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TheGleason score is an important predictor of prognosis in prostate cancer. However, its subjective nature can result in
over- or under-grading. Our objective was to train an artificial intelligence (AI)-based algorithm to grade prostate can-
cer in specimens frompatients who underwent radical prostatectomy (RP) and to assess the correlation of AI-estimated
proportions of different Gleason patterns with biochemical recurrence-free survival (RFS), metastasis-free survival
(MFS), and overall survival (OS). Training and validation of algorithms for cancer detection and grading were com-
pletedwith three large datasets containing a total of 580whole-mount prostate slides from 191RP patients at two cen-
ters and 6218 annotated needle biopsy slides from the publicly available Prostate Cancer Grading Assessment dataset.
A cancer detection model was trained using MobileNetV3 on 0.5 mm× 0.5 mm cancer areas (tiles) captured at 10×
magnification. For cancer grading, a Gleason pattern detectorwas trained on tiles using a ResNet50 convolutional neu-
ral network and a selective CutMix training strategy involving a mixture of real and artificial examples. This strategy
resulted in improved model generalizability in the test set compared with three different control experiments when
evaluated on both needle biopsy slides and whole-mount prostate slides from different centers. In an additional test
cohort of RP patients who were clinically followed over 30 years, quantitative Gleason pattern AI estimates achieved
concordance indexes of 0.69, 0.72, and 0.64 for predicting RFS, MFS, and OS times, outperforming the control exper-
iments and International Society of Urological Pathology system (ISUP) grading by pathologists. Finally, unsupervised
clustering of test RP patient specimens into low-, medium-, and high-risk groups based on AI-estimated proportions of
each Gleason pattern resulted in significantly improved RFS and MFS stratification compared with ISUP grading. In
summary, deep learning-based quantitative Gleason scoring using a selective CutMix training strategy may improve
prognostication after prostate cancer surgery.
Introduction

Prostate cancer is characterized by a broad spectrum of clinical behavior
spanning indolent to highly aggressive disease. Clinical risk assessment in
localized prostate cancer largely depends on pathological assessment of
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morphological appearance with the Gleason scoring system.1 However,
prostate cancer exhibits both intra- and inter-tumor heterogeneity of
growth patterns, with increasing morphological diversity in larger cancers
of worsening grade.2 The Gleason scoring system attempts to combine
these diverse growth features into broad groups, primarily to promote
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reproducibility across pathologists but at the cost of reduced descriptive
accuracy.3 Pathologists assess prostate tumors by visually identifying the
presence and prevalence of different architectural features, assigning a
Gleason score and associated International Society of Urological Pathology
system (ISUP) grade that aim to reflect the overall degree of tumor aggres-
siveness. However, due to the heterogeneity of morphologic features and
the subjective nature of the process, there is poor inter- and intra-observer
agreement in Gleason scoring,4,5 which can easily over- or underestimate
the actual tumor aggressiveness.

To address this challenge, several groups have developed AI-based ap-
proaches to build an automated and reproducible Gleason scoring
algorithms.6,7 However, most of these algorithms are designed to work
with small-scale needle biopsies or tissue microarrays. Because each
tumor contains multiple histological grades and each specimen can contain
multiple areas of tumor across multiple slides, these algorithmsmay not re-
flect the tumor heterogeneity in whole prostate specimens.8–11 Further-
more, very few approaches have been assessed for correlation with
clinically relevant patient outcomes such as time to recurrence and develop-
ment of metastasis, which requires detailed follow-up over a span of several
decades.

A major limitation in using whole-mount prostate slides from surgical
specimens in AI modeling is the presence of extensive inter- and intra-tu-
moral heterogeneity, which creates immense complexity for annotation12

or, more often, limits these specimens to so-called “weakly labeled” annota-
tions limited to a single index tumor or patient-level grades. Nagpal et al.
overcame this issue by employing 29 different pathologists to obtain re-
gional/pixel-level labels,7 but such an effort is impractical over large multi-
center cohorts. Other investigators have turned to data augmentation
strategies to overcome labeling issues related to whole-image labels or
tumor-based labels. For instance, CutMix is a popular data augmentation
technique for improving classification performance and generalizability
in tasks with localizable features.13 It has specifically shown promise in dig-
ital pathology challenge sets where weakly labeled annotations produced
from slide-level features do not localize exact features of disease.14 Modifi-
cations of CutMix for histopathological classifiers in the setting of heteroge-
neous data labeling have also demonstrated that the generation of training
sets from a combination of strong and weak labels, termed MixPatch, can
improve performance and generalizability.15 However, these applications
have yet to be studied in prostate cancer histopathological grading.

In this study, we introduce a cascaded deep learning algorithm for can-
cer detection and Gleason pattern classification in digital pathology images
of prostate specimens. Specifically, we aimed to investigate the effect of a
selective CutMix training strategy involving real and artificially generated
images from both biopsy and whole-mount specimens, on multi-class
model generalizability despite heterogeneous pathologist annotations and
annotation strategies. We additionally aimed to evaluate the prognostic
value of AI-derived quantitative Gleason pattern estimates against patholo-
gist-assigned Gleason scores when adjusting for known clinical risk factors.

Materials and methods

Patient populations and digital scanning

We used a multi-institutional collection of whole-slide images (WSIs)
from biopsy and surgical specimens labeled by pathologists according to
various annotation strategies. The datasets used in this study are summa-
rized below for digital slide acquisition, digital annotation, and clinical
data collection, including clinical follow-up when available. Inclusion
criteria and annotation strategies are summarized in Fig. 1 and the total
number of slides and Gleason score distribution utilized in this study are
summarized in Table 1. Any data exclusions are additionally detailed in
Fig. 1.

Dataset 1: The Prostate Cancer Grading Assessment (PANDA) public
dataset consists of WSI from core needle biopsies obtained at the Radboud
University Medical Center (RUMC) and the Karolinska Institute (KI).
2

• Digital slide acquisition: A total of n = 10,616 slides are available within
these cohorts. WSI acquired at RUMC were scanned using a 3DHistech
Pannoramic Flash II 250 scanner and shared publicly with a pixel resolu-
tion of 0.48 μm/pixel.WSI acquired at KIwere scannedwith eitherHama-
matsu C9600-12 or Aperio ScanScope AT2 scanners at 0.45202 μm/pixel
and 0.5032 μm/pixel resolutions, respectively. Further information on
how these annotations were acquired is available.16

• Slide annotation: Slides from Dataset 1 WSI were annotated separately at
each center, where multiple pathologists provided either gland-level
Gleason patterns or region-level Gleason scores. In the RUMC set, pixel-
based annotations were provided at the gland level, with labels assigned
according to background, stroma, benign epithelium, and cancerous epi-
thelium labeled according to Gleason pattern (Gleason 3, 4, or 5). In the
KI dataset, pixel-based regional annotations were provided for non-can-
cerous and cancerous regions. Representative images demonstrating the
annotations are shown in Fig. 1B. Slide-level Gleason scores and ISUP
grades were provided by both centers.

• Clinical data and follow-up:No additional clinical or pathological informa-
tion was provided.

Dataset 2: Specimens from patients undergoing radical prostatectomy
(RP) at the National Cancer Institute, enrolled in one or more of the clinical
studies NCT03354416, NCT00102544, and NCT02594202 for clinical im-
aging and care of localized prostate cancer were retrospectively evaluated.
Study inclusionwas determined based on the availability ofWSI, digital an-
notations by an expert pathologist, and clinical data.

• Digital slide acquisition: In total, 195 slides from 54 patients were available
in digital format, acquired on one of two scanner types: Aperio (0.5404
μm/pixel) and Hamamatsu NanoZoomer (0.2212 μm/pixel).

• Slide annotation:Digital annotations were the result of re-review by an in-
dependent genitourinary (GU) pathologist to provide intratumoral re-
gion-level annotations corresponding to “pure” Gleason scores (3 + 3,
4 + 4, or 5 + 5) or regions of “true” mixed Gleason scores (3 + 4,
4+ 3, 4+ 5, or 5+ 4). Annotations were exported to JSON style format
using QuPath software.17 A representative example of the annotations is
provided in Fig. 1C.

• Clinical data and follow-up: Clinical data retrospectively collected included
patient self-reported race, pre-RP prostate specific antigen level (PSA;
ng/mL), age, and pathological findings collected from pathology reports
including final patient Gleason grade, margin status, node status, stage,
and various other histopathological features collected in accordance with
clinical guidelines. Clinical follow-up fromRP to the timeof recurrence,de-
fined either as biochemical recurrence based on serial PSA measurements
or clinical evidence of recurrent and/or metastatic disease, was recorded.

Dataset 3: Archival tissues from RP specimens at the Joint Pathology
Center were retrospectively retrieved for digital scanning and patients
consented for research at the Center for Prostate Disease Research with fol-
low-up data were selected for the study, under the protocol WRNMMC-
EDO-2020-0657, 933668.

• Digital slide acquisition:At the time of study initiation, 398 slides from 138
patients' specimenswere available for analysis. All slideswere interpreted
by a single expert pathologist. WSI were acquired on either Aperio
(0.5016 μm/pixel) or 3D Histech (0.2425 μm/pixel) devices. All the pro-
videdWSI were unmarked, meaning only tissue was present on the slide.

• Slide annotation: In 138 patient specimen images acquired on the 3D
Histech scanner, scout images of pathologist-inked markings from pro-
spective evaluations were acquired prior to removal/cleaning of the ink
and acquisition of full resolutionWSI. These scout images were registered
toWSI, and inkedmarkings were digitally mapped back toWSI for down-
stream image processing (Fig. 1D). In these cases, the inked markings
were used to provide cancer versus benign-level annotations and unique
tumor lesion IDs. Pathologist-annotated tumor lesion IDs were used to
link each tumor lesion with its assigned Gleason score from the clinical
pathology reports. Tumor IDs are assigned by the pathologist at the



Fig. 1. Representative images of annotation strategy within each dataset. (A) Flow diagram outlining the number of patients/slides per dataset, annotation strategy,
exclusions, and final number of patients/slides considered for analysis. (B) Dataset 1 Left: example from RUMC with detailed gland-level annotation from a slide
containing Gleason patterns 4 (orange) + 5 (red). Background tissue is labeled as gray. Right: example from KI with regional annotations for background /benign in gray.
(C) Dataset 2: example digital annotations completed within QuPath software, highlighting overall tumor region, and sub-regions enriched for specific patterns, including
Gleason 5 (red), Gleason 4 (orange), Gleason 3 (purple), individual and mixed patterns (variable colors), and specific features such as cribriform (yellow) and PNI (blue).
(D) Dataset 3 Left-top: example scout image reflecting foci ROIs drawn by a pathologist with inked markings and corresponding tumor identifier (tumor IDs, shown as
numbers adjacent to foci markings) which are then mapped to tumor-specific Gleason grade from pathology report; Left-bottom: corresponding clean/unmarked whole-
slide image; Right: digitally remapped foci segmentations and the corresponding tumor identifiers (labeled uniquely by color and corresponding grade from the pathology
report). All individual foci corresponding to a tumor lesion are color-coded (4 = yellow, 9 = green, 1 = red, 11 = blue). The Gleason score assigned to a specific tumor
lesion reflects the top two dominant Gleason growth patterns identified by the pathologist in that lesion. † n = 30 slides of benign tissue used for cancer detection. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Table 1
Total distribution of slides in each dataset according to patient-level Gleason score.

Gleason assignment Dataset 1 Dataset 2 Dataset 3

Gleason score Gleason sum

3 + 3 6 2550 14 200
3 + 4

7
665 32

143
4 + 3 881 17
3 + 5

8
62 0

4 + 4 1089 106 12
5 + 3 39 0
4 + 5

9
609 3

28
5 + 4 206 0
5 + 5 10 117 10 9

Unknown 6
Total 6218 182 398
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time of clinical interpretation (Fig. 1D) to identify regionally distinct tu-
mors within all RP blocks. Each tumor is assigned an individual Gleason
score within the pathology report, as well as an overall patient-level
Gleason score. Of the 398 whole-mount prostate slides, 172 contained
prospective annotations of the tumor lesions and the overall lesion-level
Gleason score assigned to each tumor lesion.

• Clinical data and follow-up: Comprehensive pre- and post-surgical clinical
and demographic data were collected as part of ongoing enrollment. Pre-
surgical features included self-reported race, pre-RP PSA (ng/mL), and
age. Surgical pathology reports were collected, including patient status
(ISUP grade, overall Gleason grade [either Gleason score defined as
primary+secondary patterns or Gleason sum],6–10 margin status, node
status, invasion, and pathological staging) and lesion status (tumor-spe-
cific Gleason score, nuclear grade, location, and organ confinement).
Clinical follow-up fromRP to the time of recurrence, defined either as bio-
chemical recurrence based on serial PSA measurements or clinical evi-
dence of recurrent and/or metastatic disease, was recorded. Clinical
follow-up for the time from RP to detection and clinical confirmation of
distant metastasis was also recorded. Demographics and clinical follow-
up information for the cohort are presented in Table 2.
Table 2
Clinical data and demographics of Dataset 3 cohort.

Variable Description Summary

Gleason sum
6 54
7 44
8 8
9 19
10 4
NA 3

Race
White 95

African American 34
Hispanic 3
Asian 1

Age (years) Median (range) 61.2 (40–75)
PSA (ng/mL) Median (range) 6.04 (0.3–29.1)
Follow-up interval (years) Median (range) 13 (<1–24)
Biochemical recurrence (years)

N events 45
Time to event 1.45 (0.2–11.2)

Metastasis-free survival (years)
N events 23

Time to event 6.58 (<1–17)
Overall survival (years)

N events 36
Time to event 11.05 (2.5–21)

4

Image processing and data partitions

For all three datasets, tiles reflecting 500 × 500-pixel regions at an ef-
fective 10×magnification (1 μm/pixel) were extracted in a slidingwindow
fashion from eachWSI in the training and validation cohorts. Tiles were fil-
tered to include a minimum of 5% tissue content. Tiles were labeled as be-
nign or cancerous based on available pathologist labels (ground truths) per
cohort for training the cancer detection algorithm, and cancer-containing
tiles were labeled by Gleason score according to available ground truths,
defined for each dataset.

Datasets were pseudo-randomly split into training, validation, and test-
ing sets, with the aim of maintaining a similar distribution of patient-level
Gleason scores across splits in each cohort.18 Summary of cohort splits are
provided in Supplemental Fig. 1. Dataset 1: As no clinical outcomes were
available for this dataset, we primarily used it for training at a split at pro-
portions 74/24/2 for train/validation/test. For the purposes of grading al-
gorithm training, we included all cancer-containing cores from the RUMC
set and selectively included “pure” grade (i.e., 3 + 3, 4 + 4, and 5 + 5)
samples from KI to decrease label noise when training on tiles derived
from each WSI. Dataset 2: Due to availability of highly detailed digital an-
notations and lack of long-term outcome data, this dataset was split in pro-
portions 65/15/20 at the patient level. Dataset 3: Due to availability of
treatment-related outcomes, this dataset was primarily used for testing
and split at proportions of 18/7/75. In total, 318 slides from 104 patients
were reserved for testing cascaded detection and grading algorithms. The
distribution of Gleason scores assigned to the tissue specimens by patholo-
gists at the time of clinical interpretation is shown in Table 1. Evaluation of
algorithms in the test set was completed in sliding-window fashion for cas-
caded algorithms.

Cancer detection algorithm

To develop the algorithm for cancer detection, we used tiles to train a
binary (benign versus cancer) classifier based onMobilenet-V3 architecture
with PyTorch. Tiles containing a minimum of 10% overlap with patholo-
gist-defined cancer regions were labeled as “cancer,”with all others labeled
as “benign.” An overlap threshold of 10% was chosen to ensure the cancer
detection algorithm reliably detects all areas within the WSI containing
tumor cells, including clinically relevant microscopic areas of the larger
tumor delineation. Areas with <10% overlap to pathologist-defined
tumor regions were unlikely to contain tumor cells and reflect majority be-
nign tissue surrounding the foci. The model was implemented using Adam
optimization, binary cross-entropy loss, and weights initialized from the
ImageNet dataset. A cyclic learning rate starting at 1 × 10−5 was used,
along with data augmentation strategies including MixUp,19 contrast, and
brightness variations to account for differences in hematoxylin and eosin
(H&E) staining characteristics across various centers and scanners.
After initial algorithm optimization, a random selection of cases from
Dataset 3 training cohort were selected and WSI inference was completed.
The binary outputs from cancer detection were converted to QuPath
compatible geojson formats to enable the pathologist to load and interac-
tively view the AI predictions (Supplemental Fig. 2). This process was
used to determine the source of algorithm errors (false-positive- and
false-negative predictions). An expert pathologist reviewed all AI
predictions and interactively modified the ROIs using QuPath software.
This process was completed in n = 7 cases, after which tiles were
re-extracted from new ROIs and oversampled 5× in the training set.
Models were re-trained and the final model was selected from the epoch
with lowest validation loss.

Cancer grading algorithm

For training, each tile was associated with a one-hot encoded label vec-
tor yi representing all possible Gleason patterns that may be present in the
tile. For example, if a tile xi overlapswith a 3+4 or 4+3 annotated tumor
region, it was assigned a label yi 1, 1, 0) representing the potential
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presence of Gleason patterns 3 and 4 within the tile. For each tile, the net-
work outputs a vector of independent probabilities pi ∈ R3 1, one per
Gleason pattern, reflecting the probability of detecting each Gleason pat-
tern. Due to regional heterogeneity, the true Gleason patterns present
within a tile may not necessarily be reflected by the associated tile label,
which captures the overall Gleason score of a tumor region. Therefore,
tiles from regions broadly classified as having mixed grades, such as those
from radical prostatectomy annotations or Karolinska subset of Dataset 1
(PANDA), were expected to have noisy labels. To mitigate overfitting to
noisy labels, we used a hybrid training algorithm (Algorithm 1).

Algorithm 1. Selective Cut-Mix.

Input: x1, …, xn, y1, …, yn, α, ρ.
Output:Multi-label Gleason pattern detector: F (xi, θ) → pi ∈ R3×1

#Initialize ResNet50 CNN using ImageNet pretrained weights;
θ ← θ0;
for epoch ← 1 to numepochs do
for batch ← 1 to numbatches do
#pure grade examples;
X, Y← (xi, yi)∀i∈ batchwhere yi∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0,

0)};
#mixed grade examples;
X′, Y ′ ← (xi, yi) ∀i ∈ batch where yi ∈ {(1, 0, 1), (0, 1, 1), (1, 1, 0),

(1)};
#randomly shuffle pure grade examples;
X′′, Y ′′ ← RandomShuffle(X, Y);
#generate artificial examples with CutMix data augmentation of pure

grade examples;
X˜, λ ← CutMix((X, X′′), α);
U(0, 1) ← random sample from uniform distribution
Fig. 2. Overview of the overall cascaded approach for Gleason grading. The first step
MobileNetV3 classifier that learns to classify each whole-slide image tile as benign
analyzed using a multi-label classification algorithm to determine the probability of eac
a Resnet50 feature extraction layer and a feed forward classification layer. The class
probability of observing each Gleason pattern. Training data consist of cancer tiles con
training, artificial tiles are generated using the CutMix data augmentation strategy,13

class to generate new artificial tiles containing a weighted mixture of image features fro

5

if U(0, 1) > ρ then
#Compute cross entropy loss over real + artificial examples;
L1 ← (1− λ) BCELoss(F (X˜, θ), Y) + λ BCELoss(F (X˜, θ), Y ′′);
L2 ← BCELoss(F (X′, θ), Y ′);
L ← L1 + L2

else
#Compute cross entropy loss over real examples only;
L ← BCELoss(F ([X, X′], θ), [Y, Y ′]);

#error backpropagation;

θ θ − η δLδθ

end
end

The hybrid training algorithm uses the CutMix data augmentation
technique13 relies on artificial generation of “mixed” label tiles. In this ap-
plication, consider an input pair of example images xi, xj from two sepa-
rate pure Gleason labels (for example, 3 + 3 and 4 + 4). Our hybrid
CutMix algorithm artificially derives a 3 + 4 tile by randomly cropping a

region of xi into xj to generate a new example x
∼
(Fig. 2). The size of the ran-

dom crop is controlled by a size parameter λ∼Beta α, α . Besides the learn-
ing rate η, the algorithm additionally takes as input a hyper-parameter ρ
that controls, in a stochastic fashion, the extent towhichwe used artificially
generated examples during training. For all purposes in this study, ρwas set
to 0.5 to perform balanced training on real and artificial examples.

We used a ResNet50 convolutional neural network (CNN)20 to perform
multi-label Gleason pattern classification on stain-normalized WSI tiles
x1, x2, , xi, , xn from cancer regions. Stain normalization was done
of the algorithm involves cancer detection, which is performed using a trained
or containing cancer. In the second step, all cancer containing tiles are further
h Gleason growth pattern in each tile. The multi-label Gleason classifier consists of
ification layer consists of three independent classification heads that predict the
taining a mix of single and multiple Gleason growth patterns. To regularize model
which randomly cut-pastes regions of tiles from one class into tiles from another
m two classes.



S. Patkar et al. Journal of Pathology Informatics 15 (2024) 100381
using the Macenko method.21 The cancer detection algorithm was used for
pre-selection of patches for Gleason pattern classification, regardless of the
presence of inked markings on the digital slides. In training and validation
sets, tileswere re-extracted from false-positive regionswithin the cancer de-
tection algorithm for training and validation and labeled as low risk, or
Gleason 3, to avoid out-of-distribution errors in the grading algorithm.
The learning rate η was initialized to 0.000001 and exponentially decayed
over time using the exponential decay function, with the exponential decay
parameter γ set to 0.9. The algorithmwas implemented in Python using the
PyTorch library. Back-propagation was performed using the Adam opti-
mizer. The final model was selected from the epoch with the lowest valida-
tion loss and was frozen for inference on the test sets. A pictorial overview
of the overall deep learning approach is depicted in Fig. 2.

To benchmark the performance of our proposed hybrid training strat-
egy, we designed three negative control training experiments:

• Control 1 (Pure Grade+CutMix): Train a Gleason pattern classifier using
tiles from pure-grade regions identified by pathologist annotation and ar-
tificially generated tiles derived using CutMix strategy as visually de-
scribed in Fig. 2. Excluded tiles in this control include all mixed-grade
regions by pathologist annotation.

• Control 2 (Pure Grade): Train a Gleason pattern classifier using tiles from
pure-grade regions identified by pathologist annotation only. Excluded
tiles in this control include all artificially generated tiles derived using
CutMix strategy and all mixed-grade regions identified by pathologist
annotation.

• Control 3 (Mix Grade): Train a Gleason pattern classifier using tiles from
mixed-grade regions by pathologist annotation only. Excluded tiles in this
control include all artificially generated tiles derived using CutMix strat-
egy and all pure-grade regions identified by pathologist annotation.

Statistical analysis

Tumor detection performancewas evaluated separately for each dataset
due to variable reference annotations. In Datasets 2 and 3, detection sensi-
tivity was reported per foci, where a tumor focus is defined as a unique spa-
tial region of an individual slide. For Dataset 3, tumor-level sensitivity was
additionally reported where multiple foci corresponded to a given tumor
and a true-positive detection corresponded to positive detection of any
foci corresponding to an individual tumor. Sorensen-dice similarity coeffi-
cient (DSC) was reported per slide to reflect the spatial correspondence of
AI predictions and binary ground truth segmentations. DSC is defined as
2∗ X∩Y X Y , where X is the pathologist-defined ROI and Y is the
AI-defined ROI. Detection performance by foci area (μm2) was character-
ized in the testing set using the free-response operating characteristic
(FROC) curve analysis to evaluate detection Sensitivity and number of
FPs/image as a function of AI-predicted foci area.

To evaluate regional, tumor, and slide-level performance on the test set,
spatial probability maps derived from a sliding-window inference were
generated. Here, each pixel in the probability map reflects the AI-predicted
likelihood for each Gleason pattern. Maps were derived for each training
strategy (hybrid model and control experiments) within any area predicted
as cancer-positive from the detection algorithm. Pixels containing >50%
likelihood for any individual Gleason pattern were considered a positive
prediction by AI. These maps were used to evaluate agreement with pathol-
ogist annotations, either using direct correlation to region-level annotations
(Dataset 2) or by agreement with pathologist-reported slide-level (Dataset
1) or tumor-level (Dataset 3) grades. For agreement with region-level anno-
tations (Fig. 1C), the proportion of AI-predicted regions containing each
Gleason pattern within pathologist-defined ROIs were compared to the pa-
thologist-assignedGleason score using Kendall's Tau correlation accounting
for clustered nature of data on the patient level was reported.22 For agree-
ment with tumor- and slide-level labels, we report the quadratic-weighted
kappa metric for the exact Gleason score and ±1-score.4 In Dataset 1, the
total proportion of cancer-positive areas containing each Gleason score3–5
6

predicted by AI were quantified for slide-level analysis. In Dataset 3, the
total proportion of areas containing each Gleason score3–5 predicted by AI
were quantified within any ROI corresponding to each pathologist-
identified tumor (Fig. 1D) for tumor-level analysis. In both settings, the
AI-derived Gleason score sums are calculated by taking the sum over
major and minor Gleason patterns present in the selected specimen regions
and compared to the pathologist assignment.

To evaluate the correlation of AI-derived quantitative Gleason scores
with patient outcomes, the weighted sum of the proportion of high-risk pat-
terns 4 and 5 over all sections of the prostate were calculated within AI-
derived tumor regions. We fit a stratified Cox proportional hazard model
to the patients' clinical data to assess the prognostic power of quantitative
Gleason scores while adjusting for positive or negative surgical margin as-
sessment by the pathologist due to its strong prognostic correlation.23 Out-
comes analysis included RFS and MFS for Dataset 3. The Concordance
Index (C-index) of these models is used to evaluate the discriminative abil-
ity of AI-derived quantitative Gleason scores across all experimental condi-
tions (hybrid vs control experiments vs pathologist), it is analogous to
standard AUC (while accounting for time-censored data) and a higher C-
index is desirable. Partial likelihood ratio analysis for non-nested Cox-
regression models was used to compare the C-index performance of AI-
derived quantitative Gleason scores across all experimental conditions
relative to ISUP. Finally, we performed unsupervised K-means clustering
of tissue samples into low-, medium-, and high-risk groups based on AI-
estimated features corresponding to the burden and proportions of each
Gleason pattern within all slides samples for a given patient. The associa-
tion of these groups with RFS and MFS was calculated and compared to
pathologist-assigned Gleason Grade Groups (ISUP 1–2, 3, and 4–5).

Statistical analysis was completed in R (version 3.6.2.). Statistical
significance was determined from the p < 0.05 level for all evaluations.

Results

Cancer detection performance on RP specimens

The initial algorithm trained with only Dataset 1 and used to evaluate
generalization errors in RP specimens demonstrated 60.5% foci-level de-
tection sensitivity and 86% tumor-level sensitivity, with average penalty
of 2.98 (0−31) false positives per slide. Training data from Datasets 2
and 3 were iteratively added, with interim results used for failure analysis
from randomly selected training cases in Dataset 3, completed with pa-
thologist review and assessment (Supplemental Fig. 2A). False positives
were found to occur in atrophy, prostatic intraepithelial neoplasia (PIN),
and periurethral tissue regions (Supplemental Fig. 2B). False negatives
primarily occurred in small foci of low-grade cancer (Supplemental Fig.
2C). At the tile level, the final cancer detection algorithm achieved the
best validation performance of 95.2% accuracy. The foci-level detection
sensitivities were 78.6% and 92.7% in the Dataset 2 and Dataset 3 tests,
respectively (Supplemental Table 1). Tumor-level detection sensitivity in
Dataset 3 was 94.7%. DSC was higher in Dataset 2, with a median of
0.824 (range, 0.159–0.924) compared with Dataset 3, with median of
0.533 (range, 0–0.895). The mean number of false positives per slide
was higher in Dataset 3 (13.3; range, 0–50) compared with Dataset 2
(2.48; range, 0–17). Foci-level FROC curve for the entire testing set is
shown in Supplemental Fig. 3.

Gleason scoring performance

With respect to Gleason score performance, our hybrid learning algo-
rithm achieved the lowest average validation cross-entropy loss compared
with the three different controls when evaluated over 15 epochs (0.45 vs
0.50, 0.58, and 1.43 for controls 1–3, respectively). Due to the variation
of data annotation within each dataset, statistical analysis was evaluated
on region-, tumor-, and slide-level based on available data.

Region-level analysis was performed in Dataset 2. We demonstrated an
improved ability to characterize regional intra-tumor heterogeneity of
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Gleason scores within the sub-foci ROIs of distinct gleason patterns anno-
tated by the pathologist in Dataset 2 (Fig. 3A–D). More specifically, based
on Kendall's Tau correlation accounting for patient-level clustering, we ob-
served an improvement in our correlation with proportion of pattern 5
across pathologist-assigned gleason patterns using the hybrid training ap-
proach compared with the 3 controls (Supplemental Table 2). Here,
Gleason 3 is not expected to demonstrate a positive correlation as it is var-
iably appearing in mixed grades, though overall decreases as expected in
high-grade areas (Fig. 3). The extent of regional intra-tumor heterogeneity
present within a single tumor is highlighted with a test case from Dataset 2
(Fig. 4), which had a tumor with an overall Gleason score of 4 + 4 along
with tertiary Gleason 3 and Gleason 5 patterns. Fig. 4A depicts patholo-
gist-marked region-level Gleason scores within one whole-mount slide,
whereas Fig. 4B depicts pathologist-marked region-level Gleason scores
for another whole-slide section of the same tumor.

Tumor-level agreement was performed in a subset of Dataset 3 for
which tumor-level Gleason sum were available in the test set (n = 114 tu-
mors fromN=28 patients). Table 3 reports the quadratic-weighted kappa
metric based on AI-estimated proportions of major and minor Gleason pat-
terns, demonstrating the hybrid training scheme resulted in a higher level
of agreement with the pathologist. Contingency tables for per-class agree-
ment are shown in Supplemental Fig. 4. For slide-level analysis, AI-
estimated proportions within each biopsy slide were compared to
Fig. 3. (A–D) Boxplots depicting the distribution of the estimated proportion of eachGlea
X-axis: Pathologist-assigned Gleason score for any given tumor region. The pathologist-a
growth patterns detected by the pathologist in that region. Y axis: AI-estimated quantitat
proportion of a Gleason pattern in a tumor region is estimated as the fraction of tiles in t
interpretation of the references to color in this figure legend, the reader is referred to th
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ground-truth annotations from PANDA challenge (Dataset 1). Similar to
tumor-level annotations, the hybrid training scheme resulted in a higher
level of agreement with pathologist (Table 3), with majority of disagree-
ment due to the AI-based prediction of pattern 4 presence (resulting in
AI-predicted Gleason sum = 7) with pathologist-defined Gleason sum =
6 (Supplemental Fig. 5). Overall, the exact agreement with pathologists'
assigned Gleason scores was higher for biopsy slides (κ = 0.63) compared
with RP slides (κ=0.44). This differencewas not observedwhen accepting
a Gleason ±1 score (Table 3).

Association of cascaded algorithms with patient outcomes

Finally, we assessed the prognostic value of our cascaded cancer detec-
tion and grading algorithms in test set specimens from Dataset 3 with
matched RFS, MFS, and OS outcomes (N = 99 patients). Demographics
and clinical follow-up information for the cohort are presented in Table 2.
Overall, quantitative Gleason scores derived using the Hybrid training algo-
rithm achieved a concordance index of 0.69 when modeling RFS, 0.72
when modeling MFS, and 0.64 when modeling OS times, outperforming
the three different controls and traditional ISUP grading (Supplemental
Table 3).

Unsupervised K-means clustering based on hybridmethod AI-estimated
proportions of each Gleason pattern demonstrated the optimal number of
son pattern in distinct tumor regions of all test cases from the NCI cohort (Dataset 2).
ssigned Gleason score for a tumor region summarizes the top two dominant Gleason
ive proportion of each Gleason growth pattern (depicted in red, green and blue). The
hat region that are predicted to have a >50% chance of containing that pattern. (For
e web version of this article.)



Fig. 4. (A–B) Depiction of region-level heterogeneity of Gleason growth patterns annotated by expert pathologist in two different sections of a test case from the NCI cohort
(Dataset 2) with an overall case-level Gleason score of 4 + 4. Left: Pathologist-marked tumor regions with distinct Gleason scores. Right: AI-generated spatial probability
maps depicting the spatial distribution of each Gleason pattern.
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clusters to be based on silhouette scoring (Supplementary Fig. 6A–B). The
resulting clusters demonstrate increasing proportions of Gleason 4 and 5
patterns based on AI predictions within whole-mount specimens (Supple-
mentary Fig. 6C–D). This AI-based risk clustering revealed a significantly
improved stratification of recurrence- and metastasis-free survival out-
comes of patients in the test-set compared to ISUP grouping (Fig. 5). Cox
proportion-hazard regression analysis demonstrated that medium- and
high-risk samples from AI-based clustering indicated patients had signifi-
cantly increasing risks of recurrence (medium-risk HR: 2.4 [1.2–5], p =
0.015; high-risk HR: 4.4 [1.4–14], p = 0.013) and metastasis (medium-
risk HR: 3 [1.1–8.1], p = 0.03; high-risk HR: 20 [4.3–89.3], p < 0.001)
compared with low risk group, even after accounting for known survival
differences associated with surgical margins (Fig. 5). Correspondence of
Table 3
κ values for exact and 1 unit agreement4 between AI and pathologist-assigned Gleaso
defined as Dataset 1: pathologist grading of core needle biopsy (CNB) and Dataset 3: pa

Dataset Metric Hybrid

1 (CNB)
κ (exact) 0.63 [0.51–0.75]

κ (±1 unit) 0.77 [0.65–0.89]

3 (RP)
κ (exact) 0.44 [0.15–0.73]

κ (±1 unit) 0.79 [0.48–1]
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AI-based risk grouping and pathologist-based ISUP grouping is shown in
Supplemental Fig. 7A. Further, Kaplan–Meier analysis reveals the likely
source of improved outcome stratification is largely due to re-classification
of ISUP 1–2 patients into medium- and high-risk AI groups for both MFS
and RFS (Supplemental Fig. 7B–C). Within the limitations of the small co-
hort of ISUP 3–5 patients, improved stratification for ISUP 3 RFS and
ISUP 4–5 MFS was also observed (Supplemental Fig. 7D–G).

Discussion

In this study, we introduce a cascaded deep learning algorithm to ro-
bustly detect different Gleason growth patterns within prostate tumor tis-
sue acquired from needle biopsies or RP specimens. The main
n score sum6–10 for datasets with pathologist grading. Reference Gleason scores are
thologist grading of distinct tumor lesions within RP specimens.

Control 1 Control 2 Control 3

0.42 [0.28–0.57] 0.5 [0.36–0.64] 0.3 [0.18–0.42]
0.74 [0.60–0.87] 0.72 [0.59–0.86] 0.35 [0.22–0.48]
0.31 [0.11–0.52] 0.09 [0–0.26] 0.01 [0–0.03]
0.56 [0.26–0.86] 0.29 [0–0.61] 0.01 [0–0.04]



Fig. 5. (A–B)Kaplan–Meier plots and hazard ratios depicting stratification of recurrence free survival of test cases from the JPC cohort (Dataset 3). Patientswere stratified into
low,medium and high-risk groups based on AI-estimated quantitative proportions of each Gleason pattern (A) and pathologist assigned ISUP grades (B). (C–D) Kaplan–Meier
plots and hazard ratios depicting stratification of metastasis free survival of test cases from the JPC cohort (Dataset 3). Patients were stratified into low-, intermediate-, and
high-risk groups based on AI-estimated quantitative proportions of each Gleason pattern (C) and pathologist assigned ISUP grades (D). Hazard ratios and p-values were
estimated by fitting a stratified Cox-proportional hazards model that accounts for survival differences associated with surgical margins. *: p-value <0.05, **: p-value
<0.01, ***: p-value <0.001, ****: p-value <0.00001.
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contributions of this work are twofold. First, we used a selective CutMix
training strategy involving real and artificially generated images from
both biopsy and whole-mount specimens, which improves multi-class
model generalizability despite heterogeneous pathologist annotations and
annotation strategies. Second, we demonstrated that AI-based quantitative
grading improves the prediction of recurrence- andmetastasis-free survival
after RP. By harnessing detailed, long-term clinical follow-up data, we eval-
uate the prognostic value of AI-derived quantitative Gleason pattern esti-
mations against pathologist-assigned ISUP grades, showing marked
improvement in our ability to predict recurrence- and metastasis-free sur-
vival compared with traditional Gleason scoring, even after adjusting for
survival differences associated with known clinical risk factors.

In contrast to previous approaches, ours uses a simple training strategy
involving a combination of real and artificial training examples to impose
heterogeneity on the training process. This not only improves the robust-
ness and generalization of predictions in the face of interobserver variabil-
ity but also allows us to characterize regional heterogeneity of Gleason
patterns within individual tumorsmore precisely. Overall, the kappa values
fell within the expected range of inter-rater agreement for needle biopsy
9

and RP specimens.5,24–26 Importantly, the agreement was the highest
when using the hybrid training algorithm. Many of the disagreements be-
tween pathologist- and AI-derived Gleason scores arose from the higher res-
olution of AI predictions compared with pathologist annotations, especially
in mixed-grade regions, where it is challenging for pathologists to define
clear transitions between different Gleason patterns. A recent study demon-
strates that pathologists' spatial annotations can vary up to 46% in size due
to variations in annotation strategy and complexity.27 These spatial varia-
tions, in addition to existing grading variations, can contribute to variable
performance estimation in public-challenge datasets.28 Taken together,
our results suggest that a hybrid training strategy admixing heterogeneous
labels improves the robustness and generalization of Gleason scoring de-
spite errors associatedwith inter-observer variability and varied annotation
styles.

We observed that the AI model's ability to capture subtle details in
tumor regions resulted in improved stratification of RFS when using quan-
titative estimates compared with traditional scoring by pathologists. These
results agree with a recent state-of-the-art study from Nagpal et al., who re-
port a similar C-index, 0.65 (0.54–0.76), on whole-mount prostate
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specimens.7 A follow-up study from the same group demonstrates that
quantitative AI estimates of Gleason scores provide even better concor-
dance with disease-specific survival (C-index 0.84), though their methodol-
ogy, using leave-one-out cross-validation as opposed to an independent
validation set, differed from that of previous studies and from our
approach.29 Other studies additionally support the notion that quantitative
estimates of Gleason scoring and morphology characteristics may offer im-
proved risk stratification for RFS.30,31 Importantly, in contrast to recently
reported studies, ours demonstrates a marked improvement in prediction
of MFS over the long term using AI-derived Gleason scores, even after
adjusting for known clinical confounding factors, including positive surgi-
cal margins.

Most prior models for assessing AI-based prostate cancer detection
have been trained and validated in the biopsy setting.9,11,16,32,33 We ob-
served that when models are only trained using biopsy tissue, false posi-
tives occur in areas that are less commonly sampled during typical
biopsy procedures, such as urethra, neural ganglion, or seminal vesicle tis-
sue. Expert review of AI-predicted regions in a subset of the training pop-
ulation enabled faster identification and optimization of the final
algorithm. Furthermore, we report variable region-level sensitivity de-
pending on the level and quality of pathologist ground truth between
datasets used in this study. In the case of digital annotations (Dataset 2),
we report higher spatial correspondence, as measured by Dice coefficient,
with the pathologist and lower sensitivity due to false negatives in small
tumor foci regions. This is in comparison to performance against inked
markings (Dataset 3), where we observed lower spatial correspondence
in the Dice coefficient but higher sensitivity on both foci- and tumor-
level annotations. This underscores the need for transparent reporting of
annotation strategies, and further research on validation differences
between methods is warranted.

Our study has several limitations. Intra-prostatic tumor regions, in re-
section or needle biopsy specimens, are often intermixed with stroma and
normal prostate glands. Failure analysis of the cancer grading algorithm re-
vealed that when the final cancer prediction area included benign areas ad-
jacent to cancerous regions, the most likely grade assignment was Gleason
pattern 3 with high probability by the AI grading algorithm. However, re-
gions of stromal hyperplasia or immune cell infiltration were occasionally
assigned as containing Gleason pattern 4 or Gleason pattern 5 by the AI
grading algorithm with moderate probability (See Supplementary Fig. 8).
All tissue areas were included in cancer detection evaluation, representing
a strength of the sensitivity and low false-positive rate of the algorithm.
However, cascading the detection and grading algorithms without user in-
teraction could result in false-positive regions being assigned to high
Gleason patterns. Further training and investigation of failure patterns is
warranted. Similarly, while a diverse cohort of patient specimens was col-
lected for algorithm training, it is still possible that histological variants
such as neuroendocrine or squamous-like features are under-represented
in the training set, and careful consideration of the performance of both de-
tection and grading algorithms should be evaluated in future studies. Fur-
thermore, there was a relatively limited representation of high risk
disease within this cohort and further performance validation is warranted.
Despite observed advantages of training from heterogeneous data samples,
our study is limited by variable annotation strategies within each dataset
which limit our ability to uniformly assess Gleason grading agreement
with the pathologist across all datasets. A small number of cases were miss-
ing Gleason labels in Dataset 3, and therefore could not be statistically com-
pared to pathologist grading. Each dataset was utilized differently
depending on the nature of the provided annotations, resulting in a set of
biased testing sets which could not be combined to one cohesive testing
evaluation strategy. This warrants future validation in additional cohorts
for evaluation on how our algorithm and training strategy may generalize
to other clinical cohorts. Finally, prognostic validation of our quantitative
cancer detection and grading algorithms was only performed in a relatively
small cohort from a single institution, and therefore the generalizability of
these findings to patient outcomes from other clinical or academic centers
was not evaluated.
10
In summary, successful use of a hybrid CutMix approach that selectively
combines data from strong and weak labels across multiple data sources re-
sults in generalizable performance across heterogeneous pathologist
ground truths. Furthermore, our AI-based quantitative Gleason scoring ap-
proach has the potential to characterize tumor aggressiveness with greater
precision compared to traditional Gleason scoring, and thus, improve prog-
nostication after prostate surgery.
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