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Abstract

Background: Amino acid (AA) pathways may contain druggable targets for glioblastoma (GBM). Literature reviews and
GBM database (http://r2.amc.nl) analyses were carried out to screen for such targets among 95 AA related enzymes.

Methods: First, we identified the genes that were differentially expressed in GBMs (3 datasets) compared to non-GBM
brain tissues (5 datasets), or were associated with survival differences. Further, protein expression for these enzymes was
also analyzed in high grade gliomas (HGGs) (proteinatlas.org). Finally, AA enzyme and gene expression were compared
among the 4 TCGA (The Cancer Genome Atlas) subtypes of GBMs.

Results: We detected differences in enzymes involved in glutamate and urea cycle metabolism in GBM. For example,
expression levels of BCAT1 (branched chain amino acid transferase 1) and ASL (argininosuccinate lyase) were high, but
ASS1 (argininosuccinate synthase 1) was low in GBM. Proneural and neural TCGA subtypes had low expression of all
three. High expression of all three correlated with worse outcome. ASL and ASS1 protein levels were mostly undetected
in high grade gliomas, whereas BCAT1 was high. GSS (glutathione synthetase) was not differentially expressed,
but higher levels were linked to poor progression free survival. ASPA (aspartoacylase) and GOT1 (glutamic-oxaloacetic
transaminase 1) had lower expression in GBM (associated with poor outcomes). All three GABA related genes —
glutamate decarboxylase 1 (GAD1) and 2 (GAD2) and 4-aminobutyrate aminotransferase (ABAT) — were lower in
mesenchymal tumors, which in contrast showed higher IDO1 (indoleamine 2, 3-dioxygenase 1) and TDO2
(tryptophan 2, 3-diaxygenase). Expression of PRODH (proline dehydrogenase), a putative tumor suppressor, was
lower in GBM. Higher levels predicted poor survival.

Conclusions: Several AA-metabolizing enzymes that are higher in GBM, are also linked to poor outcome (such as
BCAT1), which makes them potential targets for therapeutic inhibition. Moreover, existing drugs that deplete
asparagine and arginine may be effective against brain tumors, and should be studied in conjunction with
chemotherapy. Last, AA metabolism is heterogeneous in TCGA subtypes of GBM (as well as medulloblastomas
and other pediatric tumors), which may translate to variable responses to AA targeted therapies.

Keywords: Glioblastoma (GBM), Amino-acid (AA) metabolism, BCATT (branched chain amino acid transaminase 1),
Asparagine (Asn), Glutamine (GIn)

Background

In addition to surgery and radiation, brain tumors are sub-
ject to systemic therapies, which circulate in the blood-
stream and affect cancer cells all over the body. The
systemic therapies for cancer can be grouped into 4 main
categories: (1) DNA damaging and/or repair suppressing
agents [1] (e.g., cytotoxic chemotherapy); (2) cell signaling
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inhibition [1-3] (e.g., blocking tumor angiogenesis and
tyrosine kinases); (3) immunotherapy [4, 5]; and (4) meta-
bolic strategies [6]. Metabolic approaches are based on as-
sumed differences in metabolism in cancer cells compared
to normal tissues [6, 7]. Antimetabolites largely act by
diminishing synthesis of molecules essential for cancer cell
survival, either by substrate depletion or by interfering
with enzyme (s) [6]. Classic examples include asparaginase
for acute leukemias [8] and the anti-folate drug, metho-
trexate, for a variety of tumors [9]. A major advantage of
antimetabolites is the absence of direct DNA damage,
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which leads to significant bone marrow toxicity [10], and
may cause secondary malignancies [11]. Although signal-
ing inhibition and immunotherapy also lack myelosup-
pression, clinical efficacy of these “targeted” strategies has
been limited to only certain types of cancer [3, 5].

The recent discovery of mutations in IDH (isocitrate
dehydrogenase, a Krebs cycle enzyme) in some gliomas
[12] has renewed interest in antimetabolic approaches in
neuro-oncology [13]. In addition to the use of IDH1 and
IDH2 inhibitors [12], targeting lipid [14] and carbohy-
drate (i.e., energy) metabolism has also been an area of
research (e.g., use of metformin [15]). Moreover, the
augmented amino acid metabolism in brain tumors has
led to enhanced neuro-imaging with radiolabeled amino
acids as a diagnostic tool [16, 17]. However, manipula-
tion of amino acid metabolism remains an under-studied
topic in current neuro-oncology research, and is there-
fore the topic of this investigation.

Methods

Publically available databases and published literature
were used for this study. Our general hypotheses were:
(a) differential expression of genes related to amino-
acid (AA) metabolism and the corresponding enzymes
can help to identify potential drug targets for glioblast-
oma treatment; (b) correlations among certain genes
(or enzymes) and patient survival may indicate clinical
relevance; and (c) subtypes of brain tumors may show
heterogeneity in AA metabolism.

First, we constructed a list of 95 genes that code for
amino-acid metabolizing enzymes, based on known
biochemical pathways (Table 1) [18]. Analyses of 22 AA
KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways suggested by TCGA data were also used in
developing the list. To assess potential differential
expression, we used the “R2: Genomic Analysis and
Visualization Platform” database (s) at http://r2.amc.nl
[19]. R2 contains multiple datasets on various patho-
logical conditions from gene expression microarrays.
Datasets generated on 2 Affymetrix chip types, both an-
alyzed by MAS5.0, were used in our study. In addition,
certain datasets allowed patient survival analysis in re-
lation to gene expression levels. Selected glioblastoma
(GBM) datasets in R2 also allowed analysis based on
TCGA subtypes.

Eight datasets, including 3 with GBM and 5 with
non-GBM brain tissues, were used to review metabolic
differences in GBM (Table 2). In order to minimize am-
biguity, we selected 5 non-GBM/control datasets con-
taining information on non-neoplastic brain tissues
with or without concomitant conditions (such as mild
cognitive impairment, agonal stress or Parkinson’s dis-
ease). Initially, we screened the entire pool of 95 genes
in 3 of the largest GBM datasets, using R2 bar-graphing
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tools and Kaplan-Meier curves to identify potentially
relevant candidates (representative graphs are shown in
Results). Gene probes were selected based on higher
expression and availability of the same probe across the
datasets and for Kaplan-Meier analysis. About a third of
the genes appeared to be either differentially expressed, or
have significant association with clinical outcome (ie.,
progression free survival and/or overall survival). A few
genes were included in our analysis solely based on lit-
erature reports on relevance to GBM. For the 34 genes
resulting from this initial analysis, we aimed to verify
quantitative expression in GBMs and compare these
values to expression levels in non-GBM brain tissues.

Statistics for differential gene expression in GBM versus
non-GBM

Datasets 1-5 from Table 2 were generated by Affymetrix
Human Genome U133 Plus 2.0 arrays (ul33p2), and
datasets 6-8 by ul33pa. To avoid possible misinterpret-
ation of results due to use of the two different arrays,
the average gene expression levels were kept in two
groups: Mean-A (for datasets 1, 2 and 3); and Mean-B
(for datasets 6 and 7). Next, for each gene we calculated
3 ratios of expression, from 3 GBM datasets (using
GBM/non-GBM from the same array):

1) Ratio 1 = Gene expression from dataset #4 over
Mean-A,

2) Ratio 2 = Gene expression from dataset #5 over
Mean-A, and

3) Ratio 3 = Gene expression from dataset #8 over
Mean-B.

Last, averages (+ standard errors) of ratios 1, 2 and 3
were calculated for each gene (Fig. 1). This procedure
allowed us to evaluate differential expression more reli-
ably, and to eliminate a few genes that were proposed in
the initial screen.

Protein expression of AA related enzymes in high

grade gliomas

Gene expression levels may not always correlate with pro-
tein production. Therefore, further verification of our find-
ings at the protein level was considered. An online
database (Proteinatlas.org) contains immunohistochemical
(IHC) data on most human proteins in a variety of tissues,
including gliomas, as part of a cancer atlas project [20].
The database was used to evaluate protein expression for
the panel of 34 genes with possible differential expression
in high grade gliomas (HGGs). Each tested tumor has a
semi-quantitative antibody staining score (i.e, high,
medium, low or not detected; representative examples are
shown in Fig. 2). The average number of high grade glioma
specimens tested for each protein was 8 (range, 5-11).
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Table 1 Ninety-five genes for amino acid metabolism related enzymes that were subjected to initial screening

Pathways Gene/Enzyme

Alanine, asparagine, aspartate, glutamine, 1. ABAT: 4-aminobutyrate aminotransferase
& glutamate metabolism: 2. ADSL: adenylosuccinate lyase
3. ADSS: adenylosuccinate synthetase
4. AGXT: alanine-glyoxylate aminotransferase
5. DDO: D-aspartate oxidase
6. ASNS: aspargine synthetase
7. ASPA: aspartoacylase
8. GAD1: glutamate decarboxylase 1
9. GAD2: glutamate decarboxylase 2
10. GOT1: glutamic-oxaloacetic transaminase 1, soluble (i.e, AST: aspartate transaminase
or aminotransferase, AspAT/ASAT/AAT or SGOT)
11. GOT2: glutamic-oxaloacetic transaminase 2, mitochondrial
12. GPT: glutamic-pyruvate transaminase (i.e. ALT: alanine aminotransferase)
13. GLUD1: glutamate dehydrogenase 1
14. GLUD2: glutamate dehydrogenase 2
15. ALDH5A1: Aldehyde Dehydrogenase 5 Family, Member A1
16. GLUL: glutamine synthetase (i.e., GS)
17. GFPT2: glutamine-fructose-6-phosphate transaminase 2
18. MECP2: methyl CpG binding protein 2
19. GLS: glutaminase

Histidine metabolism: 20. ALDH1B1: aldehyde dehydrogenase 1 family, member B1
21. CNDP2: CNDP dipeptidase 2 (metallopeptidase M20 family)
22. HDC: Histidine dexarboxylase
23. HAL: histidine ammonia-lyase (i.e, Histidase: HIS or HSTD)

Leucine, isoleucine, & valine metabolism: 24. BCAT1: branched chain amino-acid transaminase 1, cytosolic
25. BCAT2: branched chain amino-acid transaminase 2, mitochondrial
26. LRS: Leucyl-tRNA synthetase
27. BCKDHB: branched chain keto acid dehydrogenase E1, beta polypeptide
28. ILVBL: ilvB (bacterial acetolactate synthase)-like
29. PCCB: propionyl CoA carboxylase, beta polypeptide

Lysine metabolism: 30. AASDHPPT: L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheiny! transferase
31. PIPOX: pipecolic acid oxidase
32. WHSC1L1: Wolf-Hirschhorn syndrome candidate 1-like 1

Phenylalanine metabolism: 33. PAH: phenylalanine hydroxylase
34. FAH: fumarylacetoacetate hydrolase (fumarylacetoacetase)

Serine, glycine, & threonine metabolism: 35. ALAST: 5-aminolevulinate synthase 1
36. ALAS2: 5"-aminolevulinate synthase 2
37. GCAT: glycine C-acetyltransferase
38. PHGDH: phosphoglycerate dehydrogenase
39. PSAT1: phosphoserine aminotransferase 1
40. PSPH: phosphoserine phosphatase
41. SDS: serine dehydratase
42. SHMT1: serine hydroxymethyltransferase 1
43. SHMT2: serine hydroxymethyltransferase 2
44, SPTLC1: serine palmitoyltransferase, long chain base subunit 1
45. SPTLC2: serine palmitoyltransferase, long chain base subunit 2
46. SPTLC3: serine palmitoyltransferase, long chain base subunit 3
47. PPP2R4: protein phosphatase 2A activator, regulatory subunit 4 (i.e, PP2A)
48. ALAD: Aminolevulinic dehydrase

Tyrosine metabolism: 49. PNMT: phenylethanolamine N-methyltransferase
50. TH: tyrosine hydroxylase
51. TAT: tyrosine aminotransferase
52. DDC: DOPA decarboxylase (aromatic L-amino acid decarboxylase)

Cysteine, methionine, & glutathione 53. CCBL1: cysteine conjugate-beta lyase, cytoplasmic
metabolism: 54. CCBL2: cysteine conjugate-beta lyase 2

55. LDHA: lactate dehydrogenase A

56. AHCY: adenosylhomocysteinase

57. MDH2: malate dehydrogenase 2, NAD (mitochondrial)

58. TYMS: thymidylate synthase

59. CTH: cystathionine gamma-lyase

60. GCLC: glutamate-cysteine ligase, catalytic subunit

61. GCLM: glutamate-cysteine ligase, modifier subunit

62. GSS: Glutathione synthetase

63. MTR: 5-methyltetrahydrofolate-homocysteine methyltransferase
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Table 1 Ninety-five genes for amino acid metabolism related enzymes that were subjected to initial screening (Continued)

64. MAT2A: methionine adenosyltransferase I, alpha

Arginine and proline metabolism: 65. OAT: ornithine aminotransferase
66. CKM: creatine kinase, muscle
67. LAP3: leucine aminopeptidase 3

68. ASL: argininosuccinate lyase

69. ASST: argininosuccinate synthetase 1

70. ADC: arginine decarboxylase

71. DDAH2: dimethylarginine dimethylaminohydrolase 2
72. GATM: glycine amidinotransferase (L-arginine:glycine amidinotransferase)
(ie., AGAT: arginine:glycine amidinotransferase)

73. ARGT: arginase 1

74. PADI2: peptidyl arginine deiminase, type |l
75. PYCR1: pyrroline-5-carboxylate reductase 1
76. PRODH: proline dehydrogenase (oxidase) 1

Tryptophan metabolism: 77. AANAT: aralkylamine N-acetyltransferase
78. TDO2: tryptophan 2,3-dioxygenase
79. TPH1: Tryptophan hydroxylase 1
80. IDO1: indoleamine 2,3-dioxygenase 1

Selenocompound metabolism: 81. MARS: methionyl-tRNA synthetase
82. SEPHST1: selenophosphate synthetase 1

Other: 83. AADAT: aminoadipate aminotransferase
84. UROS: Uroporphyrineogen synthase
85. UROD: uroporphyrinogen decarboxylase
86. CPS1: carbamoyl-phosphatesynthase 1, mitochondrial
87. OTC: ornithine carbamoyltransferase
88. PDXP: pyridoxal (pyridoxine, vitamin B6) phosphatase
89. PNPO: pyridoxamine 5-phosphate oxidase

Amino acid transporters: 90. SLC3A2: solute carrier family 3 (@amino acid transporter heavy chain), member 2 (i.e., 4F2hc)
91. SLC7A11: solute carrier family 7 (anionic amino acid transporter light chain, xc- system),

member 11 (i.e., xCT)

92. SLC7A7 solute carrier family 7 (amino acid transporter light chain, y + L system), member 7 (i.e,, LAT3)
93. SLC7AS: solute carrier family 7 (@amino acid transporter light chain, L system), member 5 (i.e,, LAT1)
94. SLC1AS5: solute carrier family 1 (neutral amino acid transporter), member 5 (i.e, ASCT2)

95. SLC6A14: solute carrier family 6 (@amino acid transporter), member 14

Figure 2 shows the numbers of tumors with each of the 4
levels of antibody staining, for a given protein. IHC for a
few proteins was done with more than one antibody. Selec-
tion was based on the most consistent staining pattern, for
these proteins.

TCGA database in R2: subtypes and survival analyses

This enriched database contains 540 GBM samples and
is the largest among the 3 tested. It allows detailed ana-
lysis of patient survival with the Kaplan-Meier method.
Comparison of expression of various genes among the

Table 2 Five brain tumor (3 GBM) and five non-brain tumor datasets used

# Name of dataset Number of samples Platform - Chiptype
1 Normal Brain regions - Berchtold 172 u133p2
2 Normal Brain PFC — Harris 44 u133p2
3 Disease?® Brain - Liang 34 u133p2
4 Tumor Glioblastoma - Loeffler 70 u133p2
5 Tumor Glioblastoma - Hegi 84 ul133p2
(80 tumors)
6 Normal Brain agonal stress - Li 1168 u133a
7 Disease Brain Parkinson - Moran 47 ul133a
8 Tumor Glioblastoma - TCGA 540 ul33a
9 Mixed Pediatric Brain (Normal-Tumor) — Donson 130 u133p2
(117 tumors)
10 Tumor Medulloblastoma - Gilbertson 76 u133p2

(73 tumors)

Brain tissues are from individuals who had been diagnosed with mild cognitive impairment. Detailed description of each dataset is available at http://r2.amc.nl
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Fig. 1 Differential expression of 34 genes in glioblastoma (GBM). The x-axis represents the logarithm of the ratio of gene expression in
GBM over expression in normal brain tissue (calculations as described in Methods). Each horizontal bar with errors represents a gene, and
ratios are shown as means + standard errors. Genes listed starting from TDO2 and above are over-expressed genes. Genes listed starting
from ASS1 and below are under-expressed genes. Refer to Table 1 for abbreviations. Log of Mean values = 1 indicates equal expression

4 TCGA subtypes is also possible (proneural, neural,
classical and mesenchymal; 85 specimens). For Kaplan-
Meier analysis, both progression-free survival (PFS) and
overall survival (OS) were assessed for each of the
genes with various cut-offs, aiming for P values
<0.05 (which were considered significant). However,
survival analysis in relation to gene expression levels
within each subtype was not feasible, due to small
sample sizes.

Gene expression “heat maps” for 34 genes

Heat maps were constructed using 3 datasets from R2
(datasets 8, 9 and 10, Table 2). We aimed to display
heterogeneity in the form of under- versus over-
expression of 34 genes in the 4 GBM and 4 medullo-
blastoma subtypes (as defined in TCGA; Fig. 4 and
Additional file 1: Figure S1, respectively), as well as in
4 types of pediatric brain tumors versus non-diseased
brain (Additional file 2: Figure S2).
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Fig. 2 Detection of 34 proteins by immunohistochemistry (IHC) in high grade gliomas. The feft side represents proteins expressed at levels less
than or equal to levels in normal brain tissue. The right side shows IHC data for proteins expressed at levels greater than levels in normal brain
tissue. The x-axis corresponds to the number of samples for each gene. Color codes indicate the intensity of protein expression for a given gene
(as shown on legend). For example, for PHDGH (phosphoglycerate dehydrogenase) there were 11 samples — 8 showed high expression, and 3
showed low expression. Left upper illustration exemplifies IHCs for couple of proteins. Abbreviations are as in Table 1. There is less overt clustering
in the right upper and left lower quadrants compared to results in Fig. 1, because gene and protein over-expression match only in part

The heat maps were obtained by hierarchical cluster-
ing on samples within every defined subgroup of a data-
set separately, followed by clustering over the genes
(complete cohort).

Results

Differential expression of enzyme genes in GBM

and proteins in HGG

Differential expression was defined as a 240% difference
(higher or lower) in gene expression for any gene, in
GBM compared to non-GBM specimens. Fewer than 30
genes involved in AA metabolism met this criterion
(Fig. 1). Protein detection by IHC reflected gene expres-
sion levels in roughly two-thirds of the 34 genes (Fig. 2).
Specifically, over-expressed genes had a higher propor-
tion of samples with medium to high IHC staining of
the expressed protein. In contrast, under-expressed

genes were associated with low or undetected protein
staining. This observation was true for most, but not all,
genes and enzymes analyzed.

Survival in relation to gene expression

Expression of some of the 34 genes correlated with pro-
gression free and/or overall survival (Fig. 3). For ex-
ample, higher levels of some genes that are upregulated
in GBM were associated with poor outcome, or via
versa. However, other genes showed the reverse (occa-
sionally following predictions based on protein levels).
Some genes did not play a role in patient outcome
altogether (Table 3). Interestingly, we also identified a
group of genes that may play a role in outcome, but
were not differentially expressed. Overall, it appears
that dramatic differences in expression are more likely
to result in survival differences, especially when gene
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Fig. 3 Representative Kaplan-Meier curves showing associations between expression of selected genes and patient survival. Gene names,
numbers of samples with high versus low expression, and P values are shown in boxes. X-axes show follow-up in months, and Y-axes show
survival probability. Panels a, b, ¢, f, g, and h show progression-free survival. Panels d and e show overall survival

expression correlates with protein production (Table 3).
Genes that are over-expressed in GBM and also associ-
ated with poor survival at high expression levels may be
the top candidates for therapeutic inhibition (dark gray
shaded box in Table 3).

TCGA subtypes demonstrate heterogeneity for genes
involved in AA metabolism

Thirty-four genes were tested in one of the datasets,
where TCGA grouping was available for 85 samples (17
neural, 17 classical, 27 mesenchymal and 24 proneural).
A complex pattern of heterogeneity was observed (Fig. 4).

Although further confirmation is needed, the results
suggest distinct patterns of amino acid metabolism in
the 4 TCGA subtypes, as measured by gene expression.

Pediatric brain tumor types and medulloblastoma
subtypes also may have distinct signatures of AA
metabolism

In addition to GBM, we analyzed the same 34 genes in
two other datasets in R2 (#9 and #10 in Table 2). One
contains pediatric brain tumor samples (15 pilocytic as-
trocytomas, 34 glioblastomas, 22 medulloblastomas and
46 ependymomas). The other is a medulloblastoma
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Table 3 Relationship between expressions of 34 selected genes and Kaplan-Meier analysis

Enzymes for which ...

higher expression is linked

lower expression is linked expression is not correlated

to poor survival to poor survival with survival
Enzymes with higher expression in GBM BCAT1° DDAH2 TDO2
ASL® SHMT2 IDO1
LAP3 TYMS
PIPOX® SHMT1
GFPT2
DDO?
FAH
Enzymes with expression as in normal brain CNDP2 PHGDH ASNS
GSS* SEPHS1 MTR
GLUL (GS) ABAT
ALT (GPT)
AGXT
Enzymes with lower expression in GBM PRODH* AST (GOTT1) GLUD1/GLUD2
ASS1° ASPA® GAD1/GAD2
PAH GLS
TH

Survival curves for footnoted genes are shown in Fig. 3. Genes in bold have concordant protein (by IHC) and mRNA expression (by microarray)

dataset, grouped into 4 subtypes (10 SHH, 8 WNT,
16 G3, and 39 G4). As for GBM TCGA subtypes
above (Fig. 4), we prepared gene expression heat
maps reflecting over- and under-expression of genes

Figure S2, respectively). In both cases, one can appreci-
ate AA gene expression variability among the subtypes.
There were no proteins or patient survival data avail-
able for analysis. However, these observations provide

preliminary findings for further analysis and preclinical
therapeutics development.

in medulloblastoma subtypes and pediatric brain tu-
mors (Additional file 1: Figure S1 and Additional file 2:

Tumor Glioblastoma - TCGA - 540
MAS50-u133a
subtype-classical, mesenchymal,neural, proneural (85 samples)
sample_slave: usercatagory
ed_34
sorted on subtype

T L i e
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Fig. 4 Heat map showing expression of 34 genes in GBM according to 4 TCGA subtypes. The colored bars at the tops of the heat maps indicate
the GBM subtypes (from left to right): red — classical; purple — proneural; green — mesenchymal; blue — neural). Gene expression intensities are
illustrated by shades of: green for lower levels of gene expression; black for a neutral level of gene expression; and red for higher levels of gene
expression. Names of genes are abbreviated as in Table 1
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Findings on specific genes and enzymes are addressed
in the Discussion section.

Discussion

Glioblastoma therapy continues to remain a major clin-
ical challenge due to poor outcomes, with >90% of pa-
tients succumbing from their disease within 3 years of
diagnosis [21]. Although immunotherapy and inhibition
of cancer cell signaling hold promise, the “cornerstone”
of current therapy against GBM remains DNA damaging
strategies combined with surgery [22]. Targeting cancer
metabolism by starving cancers of essential nutrients
should be combinable with DNA damaging chemother-
apy, due to lack of myelosuppression. Because lipid and
energy metabolism is being investigated more inten-
sively, this pilot study was designed to review brain
tumor databases, to identify potentially druggable sites
by interrogating amino acid-related metabolic pathways
in GBM. Gene and protein expression patterns, in con-
junction with survival data in GBM, were used as the
main tools for searching for such targets. In addition,
known amino acid depleting strategies, based on the
available armamentarium and reported efficacy, are also
considered in this discussion (Fig. 5). The analysis
showed that 7 enzymes, namely, BCAT1, ASL, LAP3,
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PIPOX, GFPT2, DDO and FAH were upregulated vari-
ably in GBMs and were associated decreased survival.
However, ASL and FAH upregulation did not translate
into protein overproduction (Table 3 and Fig. 2). While
it remains unclear how patient survival is affected by
expression of these enzymes, a deeper follow-up meta-
bolic exploration of brain cancers and other malignan-
cies may be useful.

BCAT1 (branched chain amino acid transaminase 1)

The enzyme catalyzes the reversible transamination of
branched-chain alpha-keto acids to branched-chain L-
amino acids. BCAT1 has a well proven role in IDHY '
GBM reported in the literature [23]. In our study, there
is higher expression of BCAT1 in GBM compared to
non-GBM. Both PFES and OS are affected adversely by
higher levels of expression in GBM, as well as by high
levels of the protein (detected by IHC in HGGs). Taken
together, these results suggest that development of
BCAT1 inhibitors may have promising clinical poten-
tial. Neural and proneural tumors have lower BCAT],
making them less likely to respond to BCAA metabol-
ism manipulation. The role of BCAT1 in other cancers
may also be investigated.
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Arginine metabolism

Higher expression of ASS1 (argininosuccinate synthase
1) and ASL (argininosuccinate lyase) genes are associ-
ated with poor PFS and/or OS. However, only the ASL
gene is differentially over-expressed in GBMs. And at
the protein level, both ASL and ASS1 enzymes are low
or undetected in HGGs. In spite of this complex pattern,
it has been shown recently that human recombinant
arginase-induced arginine depletion is selectively cyto-
toxic to human glioblastoma cells [24]. Moreover, ar-
ginine deiminase is active against GBM in vitro and
in vivo [25]. Low ASS1 and ASL proteins in HGGs sup-
port further testing of arginine-depletion against GBM.
An alternative formulation to be considered is PEG-
ADI, which was used in a phase 2 trial for hepatocellu-
lar carcinoma [26].

Amino-acid depleting enzymes, such as arginase or
asparaginase are large molecules, which may not pene-
trate an intact blood—brain barrier (BBB). Nevertheless,
it is well documented that CSF asparagine, for instance,
decreases significantly after asparaginase administration
to acute lymphoblastic leukemia patients [27]. Therefore,
penetration of these enzymes into parenchyma may not
be necessary for an anti-tumor effect, inasmuch as sub-
strate depletion influences the extra-vascular micro-
environment of the CNS. In addition, parts of the BBB
may not be completely intact [28] — theoretically allow-
ing direct entry of enzymes. Intracranial brain tumor
mouse model testing will be the best next step to assess
potential synergy of amino-acid depleting strategies with
other therapies.

Methionine

MTR (5-methyltetrahydrofolate-homocysteine methyl-
transferase) was the main methionine related enzyme,
whose gene expression levels were slightly elevated in
GBM. However, expression levels did not meet our def-
inition of differential expression. MTR was not associ-
ated with clinical outcome. Moreover, there was neither
differential expression in TCGA subtypes, nor high
protein levels. Nevertheless, clinical observations, such
as great diagnostic yields from 11C-MET PET uptake
testing [29], support recently suggested research on
methionine-free diets in combination with temozolo-
mide against GBM (https://clinicaltrials.gov/ct2/show/
NCT00508456). This study was terminated due to low
accrual. Yet, preclinical research continues to support
methionine deprivation as a potential therapy for GBM
[30].

Alanine and asparagine-glutamine networks

Some findings in these biochemical pathways can be sum-
marized as differential under-expression of ASPA (aspar-
toacylase) and GOT1 (glutamic-oxaloacetic transaminase
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1; previously known as AST, or aspartate aminotransfer-
ase) in GBM. Both are associated with poor outcome at
lower gene levels, as is lower GPT (glutamic-pyruvic
transaminase; previously known as ALT, or alanine amino-
transferase). The neural group had higher GOT1 and
ASPA gene expression, but lower GPT. Protein counter-
parts of GPT and GOT1 are overall more detectable in
HGGs, compared to normal tissue, whereas ASPA protein
is less detectable. ASPA catalyzes conversion of N-acetyl-
L-aspartic acid (NAA) to acetate and is mutated in pa-
tients with Canavan disease. Detection of elevated NAA
by magnetic resonance spectroscopy (MRS) is indicative
of GBM progression. Some investigators have suggested
that acetate supplementation (used for Canavan disease)
may serve as an adjuvant therapy against GBM [31]. Acet-
ate use against GBM may be supported by our findings of
under-expression of the ASPA gene in GBM and the
ASPA protein in HGGs. Acetate use is also supported by a
strong signal from another over-expressed gene in our
study — PIPOX (pipecolic acid and sarcosine oxidase).
PIPOX also shows high protein levels in HGGs, and high
PIPOX is associated with poor outcome in GBM. PIPOX
converts sarcosine to glycine (used by GSS, or glutathione
synthetase) and can be inhibited by acetate [32].

The only individual, key-enzyme gene effect observed
for glutamine metabolism in our study was for GLUL
(glutamate-ammonia ligase; previously known as GS, or
glutamine synthetase). Low GLUL levels correlated with
better OS (Table 3). Nevertheless, a large body of litera-
ture suggests that the asparagine-glutamine node of
amino acid metabolism may contain a credible poten-
tial target against GBM metabolism [33]. The combined
effect of increased ASNS (asparagine synthetase),
GLUL, and/or BCAT1 expression was shown in one of
our recent studies to have a detrimental effect on
patient outcomes [34]. Therefore, we consider and
propose asparaginase/glutaminase as another potential
adjuvant strategy against GBM. Differential expression
of ASNS in ependymomas and certain types of medul-
loblastomas also supports asparaginase testing against
these pediatric brain tumors.

GABA metabolism

Mixed gene expression for GABA related enzymes indi-
cated that decreased production and possibly increased
catabolism may be linked to poor outcome. Gabapentin,
a GABA analog, inhibits substance P-induced NF-kB ac-
tivation in rat gliomas and may play role in regulating
inflammation-related intracellular signaling [35]. How-
ever, the hypothesis of a significant antitumor effect of
GABA against GBM remains unexplored, because its
analogue, gabapentin (widely used in clinical practice
without major anti-GBM effects), has no direct effect on
GABA binding, uptake or degradation.
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Glutathione synthetase (GSS)

Interestingly, overexpression of the rate-limiting en-
zyme in glutathione synthesis (GCLM, or glutamate-
cysteine ligase modifier subunit) was not detected in
these analyses. Likewise, GSS levels were not much al-
tered at baseline. One may predict that a potential role
of GSS inhibition by the available agent, buthionine sul-
foximine (BSO), may be limited to chemotherapy-
induced, GSS-up-regulation cases. This has been a sub-
ject of significant research for other cancers, but not
GBM [36]. A study to assess GSS upregulation after
chemotherapy in GBM may be useful. Analysis of en-
zymatic and non-enzymatic components of antioxidant
pathways — apart from amino-acid metabolism — is an-
other valid topic for study.

Tryptophan

IDO1 (indoleamine 2, 3-dioxygenase 1) catalyzes trypto-
phan breakdown. Its inhibitors are aimed at suppressing
tryptophan catabolism-induced cancer immunotolerance
and are in clinical trials (https://www.clinicaltrials.gov/
show/NCT02052648). No survival link or differential ex-
pression was observed in our analysis for GBM versus
non-GBM brain tissues for IDO1 or TDO2 (tryptophan
2, 3-dioxygenase, also involved in tryptophan catabol-
ism). However, our findings showed higher TDO2 and
IDO1 in GBM, and particularly in the mesenchymal sub-
type, which may show better responses to immunother-
apy [37]. These reports further support a potential role
for manipulating tryptophan metabolism for cancer
immunomodulation effects [30, 38].

Other genes

Potential targets can be expanded to a few other import-
ant genes based on our results, including: GFPT2 (glu-
tamine-fructose-6-phosphate transaminase 2; previously
reported to be high in GBM [39]); LAP3 (leucine amino-
peptidase); DDO (D-aspartate oxidase); and PRODH
(proline dehydrogenase, a putative tumor suppressor).
Retrospective studies and preclinical validations are
needed, because gene and protein databases used in this
study are not the same. Also, no protein data were avail-
able on pediatric tumors and medulloblastoma. Further-
more, changes may occur in response to chemo/
radiation treatments, and the tumors may harbor un-
known mutations in some of these pathways (a possible
subject of future studies).

Conclusions

Brain tumors have distinct gene expression patterns for
certain amino acid-metabolizing enzymes. These enzymes
may provide valid targets for therapeutics development.
Although drugs used clinically, such as asparaginase and
arginase, are readily available for preclinical testing,
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inhibitors have yet to be developed against other promis-
ing targets, such as BCAT1 or PIPOX. Heterogeneity is
evident in various types (and subtypes) of brain tumors,
which indicates the possible need for tailored manipula-
tion of amino acid metabolism to achieve enhanced thera-
peutic effects and less toxicity than encountered with
conventional chemotherapy.
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