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Abstract

Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal
wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of
current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic
nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can
significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed
play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of
MSCs in wound tissues. DA acted through its D2 receptors present in the MSCs to inhibit their mobilization to the wound
beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed
after treatment with specific DA D2 receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound
site following blockade of DA D2 receptor mediated actions, and this in turn was associated with significantly more
angiogenesis in wound tissues. This study is of translational value and indicates use of DA D2 receptor antagonists to
stimulate mobilization of these stem cells for faster regeneration of damaged tissues.
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Introduction

Angiogenesis, the formation of new blood vessels from pre-

existing ones is a normal physiological process and plays an

important role in wound healing [1–2]. This complex and

dynamic process further involves multiple cellular and molecular

regulators, among which the roles of endothelial cells [1–2] and

endothelial progenitor cells [3–5] have been well documented.

However, recent attention has been drawn to the role of

mesenchymal stem cells (MSCs) in wound angiogenesis and the

healing process [6–10]. MSCs are multipotent stem cells present

in adult bone marrow, umbilical vein and adipose tissue, and these

adult stem cells have the capacity to proliferate and differentiate

into different mesenchymal lineage cells [11–13]. Wound results in

the release of various growth factors and cytokines and these

molecules by acting as chemokines increase the mobility of MSCs

from their sources, thereby facilitating migration of MSCs into

the peripheral blood and from there into wound bed [14–16].

Accumulating MSCs at wounded sites accelerate the process of

wound tissue angiogenesis, an essential physiological step for

successful wound tissue repair by transdifferentiating into different

cell types, which include endothelial cells, the principal struc-

tural component of wound tissue neovessels [8,10,13,17–19].

In addition, these MSCs have the capacity to release various

proangiogenic factors like vascular endothelial growth factor

(VEGF) to support the growth, survival and differentiation of

endothelial cells [9,13,17,19–20].

Previous studies from our laboratory have conclusively demon-

strated that endogenous catecholamine neurotransmitter DA by

acting through its D2 receptors can significantly inhibit angiogen-

esis in malignant tumors [21–24]. Recent studies from our lab-

oratory have also shown that DA by acting via its D2 receptors

negatively influences the process of normal wound healing in a

murine model of full thickness dermal wounds, and treatment with

specific DA D2 receptor antagonist significantly accelerates the

process of neovascularization in wound tissues leading to faster

healing [25]. As recent reports indicate important roles of MSCs in

wound angiogenesis, we therefore investigated whether DA can

regulate this neovascularization process in normal wound tissue by

influencing the mobilization of MSCs into wound site and their

subsequent pro-angiogenic effects during wound healing.

Results

Treatment with specific DA D2 receptor antagonist
following injury significantly increases number of MSCs
(CD342 CD452 CD105+ cells) in peripheral blood

Recent studies from our laboratory have shown that treatment

with specific DA D2 receptor antagonist significantly accelerates

the time of wound healing in a murine model of full thickness
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normal dermal wounds, and this healing in turn is associated with

increased angiogenesis in wound tissues [25]. Mobilization of

MSCs into wound bed and their subsequent active participation

in wound tissue neovascularization are critical steps towards

successful wound healing [6–8,10,13,17–19]. Therefore, in the

present investigation to explore the regulatory role of DA D2

receptors, if any, on mobilization of MSCs into wound site, the

status of circulating MSCs in peripheral blood of both control and

eticlopride treated back skin-injured mice had been compared

at different time intervals by flow cytometry to determine the effect

of inhibitory action of DA D2 receptors on the profile of circulat-

ing MSCs. The results showed that treatment with DA D2

receptor antagonist eticlopride significantly increased the numbers

of circulating MSCs (immunophenotypically CD342 CD452

CD105+ cells) [26] in peripheral blood of wound bearing mice

in comparison to vehicle treated controls at different time intervals

(3, 6, 12, 24, 36 and 48 hours after wounding) (Fig. 1A and 1B). In

both control and treated animals, the number of circulating MSCs

showed a sharp increase that reached peak at 6 hour after creation

of wounds (Fig. 1A). However, this increase in the numbers of

circulating MSCs were significantly higher in DA D2 receptor

antagonist treated mice in comparison to vehicle treated controls

at all time points (Fig. 1B). Similar results were also observed

following treatment with another DA D2 receptor specific anta-

gonist domperidone (results not shown). It is to be noted here that

treatment with other DA receptor antagonists (D1, D3, D4 and D5)

had no significant effects on the mobilization of MSCs (results not

shown). This data confirmed that the action of DA was specific

and was mediated through its D2 receptors present in MSCs.

CD342 CD452 CD105+ Cells showed osteogenic and
adipogenic differentiation potential in vitro

Mesenchymal stem cells are multipotent in nature and have the

unique ability to differentiate into various cell types among which

osteogenic and adipogenic differentiation are considered as hallmarks

of these adult stem cells [26]. Therefore, to confirm the identity of

CD342 CD452 CD105+ cells as MSCs, their osteogenic and

adipogenic differentiation potential were evaluated. Using lineage cell

depletion kit (Miltenyi Biotec, Germany), mesenchymal lineage cells

were isolated from total bone marrow cells by depletion of cells of

haematopoietic lineage, cultured in MSC media and expanded in vitro

for three passages [27]. Flow cytometry demonstrated that over 95%

of the total cells were phenotypically CD342 CD452 CD105+ in

nature, characteristics of MSCs (Fig. 1C). These CD342 CD452

CD105+ cells also expressed SSEA-4, a stage-specific embryonic

antigen that identifies adult mesenchymal stem cell population from

the bone marrow [28]. These cells were then cultured in appropriate

induction media to induce osteocytes and adipocytes [29]. In the

initial osteogenic culture, no mineralized cell was detected. However,

after five weeks, mineralized cells positive for von Kossa staining

showing calcium deposition were observed (Fig. 1D) thus indicating

osteogenic differentiation of these cells. Similarly one week after

adipogenic induction, formation of intracellular lipid vacuoles were

detected in these cells. Thereafter, lipid accumulation increased along

with the inductive periods, which was chemically stained by Oil Red

O, a specific staining, which identifies lipid droplets in adipocytes,

thereby, confirming adipocytic nature of these cells (Fig. 1E).

Murine MSCs express DA D2 receptors
To confirm the role of DA D2 receptors in the migration of

MSCs into wound tissue, it was necessary to know whether these

cells expressed DA D2 receptors. Therefore, the presence of DA

D2 receptor was investigated by western blot and flow cytometry.

Western blot analysis of in vitro expanded murine MSCs showed

presence of DA D2 receptors in these cells, which was further

confirmed by flow cytometry analysis (Fig. 2A and 2B). Flow

cytometry of CD452 CD342 CD105+ SSEA-4+ cells confirmed

that almost 86% cells of the total MSC population expressed DA

D2 receptors on their surfaces (Fig. 2A).

Treatment with DA D2 receptor antagonist significantly
accelerated mobilization of exogenously transplanted
MSCs towards wound bed

As it was evident that treatment with DA D2 receptor antagonist

increased the number of circulating MSCs in wound bearing mice

(Fig. 1A and 1B), therefore experiment was undertaken to

determine mobilization of these circulating MSCs cells into the

wound bed, the site where these cells are required to migrate in

order to mediate wound angiogenesis and tissue repair. To

investigate the effect of DA D2 receptor antagonist on the homing

of MSCs into wound site, bone marrow derived and expanded

MSCs (CD342 CD452 CD105+ cells) were labeled with BrdU in

culture and were then injected i.v. via the tail veins into both

control and eticlopride treated back skin-injured mice on day

1 after wounding. These cells were injected 2 hrs after DA D2

receptor antagonist treatment. The transplanted MSCs in the

wound bed were identified by BrdU immunoreactivity. Our study

revealed significantly higher number of BrdU labeled MSC

transplants in DA D2 receptor antagonist treated wound tissues

than vehicle treated controls on day 6 after creation of wound and

completion of 4 day treatment schedule (10 mg/kg/day) of

eticlopride (Fig. 2C and 2D).

Increased integration of fluorophore-labeled (CM-Dil)
transplanted MSCs into blood vessels in wound bed
following DA D2 receptor antagonist treatment

Our previous results had shown that treatment with DA D2

receptor antagonist eticlopride significantly increased the wound

healing process by stimulating neovascularization [25]. Interest-

ingly, our present results also revealed that this treatment was

associated with increased number of migrated MSCs into wound

sites (Fig. 2C and 2D). Therefore, we investigated whether this

increased number of mobilized MSCs in wound tissue following

DA D2 receptor antagonist treatment was also associated with

increased incorporation of these cells into the neovessels of heal-

ing wounds. Co-localization studies showed that on day 6 after

wounding and completion of 4 day of eticlopride treatment

schedule, exogenously transplanted MSCs, labeled with fluores-

cent dye CM-Dil (red in colour), had incorporated into the newly

formed blood vessels in wound site (CD31 positive cells, green in

colour) in considerably higher numbers than vehicle treated

controls (Fig. 3A).

Furthermore our results also demonstrated that treatment with

eticlopride in combination with transplanted MSCs resulted in

significantly more angiogenesis in wound tissues in comparisons to

the vehicle treated controls or animals treated with eticlopride or

MSCs alone (Fig. 3B and 3C).

DA through its D2 receptors regulate VEGF induced
migration of MSCs in vitro

In vivo results from the present investigation had shown that

exogenously transplanted BrdU labeled MSCs migrated to the

wound bed in significantly higher numbers in DA D2 receptor

antagonist eticlopride treated wound bearing mice than vehicle

treated controls (Fig. 2C). It was also evident from co-localization

study that greater numbers of these cells had integrated into the

neovessels of the wound bed (Fig. 3A).

Dopamine and Mesenchymal Stem Cells
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Figure 1. Treatment with dopamine (DA) D2 receptor specific antagonist significantly increased the number of circulating MSCs in
peripheral blood of wound bearing mice. (A) Effect of eticlopride (DA D2 receptor specific antagonist) on the number of circulating MSCs in
peripheral blood of wound bearing mice. Blood was collected from both the control and eticlopride treated wound bearing mice at different time
intervals after injury, mixed with EDTA, treated with RBC lysis buffer and incubated with anti-CD45, anti-CD34 and anti-CD105 antibodies. Cells were
initially gated to exclude dead cells and debris and then the CD342 CD452 cell population was selected and evaluated for presence of CD105, a
specific surface marker of MSCs. Results are representative of six separate experiments each yielding similar results. (B) Graph showing that DA D2

receptor antagonist treatment have significant positive regulatory effect on MSC mobilization as significantly higher number of MSCs (CD342 CD452

CD105+ cells) was evident in peripheral blood of mice compared to vehicle treated controls at all time points after wounding. (*, P,0.05). (C)
Characterization of MSCs by flow cytometry. Analysis with flow cytometer showed that over 95% cells of the total 3rd passage murine bone marrow
cell populations were positive for both SSEA-4 and CD105 (specific surface markers of MSCs) and negative for CD34 and CD45, thus confirming their
identity as MSCs. BM-MSCs were cultured in appropriate induction media to evaluate osteogenic and adipogenic differentiation potential of these
stem cells and were confirmed by von Kossa staining (D) and Oil-red O staining (E) respectively. (D) To confirm osteogenic differentiation, mineralized
deposits in the extracellular matrix were visualized by von Kossa staining. Differentiated cells were fixed with 4% paraformaldehyde, washed and then
stained with 5% silver nitrate (Sigma) solution in the absence of light at room temperature for 30 minutes. Cells were then exposed to sunlight for
5 minutes and excess silver staining was removed by washing 2–3 times with a 5% sodium thiosulfate solution and ultimately washed with distilled
water. (E) Adipogenic differentiation of cultured MSCs was confirmed by Oil-red O staining. Cells were fixed with 4% paraformaldehyde and washed

Dopamine and Mesenchymal Stem Cells
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Several recent reports have indicated that VEGF is the predominant

growth factor, which regulates wound angiogenesis [30–33] and che-

motactic migration of MSCs both in vitro and in vivo [14,15,31,34–37],

therefore further experiments were designed in vitro to determine the

direct effect of VEGF on the migration of murine MSCs.

The results showed that the numbers of migrated MSCs

(CD342 CD452 CD105+ cells) in the presence of medium alone

(DMEM without FCS) was very low and it increased in the

presence of 30% FCS or VEGF (10 ng/ml) (Fig. 4A). This result

corroborates well with the critical role of VEGF in regulating

chemotaxis of MSCs into wound bed as reported by several

other studies [15,31,34–37]. Therefore, further experiments were

designed in vitro to evaluate the role of DA on VEGF induced

migration of murine MSCs.

Figure 2. Treatment with dopamine (DA) D2 receptor antagonist significantly accelerated mobilization of exogenously
transplanted MSCs towards wound bed. (A) Flow cytometric analysis of DA D2 receptors in murine MSCs. To confirm that CD342 CD452

CD105+ SSEA-4+ cells express DA D2 receptors, in vitro expanded Linneg bone marrow cell population (containing CD452, CD11b2 cell populations)
were initially gated to exclude dead cells and debris and then the CD342 cell population were selected and these CD342 CD452 cells were evaluated
for presence of CD105, SSEA-4 and DA D2 receptors. Results showed that almost 86% cells of the total MSC population (both CD342 CD452 CD105+

cells and CD342 CD452 SSEA-4+ cells) express DA D2 receptors on their surfaces. (B) Western blot analysis of DA D2 receptors in murine BM-MSCs. H4
neuroglioma cell line and sarcoma-180 (S-180) tumor cells were used as positive and negative controls, respectively. (C) Effect of DA D2 receptor
antagonist treatment on mobilization of exogenously transplanted MSCs towards wound site. MSCs were labeled with BrdU in culture and injected
into the tail vein of both control and eticlopride treated back skin-injured mice. After completion of eticlopride treatment, at 6th day the skin from
the wound area was collected and analyzed by immunohistochemistry using BrdU labeling and detection kit (Roche Applied Science). Significantly
higher number of BrdU positive transplanted MSCs are located in the wound bed of eticlopride treated group than vehicle treated control group,
showing DA D2 receptor antagonist treatment has significant positive effect on mobilization of exogenously transplanted MSCs towards wound site.
Original magnifications, 6200. Results are representative of six separate experiments each yielding similar results. (D) Graphical representation
showing significantly higher number of exogenously transplanted MSCs (BrdU positive cells) in wound bed of eticlopride treated groups compared to
vehicle treated controls at day 6 post wounding (*, P,0.05). Number of transplanted MSCs cells was measured by counting the number of BrdU
positive cells in 10 randomly chosen high power microscopic fields within the sections.
doi:10.1371/journal.pone.0031682.g002

with 60% isopropanol. After completely drying the flasks Oil Red O working solution were added and stained for 15 minutes. Then all Oil Red O were
removed and distilled water was added immediately to wash 2 times. Finally, the flasks were viewed under microscope and photographed. Original
magnifications, 6200.
doi:10.1371/journal.pone.0031682.g001
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Figure 3. Dopamine (DA) D2 receptor antagonist treatment stimulate incorporation of MSCs into neovessels of wound bed and
subsequent angiogenesis in wound bed. (A) Effect of eticlopride treatment on incorporation of transplanted MSCs into newly formed blood
vessels in wound bed. MSCs were labeled with CM-Dil and injected into the tail vein of both control and eticlopride treated back skin-injured mice. At
day 6, the skin from the wound area was collected and sectioned with cryomicrotome. Frozen sections were immunostained with anti-CD31 antibody
and FITC-conjugated secondary antibody and analyzed to determine the extent of incorporation of transplanted MSCs into blood vessels. Here co-
localization study showed that exogenously transplanted MSCs, labeled with fluorescent dye CM-Dil (red in colour), had integrated into the newly
formed blood vessels (green in colour) in wound site in much greater number following DA D2 receptor antagonist treatment than vehicle treated
controls. Original magnifications, 6200. (B) Effect of MSC transplantation on formation of new blood vessels in wound bed. Immunohistochemical

Dopamine and Mesenchymal Stem Cells
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Dermal tissues are richly innervated by sympathetic nerve fibers in

which DA is a major catecholamine neurotransmitter found in the

extracellular fluid surrounding neuronal synapses [38–39]. Therefore

in the present investigation, the effect of physiological concentration

of DA (1 mM as observed in neuronal synapses) [40] was evaluated in

regulating VEGF induced migration of MSCs in vitro.

Addition of 1 mM DA in the medium significantly inhibited

VEGF induced migration of MSCs, whereas, when these cells were

pre-treated with 100 mM eticlopride (a specific DA D2 receptor

antagonist), the inhibitory effect of DA on this growth factor

mediated mobilization was abrogated (Fig. 4A). Thus, the in vitro

results showed that physiological concentration of DA as observed in

Figure 4. VEGF regulates migration of murine BM-MSCs through activation of Akt. (A) Effects of VEGF on in vitro migration of MSCs in
transwell chambers. After incubation with MSCs at 37uC for 24 hours, VEGF was added. After overnight incubation cells remaining on the upper face
of the filters were removed with a cotton wool swab and migrated cells that remained on the lower face of the filters were stained with Gill’s
Haematoxylin, counted and photographed. Numbers of migrated cells were counted in 10 high-power fields (HPFs) after subtraction of the basal
migration observed in the presence of DMEM alone (without presence of any growth factor). Dopamine (DA) significantly inhibits VEGF induced
migration of MSCs (*, P,0.05), whereas when cells were pre-treated with 100 mM eticlopride (a specific DA D2 receptor antagonist), the inhibitory
effect of 1 mM DA on VEGF mediated mobilization was abrogated. Results are representative of six separate experiments each yielding similar results.
(B) Silencing of Akt in MSCs by siRNA transfection. After 48 hours of transfection, no expression of Akt was found in MSCs transfected with Akt siRNA
(iAkt) whereas control MSCs in which control siRNA containing scrambled sequence (iScr) was transfected showed similar expression of Akt as normal
non-transfected MSCs. (C) Effect of Akt silencing on VEGF induced migration of MSCs in a chemotaxis assay. Numbers of migrated cells were counted
in 10 high-power fields (HPFs) after subtraction of the basal migration observed in the presence of DMEM alone (without presence of any growth
factor). Silencing of Akt significantly inhibits VEGF induced migration of MSCs (*, P,0.05). Results are representative of six separate experiments each
yielding similar results. (D) Flow cytometric analysis of VEGFR-2 receptors in murine MSCs. To confirm that CD342 CD452 CD105+ cells express
VEGFR-2 receptors, CD342 cells were selected from in vitro expanded Linneg bone marrow cell population (containing CD452, CD11b2 cell
populations) and these CD342 CD452 cells were evaluated for presence of CD105 and VEGFR-2 receptors. Results showed that almost 89% cells of
the total MSC population (CD342 CD452 CD105+ cells) express VEGFR-2 receptors on their surfaces.
doi:10.1371/journal.pone.0031682.g004

staining of CD31, a specific endothelial cell surface marker, shows significantly greater number of microvessels in wound tissue sections of DA D2

receptor antagonist treated mice in comparison to vehicle treated controls at day 6 post wounding. Treatment with MSCs significantly increases
microvessel density in wound bed in comparison to saline treated controls. However, eticlopride treatment along with MSCs transplantation is most
effective in increasing angiogenesis in wound tissue. Original magnifications 6200. (C) Graphical representation showing microvessels density in
wound tissue sections of different experimental groups at day 6 after post wounding (*, P,0.05). Microvessel density (CD31 positive cells) in wound
bed was measured by counting the number of microvessels in 10 randomly chosen high power microscopic fields within the sections.
doi:10.1371/journal.pone.0031682.g003
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neuronal synapse [40] inhibits VEGF induced migration of MSCs.

Furthermore, this in vitro result also correlated well with our previous

in vivo observations of eticlopride, a DA D2 receptor antagonist-

mediated increased mobilization of MSCs into wound bed.

DA regulates VEGF induced migration of murine MSCs by
inhibiting Akt phosphorylation

Because neurotransmitter DA by acting through its D2 receptors

significantly inhibited VEGF induced migration of murine MSCs

in vitro (Fig. 4A), we next elucidated the regulatory role of DA

in influencing the key signaling pathway for VEGF induced

mobilization of MSCs into the wound site. Since recent experi-

mental results have shown that activation of Akt increases the

migratory activity of MSCs [41–44], experiments were therefore

designed to dissect the regulatory role of Akt in VEGF induced

migration of MSCs in mice. siRNA transfection was utilized to

knock-down (silence) Akt in MSCs. After 48 hours, western blot

analysis was performed to confirm silencing in Akt siRNA

transfected cells (iAkt) (Fig. 4B).

The role of Akt kinase on growth factor induced mobilization of

murine MSCs was then evaluated by in vitro migration assay of

siRNA transfected (Akt-silenced) MSCs against chemotactic

activity of 10 ng/ml VEGF. Silencing of Akt significantly inhibited

VEGF induced migration of MSCs (Fig. 4C). Furthermore, flow

cytometry analysis showed that murine BM-MSCs also express

VEGFR-2 receptors on their surfaces (Fig. 4D), which corrobo-

rated well with previous observations [45–46] thus showing that

VEGF considerably influences mobilization of murine MSCs by

activating Akt kinase through its VEGFR-2 receptors present on

these cells.

We next elucidated whether DA exerted its inhibitory effects on

the mobilization of MSCs by suppresing the activation of Akt in

these cells. The activation of DA receptors in MSCs by 1 mM of

DA significantly inhibited VEGF (10 ng/ml) induced phosphor-

ylation of both VEGFR-2 and its downstream signaling molecule

Akt (Fig. 5A and 5B). However, these actions of DA were

abrogated following treatment with 100 mM eticlopride, a DA D2

receptor antagonist (Fig. 5A and 5B). In contrast, no changes were

observed in the expression of total VEGFR-2 and total Akt. These

results indicated that DA through its D2 receptors significantly

inhibited VEGF induced migration of murine MSCs by depho-

sphorylating both VEGFR-2 receptors and its downstream target

Akt kinase in these stem cells.

DA regulates polymerization of actin filaments in
migrating MSCs

Reorganization and active regulation of actin cytoskeleton is an

important event in the migratory response of cells to growth

factors, and phosphorylation of Akt had been implicated to induce

this actin polymerization [43–44].

In our actin polymerization assay, VEGF stimulated MSCs which

showed high migratory activities [Fig. 4A], was also associated with

changes in the polymerization dynamics of this protein leading to

formation of F-actin [Fig. 5C]. However, no such alterations were

observed in Akt silenced MSCs [Fig. 5C], which also showed

strikingly lower migratory activity against VEGF in comparison to

normal MSCs [Fig. 4C]. These results indicated that Akt regulated

the mobilization of MSCs by changing polymerization dynamics of

actin cytoskeleton.

Furthermore, treatment with 1 mM of DA, which significantly

inhibited VEGF induced migration of MSCs by suppressing

phophorylation of both VEGFR-2 and its downstream signaling

molecule Akt, was also associated with significant actin depolymer-

ization effect leading to the inhibition MSCs migration (Fig. 5D). In

contrast, pre-treatment with specific DA D2 receptor antagonist

eticlopride abolished this DA mediated inhibitory changes in the

actin polymerization dynamics of VEGF treated MSCs. These

results indicated that DA regulated inhibition of VEGF induced

actin polymerization and migration of MSCs were specifically

mediated through its D2 receptors.

Discussion

Angiogenesis is necessary for successful wound healing and

defects in this process leads to delayed healing as observed in

different types of chronic non-healing wounds. During cutaneous

wound repair, the neovessels provide nutrition and oxygen to the

growing tissues and aids in the formation of the provisional wound

matrix. This dynamic physiological process is temporally and

spatially regulated by interactions between different cell types and

other factors present in the wound microenvironment [1–2].

Among the various cellular effectors, the roles of endothelial cells

and endothelial progenitor cells are well established in the process

of angiogenesis [1–5]. In pathological conditions like malignant

tumors, DA can significantly inhibit tumor angiogenesis by

inhibiting VEGF induced proliferation and migration of both

adult and progenitor endothelial cells [21–24]. We have recently

demonstrated that DA can inhibit angiogenesis in normal wound

tissue by inhibiting the expression of HoxD3 and its target a5b1

integrin in adult endothelial cells [25]. DA acted through its D2

receptors [21–24]. However, current attention has been drawn to

the role of MSCs in the formation of neovessels in wound tissues.

Mesenchymal stem cells are either absent or present in

significantly low numbers in the steady state conditions in

circulation. However, their numbers considerably increase after

trauma or injury and this is associated with increased level of

plasma VEGF [14–16]. These circulating cells then migrate to the

site of the injury by the process of chemotaxis and subsequently

incorporate into the newly formed vessels to be transdifferentiated

into endothelial cells [8,10]. Several studies have indicated that

MSCs can differentiate into endothelial cells and are capable of

inducing neoangiogenesis [8,10,47–48]. In addition, these stem

cells also release several pro-angiogenic molecules like VEGF to

recruit inflammatory and progenitor cells to make the wound

tissue microenvironment conducive for neovessel formation and

subsequent healing [9,13,17,19–20,49]. These reports thus clearly

indicate the importance of MSCs in wound tissue angiogenesis.

The bone marrow and the adipose tissue are considered to be the

principal sources of MSCs [11–13,17–20] and both these tissues are

richly innervated by the sympathetic nerves [50–53]. Furthermore,

substantial amount of dopamine is present in the bone marrow

niche as well as adipocytes [24,54]. We have previously reported

that DA by acting through its DA D2 receptors can inhibit the

activity of MMP-9, a potent regulator cell mobilization from bone

marrow to peripheral circulation [24]. Therefore, in the present

study, the increased numbers of MSCs in the circulation of specific

DA D2 receptor antagonist treated wound bearing mice may be due

to inhibition of DA induced suppression of adipose tissue and/or

bone marrow MMP-9 activity. Our study also for the first time

demonstrates the presence of DA D2 receptors in the bone marrow-

derived MSCs.

In the present investigation, in vivo results showed increased

incorporation of exogenously transplanted MSCs into wound bed

after eticlopride treatment. Furthermore, it was well associated

with significantly enhanced angiogenesis. These results corrobo-

rate well with other reports that indicate significant pro-angiogenic

effect of these stem cells [6–10,48–49]. This present study also

Dopamine and Mesenchymal Stem Cells
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indicates that the physiological concentration of DA (1 mM) [40]

present in synaptic clefts can inhibit the incorporation of exo-

genously transplanted MSCs into wound bed. Several recent

reports have indicated that VEGF is the prime growth factor that

regulates wound angiogenesis and migration of MSCs both in vitro

and in vivo [14,30–47], therefore in the present investigation while

exploring the effect of DA on MSC mobilization, VEGF was used

in vitro to induce chemotaxis.

Furthermore, phosphorylation of Akt induced by different

growth factors has been shown to be one of the major signaling

pathways regulating migration of MSCs [41–44]. In the present

investigation, DA-mediated inhibition of MSCs migration was

observed due to inhibition of Akt phosphorylation in murine

MSCs. However, this effect of DA was abrogated after treatment

with specific DA D2 receptor antagonist, thereby indicating that

the action of DA was mediated through its DA D2 receptors. Since

Figure 5. Dopamine (DA) through its D2 receptors inhibits VEGF induced migration of BM-MSCs by regulating phosphorylation of
VEGFR-2 and Akt and actin polymerization. (A and B) Effect of DA on VEGF induced phosphorylation of VEGFR-2 and Akt in murine MSCs. Lane
1: Cells stimulated with VEGF (10 ng/ml). Lane 2: Cells pretreated with 1 mM DA before being exposed to VEGF (10 ng/ml). Lane 3: Cells treated with
100 mM eticlopride followed by DA and VEGF. Addition of DA significantly inhibited VEGF induced phosphorylation of both VEGFR-2 receptors and its
downstream target Akt when compared with VEGF treated control. Pre-treatment with eticlopride, abrogated DA induced dephosphorylation of both
VEGFR-2 and Akt. However, expression of total VEGFR-2 and total Akt remained unchanged. Results are representative of six separate experiments
each yielding similar results. (C) In actin polymerization assay, VEGF induced MSCs showed significant polymerization of actin cytoskeleton leading to
formation of F-actin. However, no such alterations were observed in case of Akt silenced MSCs which showed strikingly lower migratory activity
against VEGF than normal MSCs. (D) Effect of DA on VEGF induced actin polymerization in MSCs. Treatment with 1 mM DA had significant inhibitory
effect on actin polymerization dynamics in MSCs when compared to VEGF treated control. However, pre-treatment with specific DA D2 receptor
antagonist eticlopride (100 mM) abrogated the DA induced changes in the actin polymerization dynamics of the VEGF induced MSCs. Original
magnifications, 61000.
doi:10.1371/journal.pone.0031682.g005
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Akt regulates mobilization of MSCs by influencing polymerization

dynamics of actin cytoskeleton, leading to actin polymerization

and subsequently MSCs migration [43–44], we also determined

the effect of DA on actin polymerization dynamics of MSCs. Our

results indicated that DA mediated inhibition of MSC mobiliza-

tion was associated with the inhibition of actin polymerization in

these cells, and treatment with specific DA D2 receptor antagonist

abrogated these effects. This further confirmed that the inhibitory

effect of DA on MSC migration was specifically mediated through

its D2 receptors. In summary, activation of DA D2 receptors in

MSCs resulted in the inhibition of VEGF induced phosphoryla-

tion of Akt, which in turn suppressed actin polymerization and

subsequent migration of these stem cells. Recent studies by other

groups have also shown that activation of the Akt increases the

migratory activity of human MSCs, whereas treatment with PI3K

inhibitor blocks activation of Akt and thereby, significantly inhibits

migration of these cells [44]. Our results also demonstrated that

like human MSCs, Akt also played a critical role in regulating

migration of murine MSCs.

This information generated from our present study indicate for

the first time that physiological concentration of DA can negatively

regulate mobilization of MSCs into wound sites and consequently

influence angiogenesis in wound tissues. This novel finding is of

clinical significance as DA D2 receptor specific antagonists being

presently used for the treatment of other disorders may be utilized

for accelerating mobilization of MSCs to expedite angiogenesis

and hence tissue regeneration.

Materials and Methods

Experimental wound model and treatment
All animal experiments were performed after approval by the

Institutional Animal Care and Use Committees. The experiments

were carried out in full thickness dermal wound bearing normal

Swiss mice (4–6 weeks and weighing 22–25 g). The animals were

anesthetized with intraperitoneal (i.p.) injection of 100 ml solution

containing ketamine and xylazine mixture (2.215 and 0.175 mg,

respectively; Sigma). The dorsal hair of the mouse was shaved

and disinfected with an alcohol (70% ethanol) swab and two

excisional wounds were created at the same cranial-caudal

level on the dorso-medial back of each animal using an 8 mm

dermal punch biopsy. At the end of the surgical procedure, cages

were placed on a heating pad until mice fully recovered from

anesthesia [25].

Following creation of wounds, the wound bearing mice

were divided into two groups. Immediately after wounding, mice

of the treatment group were injected i.p. with 10 mg/kg of

eticlopride, specific DA D2 receptor antagonist (Sigma) in 300ı̀l

normal saline and continued for four consecutive days at an

interval of 24 hours. The control group received similar volume

of normal saline only [25]. The experiments were also repeated

with another specific DA D2 receptor antagonist domperidone

(Sigma).

Isolation, purification and expansion of MSCs from
mouse bone marrow

MSCs were separated from bone marrow of normal Swiss

mice by using MACS cell sorting system of Miltenyi Biotec

(Germany). Bone marrow cells were collected by flushing the

femurs and tibias from healthy female mice (6 weeks old). Cells

obtained from bone marrow were incubated with a cocktail of

biotin-conjugated monoclonal antibodies to remove the hema-

topoetic cells and then separated by anti-biotin microbeads-

conjugated secondary antibody. The Linneg fraction (containing

pure Mesenchymal lineage cells) was cultured in murine

mesenchymal stem cell expansion medium (Millipore, USA).

After 48 hours, the non-adherent cells were removed and

fresh medium was added to the cells. Medium was changed

every 2 or 3 days. The adherent spindle-shaped cells were further

propagated for three passages [27].

Osteogenic and adipogenic differentiation of in vitro
expanded MSCs

Osteogenic differentiation was induced by culturing confluent

mouse MSCs in a-minimum essential medium (a-MEM) supple-

mented with 10% FCS, 10 mM b-glycerophosphate, 50 mg/ml

ascorbic acid 2-phosphate and 10 nM dexamethasone for 14–28

days. The media was changed every 3–4 days. Osteogenic dif-

ferentiation of murine MSCs was confirmed by staining min-

eralized deposits in the extracellular matrix with von Kossa

staining which stains calcium deposited in ECM [29].

Adipogenic differentiation was induced by culturing confluent

mouse MSCs in a-minimum essential medium (a-MEM) sup-

plemented with 10% FCS, 0.5 mM IBMX (3-isobutyl-1-methyl-

xanthine), 10 mg/ml insulin and 1 mM dexamethasone (all from

Sigma) for 21 days. The media was changed in every 3–4 days.

Adipogenic differentiation of murine MSCs was confirmed by

Oil-red O staining which stains lipid droplets within adipocytes

[29].

Flow cytometry
Antibodies used for flow cytometry analysis were anti-CD45

(FITC-conjugated conjugated; eBioscience), anti-CD34 (APC-

conjugated; eBioscience), anti-CD105 (Phycoerythrin-conjugated;

eBioscience), anti-SSEA-4 (Phycoerythrin-conjugated; R & D

Systems), mouse anti-D2 DA receptor antibody (Santa Cruz), rat

anti-mouse IgG-FITC (eBioscience) and anti-VEGFR-2 antibody

(FITC-conjugated; BD biosciences). In order to determine the

numbers of circulating MSCs in peripheral blood after injury,

blood was collected from both control and DA D2 receptor

antagonist treated wound bearing mice at different time intervals

(3, 6, 12, 24, 36 and 48 hours after injury) by nicking the tip of

the tail. Each time 400 ml blood was taken and mixed with anti-

coagulant to prevent blood clotting. Then the collected blood

samples were treated with RBC lysis buffer to remove RBCs and

then incubated with different antibodies to evaluate the number

of MSCs in circulation. Cells were initially gated to exclude dead

cells and debris, and then the CD342 CD452 cell population was

selected and evaluated for the presence of CD105, a surface

marker of MSCs. According to the International Society for

Cellular Therapy (ISCT), MSCs are positive for CD105 and

negative for CD34 and CD45 [26]. Thus, the in vitro expanded

spindle shaped Linneg cells (containing pure mesenchymal lineage

cells) were examined for the presence or absence of specific

surface markers to confirm their identity. In addition, the

presence of DA D2 receptors and VEGFR-2 receptors on their

surfaces were also determined in these cells by flow cytometry.

Analyses were considered informative when adequate numbers of

events (after acquisition of 10,000 cells per sample) were collected

in the gated cells. Percentage of positive cells was finally

determined after comparing them with matched isotype controls

[25].

Detection of DA D2 receptors in MSCs by western blot
In vitro expanded MSCs were lysed and the protein extracts from

these cells were subjected to SDS-PAGE and then blotted onto

PVDF membranes (Millipore). Mouse anti-D2 DA receptor IgG
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and goat anti-mouse IgG HRP conjugated (Santa Cruz) were used

as primary and secondary antibodies respectively. Antibody

reactive bands were detected by enzyme - linked chemilumines-

cence (Pierce) [25].

Examination of the role of DA D2 receptor antagonist on
homing of exogenously transplanted MSCs to the wound
bed

Passage three MSC cultures were maintained at 50%

confluence. 5-Bromo-29-deoxy-uridine (BrdU) labeling reagent

(Roche Applied Science) was added into the culture medium

(1:1000) 72 hours before transplantation. The BrdU labeled MSCs

were then harvested by trypsinization and resuspended in normal

saline for injection. On the first day after wounding, 106 live MSCs

were injected into the tail vein of both control and DA D2 receptor

antagonist treated back skin-injured mice after 2 hours of DA D2

receptor antagonist injection. Thereafter, on completion of

treatment schedule on day 6, the skin from the wound area was

collected and the number of BrdU labeled MSCs transplants were

determined immunohistochemically by using BrdU labeling and

detection kit (Roche Applied Science) [55].

Determination of the incorporation of exogenously
transplanted MSCs into newly formed blood vessels in
wound bed

Lipophilic tracer (CM-Dil; Invitrogen Bioservices) was used to

label MSCs [56–57]. The MSCs were trypsinized from their

passage 3 cultures and incubated in the working solution of CM-

Dil (15 mM CM-Dil solution in HBSS) for 5 minutes at 37uC and

then for an additional 15 minutes at 4uC. After labeling, cells were

washed twice with PBS and resuspended in ice-cold normal saline

for injection. On day 1 after wounding, 106 live labeled MSCs

were injected into both control and DA D2 receptor antagonist

treated back skin-injured mice via tail vein, two hours after

injection of DA D2 receptor antagonist. On day 6, the wound

tissues were collected, washed in PBS and fixed in OCT

compound at 220uC for 1 hour, and cryostat sections were cut

from the mid-portion of the wounds with a cryomicrotome. Frozen

sections were immunostained with anti-CD31 antibody (Rat anti-

mouse; BD Pharmingen, USA) and FITC-conjugated secondary

antibody (Goat anti-rat; Millipore, USA) or biotin conjugated

secondary antibody (Rabbit anti-rat IgG; Millipore, MA) and

then analyzed either to determine incorporation of CM-Dil

labeled transplanted MSCs into the newly formed blood vessels

in wound bed or microvessel density using ABC staining kit

(Vector Laboratories) and Nova-Red substrate solution (Vector

Laboratories) [25].

In vitro Migration assay of MSCs
Migration assays were performed in transwell dishes (Corning

Costar) 6.5 mm in diameter with 8 mm pore filters. The upper side

of the transwell filter was coated for 1 hour at 37uC with 0.1%

(wt/vol) bovine gelatin (Sigma-Aldrich) in PBS. After incubation

with MSCs (56105 cells) at 37uC for 24 hrs, 10 ng/ml VEGF

(ProSpec) was added to the bottom chamber. Migration observed

in the presence of 30% FCS and with medium alone served as

positive and negative controls respectively. After overnight

incubation of the transwell chamber at 37uC, 5% CO2, the upper

side of the filters was carefully washed with cold PBS, and cells

remaining on the upper face of the filters were removed with a

cotton wool swab. Transwell filters were stained using Gill’s

haematoxylin, cut out with a scalpel, and mounted onto glass

slides, putting the lower face on the top. Each experiment was

performed in triplicate. Data were expressed as numbers of total

migrated cells per insert after subtraction of the basal migration

observed in the presence of DMEM alone (without presence of any

growth factor). We investigated the influence of DA (1 mM) on

chemotactic activity of 10 ng/ml VEGF [58].

siRNA Transfection
The MSCs were trypsinized from their 3rd passage culture and

were plated in 6-well plates at a density of 26105 cells/well in 2 ml

antibiotic free normal growth medium (Murine Mesenchymal

Stem Cell Expansion Medium; Millipore, USA) and allowed to

attach overnight. The cells were then transfected with Akt siRNA

(mice). Transfection was performed using siRNA transfection

medium and siRNA transfection reagent (Santa Cruz Biotechnol-

ogy) as per the manufacturer’s instruction. Thereafter, following

transfection, the cells were left to further grow for 48 hours and

finally western blot was performed to confirm the silencing of the

Akt using anti-Akt antibody (Santa Cruz Biotechnology) [59]. The

concentration of siRNA was optimized to ensure that it did not

affect cell viability.

To evaluate the role of the Akt in the migratory activity of

MSCs, in vitro migration assay of siRNA transfected (Akt-silenced)

MSCs were undertaken in transwell dishes (Corning Costar,

Cambridge, MA) against chemotactic activity of 10 ng/ml VEGF.

Western blot analysis to evaluate VEGFR-2 and Akt
phosphorylation in MSCs

Anti-VEGFR-2, anti-p-VEGFR-2, anti-Akt and anti-p-Akt

antibodies (Santa Cruz Biotechnology) were used as primary

antibodies. Protein extracts from cells of various experimental

groups were subjected to SDS-PAGE and then blotted onto PVDF

membranes (Millipore, Bedford, MA). Protein loading was verified

by stripping and reprobing the membrane with anti-VEGFR-2

and anti-Akt. Antibody-reactive bands were detected by enzyme-

linked chemiluminescence (Pierce ECL, SuperSignal, Pierce

Biotechnology) [59].

Actin polymerization assay
Cells of various experimental groups were grown on glass

coverslips and fixed in 37uC with 4% paraformaldehyde in PBS

for 10 minutes. The cells were then incubated with 5 ml 0.15 M

glycine solution for 5 minutes and permeabilized with a solution

of 0.1% (v/v) Triton X-100 in PBS for 5 to 10 minutes. Finally,

these cells were incubated with 1 mg/ml FITC-phalloidin (Sigma)

staining solution for 40 minutes at room temperature [60].

Statistical analysis
Data are means of at least 6 different experiments 6 SEM.

Student’s t-test was used to analyze differences between groups. p

value ,0.05 was considered statistically significant [22].
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4 through down-regulation of IGF-IR and AKT phosphorylation. Am J Pathol
177: 2701–2707.

60. Chiou WF, Don MJ (2007) Cryptotanshinone inhibits macrophage migration by
impeding F-actin polymerization and filopodia extension. Life Sci 81: 109–114.

Dopamine and Mesenchymal Stem Cells

PLoS ONE | www.plosone.org 12 February 2012 | Volume 7 | Issue 2 | e31682


