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Diabetic mellitus (DM) is a significant public health concern worldwide with an increased
incidence of morbidity and mortality, which is particularly due to the diabetic vascular
complications. Several pivotal underlying mechanisms are associated with vascular
complications, including hyperglycemia, mitochondrial dysfunction, inflamsmation, and
most importantly, oxidative stress. Oxidative stress triggers defective angiogenesis,
activates pro-inflammatory pathways and causes long-lasting epigenetic changes to
facilitate the development of vascular complications. Therefore, therapeutic
interventions targeting oxidative stress are promising to manage diabetic vascular
complications. Sirtuin1 (SIRT1), a class lll histone deacetylase belonging to the sirtuin
family, plays critical roles in regulating metabolism and ageing-related pathological
conditions, such as vascular diseases. Growing evidence has indicated that SIRT1 acts
as a sensing regulator in response to oxidative stress and attenuates vascular dysfunction
via cooperating with adenosine-monophosphate-activated protein kinase (AMPK) to
activate antioxidant signals through various downstream effectors, including
peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1a), forkhead
transcription factors (FOXOs), and peroxisome proliferative-activated receptor o (PPAR).
In addition, SIRT1 interacts with hydrogen sulfide (H2S), regulates NADPH oxidase,
endothelial NO synthase, and mechanistic target of rapamycin (MTOR) to suppress
oxidative stress. Furthermore, mRNA expression of sirt1 is affected by microRNAs in DM.
In the current review, we summarize recent advances illustrating the importance of SIRT1
in antagonizing oxidative stress. We also discuss whether modulation of SIRT1 can serve
as a therapeutic strategy to treat diabetic vascular complications.

Keywords: SIRT1, oxidative stress, diabetic vascular complications, adenosine-monophosphate-activated protein
kinase, mechanistic target of rapamycin, microRNAs
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INTRODUCTION

Diabetes mellitus (DM) is a complicated age-related diseases
worldwide (1) and the main characteristics of DM are
hyperglycemia and insulin resistance caused by [3-cell dysfunction,
resulting in increased risk for vascular disease (2-4). Notably, DM
patients always accompany with various diseases associated with
diabetic vascular complications, such as acquired blindness,
atherosclerosis, end-stage renal failure, and neuropathies.
Generally, diabetic vascular complications are classified into
microvascular and macrovascular complications, the latter of
which occur more frequently in patients with diabetes. The central
pathological symptoms in macrovascular disease include
hypertension, atherosclerosis, diabetic heart diseases, peripheral
arterial disease, and stroke. Actually, diabetic patients have two
times higher risk of developing stroke and hypertension than those
who are healthy adults (5). On the contrary, microvascular
complications involve diabetic nephropathy, neurophathy, and
retinopathy (6-9). Considering the increased prevalence and the
emergent requirement of therapeutic interventions to prevent these
complications, it is important to explore the underlying connections
between vascular disease and diabetes (10).

Advances in understanding of diabetes have made it clear that
abnormal angiogenesis and endothelial dysfunction are two well-
documented pathological characteristics of diabetic vascular
complications (11-13). In particular, endothelial dysfunction plays
central roles in the development of vascular complications, which is
characterized by diminished bioavailability of nitric oxide, increased
endothelium-derived contracting factors, and the impaired
vasodilation. In addition, endothelial dysfunction is accompanied
by the accumulation of cytokines and chemokines within the
vascular microenvironment (14, 15). Therefore, elucidating the
etiology and mechanisms of endothelial dysfunction will facilitate
the development of diagnosis, prevention, and treatment even
during suboptimal metabolic control of DM.

OXIDATIVE STRESS IN DIABETIC
VASCULAR COMPLICATIONS

Oxidative stress is manifested as an overload of free radical
accumulations, such as reactive oxygen species (ROS), and
decreased antioxidants in the microvasculature, which always
result in endothelial dysfunction. Importantly, amount of works
have demonstrated that oxidative stress is one of the greatest
contributors to the pathogenesis of vascular disorders and DM
(16-18). For one hand, oxidative stress alters the endothelial
signaling transduction and regulates the activation of
transcriptional factors in response to redox, and thereby enhances
vascular endothelial permeability and leukocyte adhesion. For
another hand, oxidative stress contributes to insulin resistance, B-
cell dysfunction, and hyperglycemia-mediated cellular injury,
leading to the development of DM (16-18).

Specifically, metabolic abnormalities of DM, especially
hyperglycemia and hyperlipidemia, can activate NADPH
oxidases (NOXs) and endothelial Nitric Oxide Synthase (eNOS),
increase advanced glycation end-products (AGE), and interrupt the

polyol pathway as well as the mitochondrial respiratory chain, to
impinge on oxidative stress (19). Consequently, oxidative stress
may impair B-cell function via reducing insulin synthesis, hindering
proinsulin inclusion, and inducing the apoptotic cell death of
pancreatic cells (20). Mitochondrial collapse induced by oxidative
stress is another important contributor to insulin resistance. Many
high glucose levels associated biochemical pathways, such as
glucose autoxidation, prostanoid synthesis, and protein glycation,
crumble mitochondrial and promote mitochondria-mediated
overproduction of ROS (predominantly superoxide anion) (21).
As a result, excess ROS triggers several cellular mechanisms,
including polyol pathway, mitogen-activated protein kinase
(MAPK), adenosine-monophosphate-activated protein kinase
(AMPK), NF-xB signaling pathways, and transcription factors
such as forkhead transcription factors (FOXO), Nrf2 and AP-1,
to initiate inflammation and deregulate insulin signaling pathways
(22,23). Taken together, therapeutic interventions aiming to reduce
oxidative stress, such as anti-oxidative agents, are promising
strategies reversing insulin resistance, ameliorating endothelial
function and preventing cardiovascular morbidity in patients
with diabetes.

STRUCTURE AND REGULATION OF SIRT1

The mammalian sirtuins are nicotinamide adenine dinucleotide
(NAD")-dependent histone deacetylases, which regulate numerous
cellular processes involved in DNA repair, cell survival and
senescence, stress-stimulated metabolism alternations (24, 25).
They require NAD" as a cofactor for deacetylation of histone or
non-histone substrates and are generally not inhibited by compounds
that inhibit zinc-dependent deacetylases. Importantly, increasing
reports have demonstrated that the sirtuin family participates in
the development of vascular physiology and pathology (26, 27),
suggesting the sirtuins as therapeutic targets in DM.

In mammals, the sirtuin family is comprised of seven members
(SIRT1-SIRT7). Among these mammalian Sirts, SIRT1 has been
investigated most extensively (28). SIRT1 has 747 amino acids and
three independent domains, the central deacetylase domain
conservative in species, the N-terminal region containing nuclear
localization/export signals, and the C-terminal region containing
the essential for SIRT1 activity (ESA) domain (Figure 1).
Structurally, a substrate and a NAD+ binding pocket exists in
the catalytic domain, whereas the regulatory element and binding
domain of SIRT1 co-activator/co-repressor distribute in the N- and
C-terminus. SIRT1 removes the acetyl groups from multiple
cytoplasmic substrates rather than histones, such as peroxisome
proliferator-activated receptor-gamma co-activator 1 (PGC-1a),
farnesoid X receptor (FXR), liver X receptor (LXR), sterol-
regulatory element binding protein 1 (SREBP1), peroxisome
proliferative-activated receptor (PPAR) to exert various functions
in cellular metabolism (gluconeogenesis, insulin sensitivity, fat
mobilization, and lipid metabolism) (29, 30). In addition, SIRT1
also regulate mechanistic target of rapamycin (mTOR), p53, KU70,
E2F, and FOXO to affect cell survival and senescence (Figure 1).

Multiple studies on the regulation of SIRT1 activity have shown
that post-translational modifications (PTMs), such as
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FIGURE 1 | Structure and function of human SIRT1. Important domains and substrates of human SIRT1 are shown, and their corresponding functions are
presented. NLS, nuclear localization signal; NES, nuclear export signal; ESA, essential for Sirt1 activity; FXR, farnesoid X receptor; LXR, liver X receptor; SREBP1,

phosphorylation, S-nitrosylation, and SUMOylation, modulate
SIRT1 protein level and its deacetylase activity (31). For instance,
SIRT1 contains several sites for phosphorylation (e.g., N-terminus
with seven residues and C-terminus with eight residues). In most
cases, phosphorylation of SIRT 1 mediated by different kinases, such
as C-Jun N-terminal kinase 1, casein kinase 2, and cyclin-dependent
kinase 1, enhances SIRT1 deacetylase activity and regulates its
function in a substrate-dependent manner (31). In addition,
SUMO is an ubiquitin like-modifier that exerts opposite effect of
ubiquitin and covalently addition of SUMO protein to lysine
residues (the so-called SUMOylation) can stabilize proteins.
SUMOylation of SIRT1 at Lys 734 also increase its deacetylase
activity and protein stability. Conversely, deSUMOylation of SIRT1
by specific deSUMOylating enzyme, sentrin-specific protease 1
(SENP1), reduces its deacetylase activity (32). Unlike
SUMOylation, the covalently incorporating a nitric oxide moiety
into Cys 387 and 390 of SIRT1 (S-nitrosylation) significantly
reduces the deacetylase activity of SIRT1 toward to a widely
reported substrate PGC-1c. (33). Furthermore, SIRT1 activity is
also regulated by protein-protein interaction. For instance, and
deleted in breast cancer 1 (DBC1) and active regulator of SIRT1
(AROS) are negative and positive regulator of SIRT1, respectively.
AROS binds to the N-terminus of SIRT1 to increase the SIRT1
activity (34), whereas DBC1 binds to the “essential for SIRT1
activity” (ESA) domain or the SIRT1 deacetylase core domain to
inactivate SIRT1 (35). Finally, there are several small chemicals able
to modify the activity of SIRT1, such as polyphenol resveratrol,
sirtinol, and splitomicin (36). Resveratrol is a stilbenoid and is well-
known for its ability to activating SIRT1 to exert its anti-aging, anti-
diabetic, and anti-cardiovascular functions. Further works are
inspired to discover more SIRT1 PTMs and protein regulators
and to explore the possible crosstalk among different SIRT1 PTMs.

SIRT1 ANTAGONIZES OXIDATIVE STRESS
IN DIABETIC MELLITUS

Recently published studies have clearly revealed that SIRT1
antagonizes oxidative stress in the pathogenesis of diabetic

vasculopathy (37-39). For instance, the downregulation of
SIRT1 by hyperglycemia caused vascular dysfunction in DM
(40). On the contrary, upregulation of SIRT1 attenuated
oxidative stress-induced endothelial senescence in diabetic
mice (41). Notably, SIRTI attenuates oxidative stress to
regulate diabetic vascular complications through several
important signal mediators, such as AMPK, NADPH oxidase,
endothelial NO synthase, mTOR, and miRNAs (Figure 2). It
seems that SIRT1 relies on the availability of different substrates
to regulate cellular oxidative stress.

SIRT1 Cooperates With AMPK to
Antagonize Oxidative Stress in

Diabetic Mellitus

AMPK is the main cellular mediator of metabolic stress and is
activated by glucose deprivation (42). Importantly, AMPK and
SIRT1 both regulate each other and have similar effects on
various cellular processes such as cell metabolism, DNA repair,
mitochondrial function, and cell growth (43). For instance,
AMPK manipulates energy expenditure by increasing the
intercellular NAD+ concentration to enhance SIRT1 activity
(44). Alternatively, SIRT1 deacetylates and activates LKB1, the
upstream kinase of AMPK, to activate AMPK and to suppress
ROS production (45, 46). Furthermore, SIRT1 and AMPK share
many common targets, such as forkhead transcription factors
(FOXOs), peroxisome proliferative-activated receptor o
(PPARw), and PGC-1o (43). The joint activation of AMPK
and SIRT1 can individually or combinatory activates these
downstream effectors to exert antioxidant protective response
and to ameliorate oxidative stress in DM (47, 48).

Inhibition of Oxidative Stress by
SIRT1-AMPK-PGC-1a

PGC-1a.is recognized as a key metabolic sensor and regulator in
response to malnutrition and hypoxia (49, 50). Upon activation,
PGC-1a regulates mitochondrial biogenesis and thus ROS
production by controlling many transcription factors to
initiate the expression of mitochondrial genes, resulting in
reduced oxidative stress (51). PGC-1a is activated either by
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FIGURE 2 | SIRT1 antagonizes oxidative stress in diabetic vascular complications. SIRT1 directly or cooperatively with AMPK to activate various downstream
effectors, including PGC1a, FOXOs, and PPARa. SIRT1 also stimulate eNOS and inhibit NOX and mTOR to trigger anti-oxidant protective response. In addition, HoS
can either activate SIRT1 directly via sulfydration, or indirectly via increasing NAD+ level. Furthermore, several miRNAs, such as miR-34a, miR-200c, and miR-23a,
directly inhibit the mRNA expression of sirt7 in DM, while other miRNAs including miR-126 promote sirt7 expression indirectly with unclear mechanism.

AMPK-mediated phosphorylation or SIRT1-mediated
deacetylation in an NAD"-dependent manner (43, 52).
Notably, amount of evidence has proved that SIRT1 cooperates
with AMPK to enhance the ability of PGC-10a. to attenuate
endothelial dysfunction via stimulating mitochondrial
biogenesis (53) and activating gluconeogenic fatty acid
oxidation genes (54, 55). In addition, SIRT1-AMPK-PGC-1a
pathway exerts its anti-oxidative activity in other diabetic
vascular complications including brain complications (56),
diabetic cardiomyopathy, and diabetic nephropathy (57, 58).
Furthermore, PGC-1o can be directly activated by SIRT1
without AMPK to ease metabolic disorders in high glucose-
induced endothelial oxidative damage (59) and Drp-mediated
mitochondrial fission in diabetic hearts (60). Therefore, whether
SIRT1 regulates the PGC-1o-mediated mitochondrial
respiration and ROS production, with or without the help of
AMPK activation, rests on a context-dependent way.

Inhibition of Oxidative Stress by
SIRT1-AMPK-FOXOs

The significance of FOXOs in regulating the metabolic activity of
vascular endothelium has been gradually addressed (61). There
are four FOXO members in mammals, FOXO1, FOXO3,
FOXO04, and FOXO6. SIRT1 deacetylates FOXO1, FOXO3 and
FOXO04, and stimulates FOXO-dependent expression of
antioxidants to scavenge ROS, such as catalase, manganese
superoxide dismutase (MnSOD), and thioredoxin, either
positively or negatively (62, 63). For instance, SIRT1

deacetylated FOXOI1 to combat oxidative stress in diabetic
vascular complications, diabetic nephropathy, and particularly
in diabetic cardiomyopathy under the treatment of resveratrol
(64-66). Besides, SIRT1 directly deacetylated FOXO3a and
promoted the expression of MnSOD and catalase that are
involved in stress resistance, which in turn attenuated oxidative
stress in diabetic cardiomyopathy and nephropathy (67, 68).
Moreover, SIRT1 bound to FOXO4 and increased its
transactivation capacity to inhibit NF-xB signaling and
inflammation (63). Interestingly, AMPK has also been shown
to phosphorylate and activate FOXOs, yet the precise mechanism
of AMPK in SIRT1-FOXO pathway remains unclear (44, 64). It
seems that AMPK can regulate the function of FOXOs either by
direct phosphorylation or indirectly via the SIRT1-
induced activation.

Inhibition of Oxidative Stress by
SIRT1-AMPK-PPAR«.

As a transcriptional factor, PPAR0. is mainly expressed in many
oxidative tissues that require high capacity of fatty acid oxidation
and is essential for the regulation of glucose metabolism (69).
Additionally, PPARo. is able to attenuate oxidative stress and
inflammation through repressing NF-xB-mediated gene
transcription, as well as increasing NO expression and release
(70-72). It has been proved that expression of PPARo. was
reduced by hyperglycemia, and SIRT1 activated PPAR«
pathway to reduce ROS in diabetic vascular diseases (73, 74).
In addition, AMPK-SIRT1-PPARO was activated by resveratrol
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to alleviate oxidative stress and endothelial dysfunction in type 2
diabetic nephropathy (58). However, unlike FOXOs, PPAR. is
not a directly target deacetylated by SIRT1, but its activity can be
enhanced by SIRT1 indirectly through the coactivators, such as
AMPK and PGC-1a (75, 76). Moreover, various PPAR agonists
have been proved to prevent diabetes in the non-obese diabetic
mouse model, suggesting the therapeutic function of SIRT1-
PPAR« axis in DM.

SIRT1 Regulates eNOS and NOX to
Suppress Oxidative Stress

Nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX) family protein are primary sources of regulated
production of ROS and play critical functions in the
pathogenesis of the macro and micro-vascular complications
of diabetes (77). Several important mediators of DM, such as
hyperglycemia, oxidized or glycated low-density lipoproteins
(LDL) and AGEs, can activate NOX to generate ROS, resulting in
cell and tissue injury characteristic of diabetic complications
(19). Importantly, the closely connection between NOX and
SIRT1 has been gradually recognized, which shows that SIRT1
inhibits NOX to diminish ROS. For instance, resveratrol-
mediated activation of SIRT1 inhibited the expression of
NOX4 and the NADPH oxidative activity to reduce vascular
superoxide production and to ameliorate endothelial
dysfunction (78). Besides, dulaglutide, a glucagon-like peptide-
1 receptor agonist used to treat type 2 DM, activated SIRT1 to
suppress high glucose-induced activation of NLRP3
inflammasome and to downregulate NOX4 expression and the
generation of ROS in human umbilical vein endothelial cells
(79).In addition, SIRT1 was activated by quercetin to antagonize
oxidized LDL-induced endothelial oxidative damage through
activating AMPK and inhibiting NOX2 and NOX4 activity (80).
Although the detailed mechanisms about how SIRT1 inhibits
NOX directly or indirectly though AMPK have not been
eliminated, SIRT1 has an antergic action on NOX-mediated
ROS production.

Endothelial NO synthase (eNOS) is the primary enzyme
producing NO, which participate in mitochondrial biogenesis
and has various anti-atherosclerotic functions. Patients with DM
demonstrate uncoupled eNOS in blood vessels, resulting in
excessive superoxide anion (O27) production and diminished
NO availability (81). Up to now, there are extensive connections
between SIRT1 and eNOS in counteracting oxidative stress. For
instance, in response to calorie restriction, SIRT1 promoted
eNOS activity and NO bioavailability via the deacetylation of
eNOS at lysine 496 and 506 (82, 83). In addition to deacetylation,
SIRT1 also positively regulated the phosphorylation of eNOS to
affect its ability in reducing oxidative stress and premature
senescence (84). Except for SIRT1, AMPK has also been
demonstrated to promote NO secretion by increasing eNOS
phosphorylation as serine 633, which was another effective way
for SIRT1 to overcome caloric restriction and facilitate vascular
reconditioning after ischemia via activating the AMPK/eNOS
axis (85, 86). In addition, SIRT1 enhances eNOS expression as
evidenced by that resveratrol induced SIRT1-dependent

upregulation of eNOS in endothelial cells, and endothelial-
specific overexpression of Sirtl led to elevation of eNOS
expression (87-89). Furthermore, under resveratrol-stimulated
conditions, knockdown of FOXO1 or FOXO3a by siRNAs led to
a downregulation of eNOS transcription, implying that SIRT1
activates FOXOs to elevate eNOS (90). Taken together, SIRT1
either enhances eNOS expression or eNOS enzymatic activity to
protect against oxidative stress and endothelial dysfunction.

H.S and SIRT1 Interaction Suppress
Oxidative Stress

Hydrogen sulfide (H,S) is a gasotransmitter playing an important
role in physiological conditions, dysregulation of which always
occurs in vascular-related diseases. Amount of evidence has clearly
demonstrated that interaction between H,S and SIRT1 is critical
modulator of oxidative stress (91, 92). For one hand, H,S limits
ROS production via directly enhancing SIRT1 activity or
expression (93-96). H,S promotes the S-sulfydration of two
CXXC motifs in the catalytic domain of SIRTI, resulting in
elevated protein stability and deacetylase activity (96). H,S is
also able to activate SIRT1 indirectly by increasing intracellular
NAD" levels (97). Furthermore, H,S exerts its anti-inflammatory
and anti-oxidant effects against diabetic complications via
stimulating AMPK (92). One possible mechanism is that H,S
mediates the S-sulfydration of calcium/calmodulin-dependent
protein kinase kinase B (CaMKKp), one important upstream
regulator of AMPK, to phosphorylate AMPK and to activate its
downstream effector, the SIRT1/PGC-la. axis (98, 99). Taken
together, H,S and SIRT1 interaction represents a protective
mechanism against oxidative stress in DM.

SIRT1 Regulates mTOR Pathway to
Repress Oxidative Stress

The mechanistic target of rapamycin (mTOR) is a nutrient sensor
and initiator of cell growth, forming structurally and functionally
distinct mTOR complex 1 (mTORC1) and complex 2 (mTORC2)
(100). Importantly, mTOR is an important regulator of oxidative
stress through regulating mitochondrial biogenesis and enhancing
oxidative metabolism via PGC-1o. pathway (101). Besides, insulin-
mediated PI3K/Akt/mTOR signaling axis is one of the most well-
known mechanisms in regulating cell cycle, glucose metabolism
and endothelial dysfunction in DM (102, 103). Interestingly, under
calorie restriction, mTOR was inhibited whereas SIRT1 activity
was upregulated (104, 105), suggesting the feedback action
between mTOR and SIRT1. Indeed, numerous studies have
revealed their possible reciprocal connections. For instance,
hepatic SIRT1 deficiency disrupted mTORC2/Akt signaling to
cause hyperglycemia and oxidative stress in mice model (106).
One possible mechanism is that SIRT1 directly regulated mTOR
via erythropoietin to protect vascular cells in DM (107, 108).
Another example is that SIRT1 activated the mTORC?2 signaling
via activating a cascade of Akt and FOXO phosphorylation, which
in turn ameliorated myocardial ischemia or reperfusion injury in
DM (103). Together, all the observations imply that SIRT1-mTOR
pathway could be potentially therapeutic targets for diabetic
vascular complications.
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Regulation of Sirt1 by MicroRNAs in
Diabetic Mellitus

MicroRNAs (miRNAs) are cluster of non-coding RNAs that
trigger mRNA degradation and repress translation function
mainly by targeting messenger RNAs (mRNAs) (109).
Recently, the importance of miRNAs-mediated sirtl regulation
in diabetic vascular complications has gradually emerged (110).
One extensively investigated miRNA was miR-34a (111, 112).
Hyperglycemia-mediated oxidative stress recruited p66SHc,
which then upregulated miR-34a to impair angiogenesis in
endothelial cells via directly suppressing the stability of sirtl
mRNA, leading to the reduced protein level of SIRT1 (112-114).
Besides, regulation of miR-34a, SIRT1, and eNOS synthesis
promoted kallistatin to inhibit antioxidant gene expression in
endothelial progenitor cells (115). In addition to miR-34a, miR-
200c and miR-23a were also related to oxidative stress-induced
diabetic vascular complications. Hyperglycemia triggered ROS
production and upregulated miR-200c expression, which
subsequently inhibited the mRNA expression of sirtl to
facilitate endothelial dysfunction in DM (116, 117). However,
unlike miR-34a and miR-200c, increased level of miR-126 could
facilitate the expressions of sirt] and sod-2 to enhance oxidative
stress and aggravate diabetic vascular complications, with
unclear mechanism (118). Aside from miRNAs discussed
above, many other miRNAs, such as miR-195, miR-9, and
miR-132, have also been reported to target the mRNA of sirt]
(119-121). Whether they play a role in DM remains to
be determined.

SIRT1 AS A THERAPEUTIC TARGET FOR
DIABETIC MELLITUS

As discussed above, SIRT1 antagonises oxidative stress via
different substrates in DM, implying activating SIRT1 as potent
therapeutic strategy. Importantly, SIRT1 can be activated directly
or indirectly by some naturally polyphenols in vitro and in vivo,
such as resveratrol, quercetin, and catechins (122, 123). For
instance, resveratrol is one of the well-studied SIRT1 activators
that binds to SIRT1 to promote its substrate binding activity.
Resveratrol exhibits various biological functions via activating
SIRT1 and numerous clinical trials have been performed to test
its protective effect against several diseases, such as
neurodegeneration, type 2 diabetes, and insulin resistance
(123). In addition, some completed phase 1/2 clinical trials
have clearly showed that resveratrol is able to improve
metabolic and vascular health of diabetes subjects (123).
Notably, those natural SIRT1-activating compounds are mostly
used as nutraceuticals in management of diabetic vascular
complications. Whether their therapeutic effects rely on SIRT1
activation in DM remains to be examined. Considering that most
natural compounds possess pleiotropic effects, more selective
and specific SIRT1 activators are required, which may facilitate
to establish a direct link between SIRT1 activation and human

diseases. There are several other SIRTI activators, such as
SRT1720 (an analogue of resveratrol), that have been shown to
enhance SIRT1 activity in mammals (36, 124). Whether these
activators can exhibit higher specificity and activity than
naturally polyphenols, as well as their potentially clinical
application, remain to be determined.

CONCLUSION

SIRT1 plays a key role in many signaling pathways and regulates
various important biological phenomena, especially in
metabolism, inflammation, aging, and stress resistance through
deacetylating transcription factors and histones. The
involvement of SIRT1 in diabetic vascular complications has
increased, and the diverse mechanisms of SIRT1 against
oxidative stress gradually emerges, suggesting that modulation
of SIRT1 activity may be an available therapeutic intervention
against diabetes-induced vascular diseases (125). However, many
detailed molecular interactions remain unsolved. For instance, a
comprehensive understanding of how SIRT1 and AMPK are
intertwined in mediating vascular diseases is still needed. It is
difficult to parse how specific interactions between SIRT1 and
AMPK contribute to cross-regulation in each vascular
complication. Besides, except for SIRT1, there are still other
members of the sirtuin family (e.g., SIRT3, SIRT6, and SIRT7)
that are active in modulating vascular function (126, 127), which
inspires further works to investigate their associations with
oxidative stress and diabetic vascular complications. Finally,
substantial efforts aiming to develop novel specifically
pharmacological SIRT1 activators under active clinical
investigation is needed.
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