (Thermo Fisher
Scientific, Waltham, MA, USA), and sample purity was assessed on a NanoDrop® ND-1000
(Thermo Fisher Scientific, Waltham, MA, USA). For the larval samples, all six individual
extractions for each experimental group and replicate were normalised to equimolar con-
centrations based on Qubit assay results and pooled equitably, yielding a single composite
larval gDNA sample per experimental replicate. Feed substrate samples were not pooled.
A DNA Extended Range LabChip® (PerkinElmer, Waltham, MA, USA) and Genomic
DNA Reagent Kit (PerkinElmer, Waltham, MA, USA) was used to validate the quality of
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gDNA samples by determination of genomic quality scores on the PerkinElmer LabChip
GXII Touch. Subsequent 16S hypervariable region amplification, library preparation, and
next-generation sequencing (NGS) steps were performed at the Central Analytic Facility
(CAF), Stellenbosch University, to the specifications of the manufacturers of the Ion 16S™
Metagenomics Kit (Thermo Fisher Scientific, Waltham, USA).

The Ion 16S™ Metagenomics Kit (Thermo Fisher Scientific) targets a total of seven
hypervariable regions for parallel amplification over two reactions with distinct primer
sets (V2, V4, and V8 for the first set and V3, V6-7, and V9 for the second set). For each
reaction, 2 µL of gDNA was amplified over 25 cycles, after which the presence of am-
plification products was verified with the X-mark chip and HT DNA NGS 3K Reagent
Kit (PerkinElmer, Waltham, USA) run on the LabChip GXII Touch. Following successful
amplification, products from both primer pools were combined sample wise, purified using
the Agencourt™ AMPure™ XP reagent, eluted to a final volume of 15 µL in nuclease-free
water, and subjected to quantification with the Qubit 1× dsDNA HS assay kit.

Library preparation was performed with the NEXTflex™ DNA-Seq Kit (PerkinElmer,
Waltham, USA) using 100 ng of pooled PCR product from each sample and following man-
ufacturer protocol. PCR products were end-repaired and purified using the Agencourt™
AMPure™ XP reagent. Barcoded libraries were generated by blunt-end ligation of sequenc-
ing adapters and end-repaired PCR products using IonCode™ Barcode Adapter reagents.
The resulting libraries were purified with the Agencourt™ AMPure™ XP reagent. Quan-
tification was then performed by using the Ion Universal Library Quantitation Kit (Thermo
Fisher Scientific) and by qPCR amplification with the StepOnePlus™ Real-time PCR system
(Thermo Fisher Scientific). The LabChip GXII Touch, X-mark chip, and HT DNA NGS
3K Reagent Kit (PerkinElmer) were used to validate library fragment size distribution.
Finalised and barcoded libraries were diluted to a concentration of 10 pM, combined in
equimolar amounts, and subjected to sequencing template preparation using the Ion 510™
& Ion 520™ & Ion 530™ Chef Kit (Thermo Fisher Scientific). High-throughput, massively
parallel sequencing of combined libraries was performed using the Ion S5™ Sequencing
Solutions and Sequencing Reagents Kit on the Ion S5 Gene Studio platform following the
manufacturer’s protocol. Finally, flow space calibration and BaseCaller analyses were
applied in the Torrent Suite Software (version 5.12.0) under default parameters.

2.3. Read Processing, Data Filtering, and Normalisation

Raw reads were processed using the 16S Metagenomics Workflow (version 1.1) im-
plemented in the Ion Reporter™ software (Thermo Fisher Scientific). This pipeline trims
adapter sequences and subsequently filters out low quality (Phred Q < 20), short (<150 bp)
and low abundance (n < 10 in all samples) reads. The automated workflow then clusters
and assigns operational taxonomic units (OTUs) against the proprietary MicroSEQ® 16S
Reference Library (v2013.1) (Thermo Fisher Scientific, Waltham, USA) and open-access
Greengenes (v13.5) databases. Initial OTUs were identified using a minimum read-database
alignment coverage of 90%, after which genus-level clustering and taxonomic assignment
was performed at a similarity threshold of 97%. This procedure was conducted separately
for each of the six sequencing library amplicons, and a consensus result for each identified
OTUs across all regions was returned. In order to assess whether sufficient bacterial diver-
sity was captured by this workflow, rarefaction curve analysis of the output OTU table was
performed in R [44] using the vegan package [45].

The full microbiome dataset was then additionally filtered in the MicrobiomeAnalyst
webtool [46] to remove further OTUs with low-prevalence (<10%) across all samples. This
filtered dataset was used for the calculation of alpha diversity statistics and assessments
of relative taxonomic contributions across experimental groups. In the same software,
trimmed mean of M-values (TMM) normalisation was applied to the filtered dataset to
correct for sparsity and uneven sampling depth without compromising the detectability of
differential features between groups [47]. The subsequent filtered and normalised dataset
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was used for assessments of beta diversity, estimation of linear effect sizes and inference of
group-wise metabolic profiles.

2.4. Gut Microbiome Diversity and Differentiation Analysis

Alpha (within-sample) diversity measures were calculated using the R-based phy-
loseq [48] and vegan packages implemented in MicrobiomeAnalyst. Taxonomic richness was
inferred directly from observed OTU counts, while alpha diversity (as a function of both
taxon richness and abundance) was assessed using both the Shannon–Weaver statistic [49]
and Simpson diversity indices [50]. Homoscedasticity (Levene’s test [51]) and normality
(Shapiro–Wilk’s test [52]) of data were assessed before using analysis of variance (ANOVA;
p < 0.05 significance threshold) to test the influence of feed, larval genetic background and
a potential genetics-by-environment interaction on these richness and diversity estimates.
A Spearman’s rank correlation test was used to assess whether alpha diversity trends in
larval gut samples could be associated with alpha diversity patterns evident in larval feed
substrates.

Beta (between-sample) diversity analyses were conducted in R. The statistical signifi-
cance of group-level microbiome differentiation was assessed by using the vegan package’s
permutational multivariate analysis of variance (PERMANOVA; permutations = 999) [53],
permutational analysis of multivariate dispersion (PERMDISP; permutations = 999) [54],
and analysis of similarities (ANOSIM; permutations = 999) [55] applied to a Bray–Curtis
dissimilarity index derived from the TMM-normalised OTU abundance tables. In order to
determine group comparisons contributing most to the rejections of PERMANOVA Ho, a
pairwise PERMANOVA (permutations = 999) with false discovery rate (FDR) [56] correction
for multiple testing was computed using the RVAideMemoire [57] package. Between-sample
distances were visualised in collapsed ordination space using Non-metric Multidimen-
sional Scaling (NMDS) implemented in vegan.

2.5. Assessment of Core and Enriched Bacterial Genera

Relative (%) abundance tables were constructed in R to assess the distributions of
genus-level taxonomic assignments within each experimental group for the larval metage-
nomic dataset. Genera with abundances lower than 5% in all samples were considered
rare and collectively denoted as ‘Other.’ Putative core genera were identified by applying
stringent selection parameters, i.e., greater than 90% prevalence and 5% mean abundance
across all samples. Linear discriminant analysis of effect size (LEfSe) [58], designed for the
discovery of biologically relevant biomarkers in metagenomic datasets, was applied for
the detection of the top 20 taxonomic features (Kruskal–Wallis p < 0.05; LDA > 2.0) with
association to diet and genetic background grouping variables, respectively. Following
the detection of genera associated with host genetic cohort, PERMANOVA tests excluding
these taxa were performed (as previously described) to determine whether divergence
in larval microbiota profiles by host background was solely described by the differential
abundance of these genera.

2.6. Relationships between Phenotype and Microbiome Data

Collected phenotypic data (final mass, crude fat content, and crude protein content)
were analysed in R. Significance of mean differences in phenotypic measures between exper-
imental groups was assessed using ANOVA (p < 0.05). Multiple linear regression modelling
in base R was then employed to determine the relationship between phenotypic measures
and microbiome data, using the primary and secondary axes of an NMDS (conducted on
Bray–Curtis distance matrices) to represent relative compositional differences between
samples. These models were expanded to include diet and larval genetic background as
covariates, with non-significant features (p > 0.05) being eliminated by a backward selection
procedure. A variance partitioning feature of the vegan package (‘varparts’ function), based
on redundancy analysis (RDA), was then utilised to determine the fraction of phenotypic
variance that could be uniquely and jointly ascribed to dependent variables in the final
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linear models. Univariate Spearman’s tests were used to assess the correlation between the
relative abundance of singular genera and phenotypic measures. Within each test, samples
with zero abundance of the considered taxon were excluded from analysis. Once tests
for all microbiota–trait relationships were complete, p-values were corrected for multiple
testing (FDR correction), and significant relationships were only retained if supported by a
final n > 12 and an FDR-adjusted p < 0.05.

2.7. Inference of Gut Functional Profiles

The metabolic potential of gut samples was inferred by using the automated taxonomy-
to-phenotype mapping capabilities of the METAGENassist software [59], which integrates
information from a custom microbial phenotype database, BAcMap [60], GOLD [61],
and other NCBI-based taxonomic databases to derive and compare functional profiles
of microbial communities. Analyses were conducted using the TMM-normalised larval
microbiome dataset. A heatmap of the relative abundance of metabolic factors between
samples was constructed using the ‘Analyze by phenotype’ option. Within this analysis,
sample rows were organised into an overlaid dendrogram using the Ward clustering
algorithm run on a matrix of pairwise Spearman’s rank correlations. Kruskal–Wallis
rank sum testing with FDR correction for p-values was then applied to identify metabolic
features that show significant differentiation between feed type. Similarly, a Wilcoxon rank
sum test with FDR correction was used to assess the two-group hypothesis of significant
deviation of metabolic profiles in relation to genetic identity of the larval groups.

3. Results
3.1. Read and OTU Processing

A total of 26,887,356 reads were generated across the larvae and feed metagenomic
libraries constructed for this study (Supplementary Tables S1 and S2). Following se-
quence trimming and quality filtering steps, 21,121,943 reads were retained, and a further
14,236,865 reads were matched to entries in the MicroSEQ® and Greengenes databases
(Tables S1 and S2). Of these, 4,941,674 and 4,426,377 sequences were mapped to 123 and 263
bacterial genera for the larvae and feed libraries, respectively (Tables S1 and S2). Rarefaction
curves drawn for both libraries (Supplementary Figure S1) reached saturation, indicating
that sampling depth sufficiently captured community diversity. Additional filtering steps
reduced larvae and feed datasets to 74 and 99 genera, respectively. It should be noted that
the employed mapping procedure recovered the genus Ruminococcus twice, assigned as
both “Ruminococcus” and “[Ruminococcus]”. Exploration of Krona [62] graphics embed-
ded within this pipeline identified the former OTU to belongs to the Ruminococcaceae
family, and the latter to belongs to the Lachnospiraceae family, as is consistent with current
paraphyletic structure of Clostridia [63].

3.2. Measures of Microbial Alpha Diversity

The within-sample diversity of microbiomes can be described by a variety of metrics.
Here, the observed number of different genera within each group is considered as an
indicator of community richness, while the Shannon–Weaver statistic and Simpson index
are employed to probe the total diversity of gut microbiomes as a function of both the
richness and the relative distribution of different taxa in larval guts. Feed substrate is
identified as a substantial driver of within-sample gut microbiota diversity, with signifi-
cant deviation between groups recovered for observable richness (R2

E = 0.613, pE < 0.001)
and Shannon–Weaver (R2

E = 0.517, pE = 0.006) estimates (ANOVA; Figure 1). In general,
Formulated-fed and Sterile-fed larvae are suggested to harbour the most diverse microbial
populations, with higher mean values across these alpha diversity measures (Figure 1).
Correlative tests indicate that patterns of GIT diversity inferred from OTU richness (Spear-
man’s ρ = 0.732, p < 0.001) and Shannon–Weaver estimates (Spearman’s ρ = 0.618, p = 0.002)
are strongly reflective of bacterial diversity within the feed environment (Supplementary
Figure S2). Unlike the Shannon–Weaver statistic, which considers OTU richness and
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evenness as equally important in determining community diversity, the Simpson index
places greater weight on the evenness of taxonomic distributions [64]. As the value of
this index is inversely proportional to community evenness, the high values observed
indicate that larval gut microbiome communities are skewed towards the dominance of a
small number of microbial taxa (Figure 1). Furthermore, by decoupling Simpson diversity
between gut communities and exogenous, feed-borne bacterial populations (Spearman’s
ρ = 0.332, p = 0.113; Figure S2) imply that similar dominance profiles are maintained be-
tween larvae irrespective of the effects of diet. Notably, different DNA extraction kits
may alter the magnitude and composition of bacterial diversity detected in processed
samples [65–67], complicating direct comparisons of larval gut and feed substrate diversity.
However, diagnostic differences between samples are expected to persist above the noise
introduced by using different extraction chemistries [66,68]. Spearman’s tests utilised here
are, therefore, expected to produce robust comparisons of larval gut and diet diversity
trends as they are concerned only with differences in the relative diversity rank between
metagenomic samples.

Figure 1. Alpha diversity of larval guts is primarily structured by larval diet. Boxplots of GIT bacterial diversity in
terms of (A) observable richness, (B) Shannon–Weaver diversity, and (C) Simpson index values across feed and genetic
background partitions of the larval microbiome dataset. Analysis of Variance (ANOVA) p-values for testing the hypotheses
that mean diversity estimates are significantly influenced by larval feed substrate (pE), larval genetic background (pG), and
gene-by-environment interaction (PGxE) are displayed.

Little evidence to implicate either genetic background or a feed–background interac-
tion in driving the establishment of gut microbiota diversity is found (p > 0.05; ANOVA;
Figure 1). All neonates were initially maintained on a high-fibre starter feed before place-
ment on experimental diets (see Methods and Materials); therefore, it is not unexpected
that a high degree of bacterial diversity was also observed in the guts of the Sterile-fed
larvae.

3.3. Microbiome Structure and Differentiation

Permutational multivariate testing yields considerable evidence for compositional
differentiation of the larval gut microbiota dataset by feed (PERMANOVA; R2

E = 0.374,
p < 0.001) (Table 1). Although the associated effect sizes are small, larval genetic back-
ground (R2

G = 0.078, p = 0.009) and the potential interactions between feed and background
(R2

GxE = 0.139, p = 0.031) are also recovered as microbiome structuring variables (PER-
MANOVA; Table 1). Non-significant PERMDISP results for stratification of the dataset by
feed (FE = 1.424, p = 0.248) and larval strain (FG = 1.934, p = 0.176) reinforce the validity of
these findings. Post hoc pairwise tests found microbiota differentiation between all but the
comparison of Organic-fed and Brewer’s-fed larvae (Supplementary Table S3). Additional
ANOSIM testing also supports that feed substrate drives GIT community differentiation
(R = 0.417, p = 0.001) but provides little evidence for microbiome divergence by genetic



Insects 2021, 12, 1082 9 of 23

background alone (RG = 0.088; p = 0.088). Notably, a great deal of compositional varia-
tion in this system remains unexplained by the grouping variables (Residual R2 = 0.409)
(PERMANOVA; Table 1).

Table 1. Larval gut microbiomes are structured by diet, host genetic background, and an interaction
between these factors. Results of a permutational multivariate analysis of variance (PERMANOVA;
999 permutations) performed on a genus-level Bray–Curtis matrix of larvae microbiome data. Df—
degrees of freedom; SS—model sum of squares. Statistical significance is considered at an α = 0.05
threshold.

Data Partition Df SS R2 Pseudo-F p

Background (G) 1 0.357 0.078 3.053 0.009
Feed (E) 3 1.714 0.374 4.885 <0.001

Background × Feed (G × E) 3 0.637 0.139 1.815 0.031
Residual 16 1.872 0.409

Total 23 4.580 1.000

The NMDS analysis employed clearly resolves the effect of dietary variation on micro-
biome assembly, with samples clustering by feed group along the primary axis (Figure 2).
The influence of host genetic background on sample compositionality is, however, less
apparent in ordination space (Figure 2). Given that the observed genetic effects are small
in comparison to those of the diet (Table 1) and further complicated by interactions with
environmental variables, it is understandable that a simple 2D representation of sample
dissimilarities may not adequately capture the impact of host genetic background on
microbiome structure. Indeed, when NMDS was conducted on diets independently, a
more coherent, strain-dependent pattern of microbiota diversity emerges (Supplementary
Figure S3).

Figure 2. Non-metric Multidimensional Scaling (NMDS) analysis of OTU dataset. Analysis was
conducted using two explanatory axes (K = 2) and is described by a final configuration stress-value
of 0.2002. Samples are coloured by provisioned experimental diet, with different shapes representing
sample genetic identity.
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3.4. Production Trait Measures and Relationships to Microbiome Structure

Economically important traits related to larval bioconversion efficiency, namely final
mass, protein content, and lipid content, were measured across all groups. Inspection
of the phenotypic data indicates that larval final mass is significantly structured by the
provisioned feed substrate, with Organic-fed specimens showing higher mean weight
than their experimental counterparts (Figure 3A). A further interactive effect of feed and
genetic background is observed, with diet-dependent divergence in mass between wild
and factory larvae (Figure 3A). Similarly, larvae of the Organic and Brewer’s groups show
substantially higher end-point fat percentage than those reared on Formulated and Sterile
diets (Figure 3B). Again, an interaction between feed and larval strain is suggested by
a trend of reduced mean fat content in wild versus cultured larvae (Figure 3B). Only a
dietary effect was identified for larval protein content, with members of the Formulated
and Organic groups being the most and least protein rich, respectively (Figure 3C).

Figure 3. All measured larval production traits are structured by host genetic background or diet. Boxplots of larvae
(A) final mass, (B) crude fat content and (C) crude protein content measures stratified by feed and genetic background.
Analysis of Variance (ANOVA) p-values for testing the hypotheses that trait values are significantly structured by larval
feed substrate (pE), larval genetic background (pG), and gene-by-environment interactions (pG×E) are displayed.

Linear regression modelling suggests that gut microbiome structure could play a role
in the emergence of select larval phenotypes. Using the NMDS axes as a proxy for overarch-
ing relative compositional differences between samples, evidence is found for relationships
between gut microbiota and the lipid (NMDS1 Adjusted R2 = 0.683, p < 0.001) and protein
(NMDS1 Adjusted R2 = 0.235, p = 0.010) content of larvae, respectively. However, con-
trolling for the feed variable in multiple linear regression models entirely suppresses the
significance of gut structure in determining larval protein content (NMDS1 p = 0.110) but
retains the relative importance of the microbiome in regulating fat accumulation (NMDS1
p = 0.038). In each case, the secondary NMDS axis and larval genetic background variables
were removed by backward elimination. Partitioning analysis suggests that little variation
in lipid content measures can be ascribed independently to either gut structure (3.9%) or
feed substrate (11.8%) and that a great proportion of explanatory variance in the linear
model is shared between these variables (64.3%) (Supplementary Figure S4). Additional
testing finds no evidence to suggest that divergence in overarching GIT microbiota profiles
underlies significant between-group divergence in the larval mass phenotype.

3.5. Taxonomic Profiles, Core Genera, and Patterns of Enrichment

The assessment of relative taxonomic abundance profiles indicates a diverse larval gut
microbiome across experimental groups (Figure 4). The majority of mapped bacterial gen-
era belong to the Proteobacteria (48) phylum, with remaining OTUs assigned to members of
the Firmicutes (16), Actinobacteria (8), and Bacteroidetes (2) taxa. At an arbitrary 5% mean
relative abundance threshold, the Morganella (23.5 ± 24.6%), Providencia (14.5 ± 16.6%),
Lactobacillus (13.1 ± 11%), Enterococcus (10.9 ± 7.0%), and Proteus (9.3 ± 9.9%) genera are
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observed to be both dominant and ubiquitous across all cohorts (Supplementary Table S4).
These taxa may, therefore, be regarded as core members of the larval GIT community,
where together they account for 73.3% of all genus-level mapped reads for the larvae
sequencing library. Correlation testing between the larvae and feed relative abundance
datasets suggests that the dominance of Morganella (Spearman’s ρ = 0.569, FDR-adjusted
p = 0.015) and Lactobacillus (Spearman’s ρ = 0.591, FDR-adjusted p = 0.014) in larval guts
may, in part, be explained by the prevalence and abundance of these bacteria in feed
substrates (Supplementary Figure S5).

Figure 4. The distribution of bacterial genera within the guts of H. illucens larvae. Average group-wise relative abundance
(%) of genus-level taxonomic assignments to the OTU dataset (n = 3) are displayed. Genera with lower than 5% abundance
across all samples are classified as Other.

Diet-dependent patterns of enrichment are detected for numerous bacterial taxa
(Figure 5), many of which are also highly abundant in larval gut microbiomes (Figure 4).
Provision of both the Formulated and Sterile diets is associated with an increased abun-
dance of genera spanning the Actinobacteria, Firmicutes, and Proteobacteria phyla, while
the Formulated diet alone is also described by an increased presence in a Bacteroidetes
member, Sphingobacterium. In contrast, the Brewer’s and Organic diets show a narrower
phylogenetic range of distinguishing bacterial genera. Brewer’s feed was predominantly
associated with increased levels of proteobacteria, while Organic feed was differentiated
only by the elevated abundance of Lactobacillus (Firmicutes). Significant correlations be-
tween taxon abundance in the feed substrate and intestinal system (Figure S5) suggest
that divergent environmental microbial profiles may underlie detection of diet-specific
enrichment patterns for many gut microbiome members. The Citrobacter genus, which
shows no evidence for this proposed feed–gut abundance relationship (FDR-adjusted
p = 0.255), is recovered as a distinguishing biomarker in wild versus factory BSF micro-
biomes (LDA score = 3.35; FDR-adjusted p < 0.001). Interestingly, the exclusion of this
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genus does not depress the significance of host genetic background in driving microbiome
structure (R2

G = 0.070, p = 0.020; R2
GxE = 0.140, p = 0.036; PERMANOVA; Supplementary

Table S5).

Figure 5. Bacterial genera that show diet-dependent patterns of enrichment following Linear Discriminant Analysis of
Effect Size (LEfSe; FDR adjusted p < 0.05; LDA score > 2.0) testing. The top 20 associations in terms of LDA score are
displayed, with bar colours identifying the specific feed substrate correlated with significantly increased taxon abundance.
The test is conducted without consideration of the larval genetic background variable.

Stringent univariate Spearman’s correlation tests implicate the Lactobacillus genus in
driving fat accumulation rate in larvae (Spearman’s ρ = 0.750, FDR-adjusted p < 0.001;
n = 23). Similarly, the abundance of the Actinomyces genus, which is entirely absent from
the gut communities of Organic-fed larvae, is associated with differences in the final
mass of samples across the Formulated, Sterile, and Brewer’s diets (Spearman’s ρ = 0.847,
FDR-adjusted p < 0.001; n = 16).

3.6. Inference of Gut Functional Profiles

The METAGENassist software was employed to explore mechanistic implications
of GIT microbiota diversity, inferring a global putative functional profile of 21 metabolic
factors from the 74 genus-level OTU assignments made against the larval 16S metagenomic
library. Similarity-based clustering regarding the relative abundance of these factors largely
reflects feed substrate partitions of this dataset, with consistent distinction of the gut
functional profiles of Brewer’s-fed and Organic-fed larvae (Figure 6). Variability in the
metabolic potential of Formulated and Sterile gut bacterial communities is pronounced,
with samples tending to co-cluster at various positions throughout the sample dendrogram
(Figure 6).
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Figure 6. Heatmap visualisation of inferred metabolic potential of larval gut microbiomes. Hierarchical clustering of samples
and metabolic factors (row-wise normalisation) by Ward’s method applied to Spearman’s rank correlation coefficient distance
(1-ρ) matrices. Tree tips are coloured by larval genetic background and experimental feed substrate. Metabolic factors
that show significant (FDR-adjusted p < 0.05) abundance differences between feed groups are denoted by an asterisk (‘*’).
Samples are alphanumerically encoded. F—Factory; W—Wild; M—Formulated; O—Organic; S—Sterile; X—Brewer’s.
Sample numbers refer to each pooled experimental replicate.

Ten metabolic phenotypes show significant differentiation between these diet groups
(FDR-corrected p < 0.05; Figure 6; Supplementary Table S6). The potential for degradation
of atrazine, aromatic compounds, and xylans seems to be substantially enriched in the
guts of larvae fed with Formulated and Sterile diets, while nitrogen fixation capacity is
observed to be a dominant feature in GIT microbial communities of the latter feed only.
Alternatively, high abundances of streptomycin producing, acid producing, and selenate
reducing bacteria characterises the Brewer’s group. Ammonia oxidisation capabilities
seem to follow a gradient from notable upregulation in the Organic group to marked
downregulation in the guts of Formulated and Sterile-fed larvae. A similar pattern is
noted for chitinase activity, where the Brewer’s-fed group shows the greatest abundance
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of this metabolic category while the Organic group is comparatively depleted of chitin-
degrading bacteria. Finally, the potential for dehalogenation metabolism is observed to be
uniquely predominant in the intestinal microbiota of Organic-fed larvae. Neither clustering
relationships nor patterns of factor enrichment implicate larval genetic background as a
clear driver of gut metabolic function (Figure 6).

4. Discussion

A comprehensive understanding of larval microbiota dynamics is an essential pre-
cursor for the identification of host–microbiome relationships with reproducible and ex-
ploitable effects on marketable BSF phenotypes [16]. Herein, a 16S rDNA profiling approach
was used to explore the broad-scale effects of feed, host genetic background, and puta-
tive gene-by-environment interactions on variation in this internalised biological system.
Subsequently, the implications of gut community structure and feed-mediated microbial
enrichment patterns on the development of commercially important larval production
traits (final larval mass, fat content, and protein content) were assessed.

4.1. Gut Microbiome Diversity Is Driven by Feed and Host Genetics

Although diet is known to markedly influence larval gut microbiome diversity in
BSF [35,69,70], knowledge of the differential effects associated with the provision of
industry-relevant feed substrates is sparse. Compared to the protein-rich and fat-rich
Organic and Brewer’s feeds, the high-fibre, grain-based Formulated and Sterile diets are
associated with significantly greater bacterial diversity in terms of richness and Shannon-
Weaver estimates (Figure 1). Similarly, structuring effects of diet on larval gut microbiome
compositionality is well-resolved in NMDS ordination space (Figure 2), where primary
separation occurs between samples reared on high-carbohydrate (Formulated and Sterile)
and high-protein (Organic and Brewer’s) diets, with some secondary deviation within
these feed categories. Accordingly, statistical tests attribute a considerable portion of total
microbiome variance to differences in feed substrate (R2

E = 0.374; Table 1), with pairwise
divergence detected for all but the comparison between Organic-fed and Brewer’s-fed
larvae (Table S3).

These findings are consistent with mounting evidence from literature that the nutri-
tional content of feed, particularly the fat-to-carbohydrate (F:C) and protein-to-carbohydrate
(P:C) ratio, plays a sizeable role in shaping gut microbial communities [71–75]. For example,
in mouse and Drosophila models, gut microbiome alpha diversity is significantly suppressed
as the amount of dietary protein and fat increases relative to carbohydrate levels and is
often accompanied by large shifts in dominant GIT bacterial taxa between experimental
groups [76,77]. However, the exact relationship between these nutritional features and gut
microbiome diversity is less clear in BSF, where the directionalities of microbiota diversity
responses to stark shifts in dietary F:C and P:C ratios are not necessarily reproduced be-
tween studies [35,69,70]. To an extent, this implies that additional feed-specific factors may
influence larval gut community dynamics. In this study, significant coupling of bacterial
diversity estimates between the diet and intestinal environments (Figure S2) is observed.
Furthermore, it is recognised that provision of the Formulated and Sterile feeds, which
differ only in microbial burden, imposes divergent larval microbiome structure (Table S3).
Jiang et al. [37] observed similar interactions at the interface between feed-borne and gut
bacterial populations in BSF rearing systems, finding that taxonomic profiles of larval guts
progressively converged towards those of the diet over time. Moreover, Klammsteiner
et al. [70] describe resilience of established BSF microbiomes to diet-induced shifts when
larvae are reared on microbially limited diets. Taken together, these findings emphasise
that interactions between exogenous bacterial populations and resident gut bacteria could
play an important but poorly understood role in establishing the larval GIT communities.
It is, therefore, apparent that contemporary understanding of the mechanisms that underlie
the interplay between environmental factors and gut microbiome dynamics in BSF may be
largely oversimplified and open to future refinement.
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Recent studies have instigated a paradigm shift regarding our understanding of the
fundamental principles that govern the diversity of complex gut ecosystems, advocating
for a more pronounced influence of host genetics than previously thought [78]. While these
effects are most evident at evolutionary scales [79,80], patterns of co-segregation between
host genetic and microbiome factors in human, murine, and swine models highlight
that substantial individual-level heritability in animal GIT microbial landscapes can be
anticipated [81–85]. Herein, it is expected that the studied larval cohorts are genetically
distinct as BSF populations experience large decreases in genetic variation and rapid
generational differentiation in closed mass-rearing systems [21]. Given that potential
confounding factors (e.g., differences in rearing locale and conditions, feed preparation, and
neonate starter feeds) are controlled for between groups in this experiment, the significant
fraction of gut microbiome variation explained by larval genetic background (R2

G = 0.078;
Table 1) and background-by-environment interaction (R2

G×E = 0.139; Table 1) likely reflects
genetic divergence between the wild (F2) and long-standing factory (F62) cohorts at loci
that govern microbial dynamics. The persistence of these relationships upon removal of
the Citrobacter genus (Table S5), which showed evidence for differential enrichment in
wild larvae, implies that host genetic control of gut microbes may be exerted at broader,
community-wide levels in this species.

Quantitative genetics studies have described putative determinants underlying pat-
terns of microbiome heritability, commonly ascribing host-mediated control of gut commu-
nity assemblages to genes of the immune system [29,30,85,86] and metabolic [87] pathways.
Furthermore, it has been illustrated that microbiome–host dynamics may be highly com-
plex and governed by a variety of polygenic, pleiotropic, or even environment-interactive
genetic mechanisms [86,88–90]. Drawing from immunological research in the literature,
it is evident that antimicrobial peptide genes may drive host–microbe interactions to a
large extent in BSF [91–95]. Consolidating this with the understanding that diet distinctly
impacts expression of these factors [94], it is proposed that a targeted study of this di-
verse gene set may explain a substantive portion of the genetic and gene-by-environment
variance implicated in shaping larval GIT communities. As genomic resources become
increasingly available [22,94], the utilisation of quantitative genome-metagenome mapping
approaches should provide greater resolution of the specific genetic factors that govern
BSF microbiota dynamics.

Notably, a sizeable fraction of variance in gut microbiome compositionality remains
unexplained by the experimental design (R2 = 0.409; Table 1). Stochastic processes gov-
erning the colonisation and stabilisation of gut communities are expected to contribute
to this residual variation [96]. For example, ecological drift (i.e., random shifts in the
prevalence of different microbial species over time) can cause pronounced differentiation
between microbiomes, particularly when many taxa with low relative abundances are
present [97,98]. The guts of Sterile and Formulated larvae are likely to be prone to these
effects, as they harbour a high diversity of rare microbial taxa (Figure 1). It is, therefore,
likely that ecological drift has driven the pronounced compositional (Figure 2) and func-
tional (Figure 6) variation that is especially evident in these groups. However, unsampled
deterministic factors may also confound between-group variation in this system. For
example, uncharacterised infection with endosymbionts (e.g., Wolbachia) or sex-dependent
feeding behaviours would be expected to drive divergent microbiome assembly in insect
hosts [99,100]. Furthermore, a considerable portion of such residual variation may reflect
between-group cohesion as a function of exposure to identical neonate starter feeds or may
be driven by global microbiota responses to changes in compositional features of the feed
substrate (e.g., moisture content, carbon level, and sulphur level) elicited by general larval
action over the rearing cycle [37].

4.2. Overarching Gut Microbiome Structure Is Related to Larval Fat Content

The seminal work of Ross et al. [101] illustrates that gut microbiomes, alongside genetic
and environmental factors, may have considerable and quantifiable effects on the emer-
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gence of complex animal traits. In particular, they observe that integration of microbiota
profile data has potential to vastly improve our understanding of how metabolism-related
disease states and host phenotypes emerge. Further research in humans has established
that body mass index and blood lipid levels may be substantially influenced by micro-
biome compositionality, irrespective of the confounding effects of age, sex, and individual
genotype [102]. These findings are recapitulated in swine models, where microbiota pro-
files have strong predictive potential for various mass-related traits, including feeding
efficiency and final carcass weight [84,103]. Given that the animal GIT microbiome itself
behaves as a quantitative phenotype, Camarinha-Silva et al. [84] postulated that there is
a precedent for accelerated improvement of valuable but complex livestock production
traits via tandem, selective optimisation of host genotype, and microbiota. It is, therefore,
unsurprising that growing recognition of this deterministic role for the microbiome in
phenotype development has resulted in the consideration of expanded, holobiont trait
models that incorporate the independent effects of host genotype, the environment, gut
microbiota, and their relevant interactions [104].

Although less commonly explored, similar microbiome–phenotype relationships are
evident in insect species. For instance, in the Glanville fritillary butterfly, it seems that
complex trait phenotypes, such as larval growth rate, are predominantly influenced by GIT
community structure, even when accounting for the effects of larval diet [105]. Further-
more, Chaston et al. [106] comprehensively defined a significant relationship between the
nutritional index and enteric microbiota composition of Drosophila, uncovering additional
evidence for causal host–microbiome interplay in the emergence of these traits. The find-
ings support a comparable link between overall microbiome structure and the rate of fat
accumulation in BSF larvae, where microbiome compositionality independently explains
at least 3.9% of this trait’s variance. While the magnitude of this explanatory variance is
in line with other studies [102], the indistinguishable effects of feed (i.e., multicollinearity
between the dependent variables) may obscure the true effect size of the microbiota in
driving the development of this phenotype. It is, therefore, proposed that increased sample
size, in the absence of a structured study design, may provide more statistical power for the
detection of significant microbiome–trait relationships in future investigations. Nonethe-
less, in light of the complexity of microbiota assembly in BSF, it remains apparent that
the identification of optimal microbiome configurations that maximise trait development
requires a contextual understanding of how the effects of host genetics, the environment,
and the microbiome coalesce to drive economically important phenotypes in this species.

4.3. The Implications of Taxonomic and Metabolic Gut Microbiome Profiles

The analysis of taxonomic OTU classifications highlights that differential feed provi-
sion may have implications for host development by driving marked turnover in bacterial
community identity and metabolic functionality. Considering the Organic-fed larvae,
which display the most favourable mass and fat accumulation rates (Figure 3A,B), signifi-
cant enrichment for members of the Lactobacillus genus is observed (Figure 5). Furthermore,
correlative tests strongly support a relationship between the abundance of this taxon and
larval fat content across all diets. In line with this, inoculation of larval feed substrates
with Lactobacillus buchneri has been found to improve the relative fat percentage, protein
content, and feed conversion efficiency of BSF [33]. Storelli et al. [107] expanded upon this
potential relationship in Drosophila, showing that Lactobacillus plantarum promotes larval
growth by stimulating absorption of dietary protein in the gut. The inferred metabolic
profile of GIT communities in the Organic larvae is otherwise balanced, with only ammonia
oxidation and dehalogenation pathways showing signs of relative upregulation (Figure 6).
While enrichment of the former metabolic category may suggest improved clearance of
potentially toxic protein metabolism by-products in the gut [108], the biological significance
of enhanced dehalogenation metabolism is unclear.

Rearing larvae on the Formulated and Sterile diets is associated with the enrichment of
Actinobacteria, Bacteroidetes, and Firmicutes taxa (Figure 5). Among this diverse spectrum
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of bacteria, numerous genera are likely to contribute pectinases, cellulases, and xylanases
that enhance energy extraction from these recalcitrant, fibre-rich diets [27,109,110]. This
functionality may be reflected in significant upregulation of the xylan and aromatic hydro-
carbon degradative pathways in the guts of these larvae (Figure 6). Despite being entirely
absent from the GIT communities of larvae fed with the Organic diet, the abundance of
Actinomyces is found to be significantly associated with a divergence in mass gain between
the remaining feed substrates. While these taxa may support host nutrition via the produc-
tion of vitamins and degradation of complex biopolymers, it is also likely that they impact
host developmental efficiency by modulating pathogen load in the gut [111].

Alternatively, proteobacterial bloom, evident within the GIT communities of larvae
reared on the Sterile and Brewer’s feeds (Figure 5), may bear negative consequences for
host fitness. Bruno et al. [35] found that significantly diminished larval growth rate in BSF
can be attributed to diet-specific enrichment of these bacteria, particularly the Providencia
genus. They propose that gut dysbiosis, which describes unfavourable compositional and
functional alterations of GIT communities [112], may mediate this impact on larval health.
Mechanistically, this is congruent with the pathogenesis of proteobacterial genera, many of
which may drive persistent community imbalances and reduce the metabolic efficiency
of the gut system [113]. Here, a comparable but non-significant trend of reduced growth
rate for the Brewer’s-fed larvae is noted (Figure 3). Interestingly, increased abundance of
these taxa in the Brewer’s group is accompanied by enrichment for antibiotic and chitin-
degradative activities (Figure 6), which have the potential to markedly adjust microbiota
balance [114] and increase the host’s susceptibility to opportunistic infection [115].

Despite showing signatures of differential enrichment between feeds, conservative
selection criteria (found in 90% of the samples and >5% mean abundance) recover both
Lactobacillus and Providencia as core members of the larval gut microbiome. Their poten-
tial relationship to larval growth characteristics, therefore, resonates with the notion that
balancing core gut members is a crucial determinant of feeding efficiency in BSF [22].
Nevertheless, three core bacterial genera that display comparatively stable abundance
across larval guts are identified. Of these, Enterococcus is often recovered as a symbiont of
insects [116,117] and is the only genus that is reproducibly identified as a core member of
the BSF gut across other studies [36–38,70]. The ubiquity of this taxon could be explained by
functional dependence in the intestinal system, where Enterococcus species may contribute
to nutritional provisioning [118] and the host’s repertoire of antimicrobial defenses [119].
Further evidence indicates that the prevalence of this genus may also be a function of
vertical transmission [120]. While both Morganella and Proteus are considered commensals
in animal gut systems [121], understanding their role in these symbioses is largely unre-
solved. Together with Providencia, all three of these closely related genera are implicated
as human pathogens [122]. The presence of the Morganella genus, in particular, has been
associated with significantly increased mortality in fruit flies [123]. The consistently high
abundance of these bacteria in larvae, therefore, raises the question of whether they are an
important biological feature of optimum gut communities or if they are merely tolerated
by BSF larvae as they pass through the digestive tract. Indeed, similar questions may be
raised regarding the numerous genera that show abundance correlations between the feed
and gut environment (Figure S5).

5. Conclusions

The black soldier fly, Hermetia illucens, is a promising candidate insect species for
mass-rearing programmes that aim to address issues of food system sustainability via
large-scale bioremediation, nutrient upcycling, and the provision of alternative protein
sources for human and animal consumption. While prior studies have highlighted the
potential for rapid improvements in larval feeding efficiencies and mass gain through
manipulation of BSF gut microbiota, a lack of knowledge regarding the drivers of these bac-
terial systems poses a challenge to the identification of robust and reproducibly exploitable
microbiome–phenotype relationships. In the current study, various statistical approaches
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indicate that the H. illucens microbiome is significantly shaped by both host genetic and
environmental factors, akin to a classical complex, multifactorial trait. Furthermore, ev-
idence suggests that resultant enteric community compositionality, independent of feed
and host genetic background, is significantly associated with the rate of fat accumulation
in larvae. Examination of feed-specific bacterial enrichment patterns and their coincidence
with phenotypic variation highlights that additional interactions between the environment
and the microbiome have substantial impacts on larval developmental traits. Together,
these factors affirm microbiome-driven improvement of host phenotypes with economic or
bioremedial significance but illustrate the importance of context-specific elucidation of gut
microbiota dynamics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12121082/s1, Figure S1: Rarefaction curves for samples from the (A) larval and (B)
feed 16S metagenomic sequencing libraries. Within libraries, experimental groups are coded by
letters: W—Wild; F—Factory; M—Formulated; O—Organic; S—Sterile; X—Molasses. Numbers
indicate the rearing replicate, Figure S2: Alpha diversity trends are coupled between feed-borne
and larval-gut bacterial populations. Spearman’s ρ and associated P-values for testing diversity
correlations in terms of (A) observable richness, (B) Shannon–Weaver statistics, and (C) Simpson
diversity indices are displayed, Figure S3: Subtle host-genetic effects on microbiome assembly are
evident when stratifying microbiome data by feed group. Ordination-space visualisation of Non-
metric Dimensional Scaling (NMDS) analysis of samples within the (A) Formulated, (B) Organic, (C)
Sterile, and (D) Brewer’s diet groups. Larval genetic background is indicated by datapoint shape,
Figure S4: Bacterial genera whose abundance is significantly correlated between the larval gut system
and feed substrate. The red, dashed line indicates the log-transformed α = 0.05 significance threshold.
Taxa with significant feed-gut abundance relationships following FDR-adjustment of Spearman’s
P-values are labelled and coloured in black. Some genera with significant correlations (Acidomonas,
Brucella, Frischella, Mycoplana, Salmonella, and Trabulsiella) are excluded as P-values of zero are not
amenable to log transformation, Figure S5: Variance partitioning analysis describes effects of diet
and gut microbiome composition on larval fat content. Comparative larval microflora structures
are represented by NMDS axis 1 (see Figure 2). Independent effects (‘Diet’ and ‘Microbiome’) are
displayed alongside indistinguishable joint effects (‘Diet | Microbiome’) of these variables on the
trait in question, Table S1: Read generation, retention, and mapping statistics for the larvae 16S
metagenomic library, Table S2: Read generation, retention, and mapping statistics for the feed 16S
metagenomic library, Table S3: Pairwise differentiation in larval gut microbiome profiles is observed
between feed groups, Table S4: Prevalent and abundant genera across larval gut microbiomes, Table
S5: Larval gut metabolic features with significant (FDR-adjusted p-value < 0.05) differentiation by
feed type, Table S6: Host genetic background is retained as a driver of microbiome structure upon
exclusion of the Citrobacter genus.
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