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The murine major histocompatibility complex I-J subregion has recently been 
the subject of much controversy. The Ia-4 locus within I-J encodes a suppressor 
T lymphocyte surface marker (1), as well as a suppressor T cell factor determinant 
(2). Using recombinant strain distribution patterns, independent investigators 
mapped I-J between I-B and I-B and I-E, in the chromosomal segment bounded 
by recombination points in strains BI0.A(5R) and B10.S(9R) on the left and 
B 10.A(3R) and B 10 .HTT on the right (1, 2). However, when Steinmetz and co- 
workers (3) mapped restriction site polymorphisms in I region DNA, B10.A(3R) 
and B10.A(5R) DNA were identical. The interval between I-A and I-E was 
confined to 3.4 kb, including at least 2 kb of  the Ea gene (3, 4). Despite 
considerable evidence supporting placement of  l-J within the I region (1, 2, 5, 
6), these results suggested I-J had been incorrectly mapped. 

We recently reconciled these conflicting results (7). I-J expression is controlled 
by two unlinked genes; one (Jt) maps to chromosome 4 near the b and Fv-I loci 
and a second is located within the I region, possibly I-E. Strains B10.A(3R) and 
B10.A(5R) each provide the requisite H-2Kgene for I-J k expression, but the 
former apparently lacks the appropriate I-J k locus on chromosome 4 (reference 
7; summarized in Table I). 

This report describes experiments to probe the j t  contribution to the I-J k 
molecule. Complementation tests suggest that strain B10.HTT,  like B 10.A(3R), 
is probably not congenic with C57BL/10 and differs from B10.S(9R) outside 
rather than inside H-2 (the murine major histocompatibility complex) ~. Binding 
of I-JLspecific monoclonal antibodies to cell surface I-J k determinants depends 
on o~-D-mannosyl residues associated with protein. The Jt gene product may 
glycosylate an/-region gene product; alternatively theJ t  gene product may itself 
be an I-J-bearing glycoprotein expressed only in H-2 k strains. 

Materials and  Methods  
Animals. B10.BR and A/J mice were produced in our colony from breeding pairs 

supplied by The Jackson Laboratory, Bar Harbor, ME. B10.A, A.TH, C57BL/10, 
B10.A(5R), B10.S(9R), and B 10.A(4R) breeding pairs were generously provided by Dr. 
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TABLE I 
Con~edActionofChromosome-4 and-17gen~ ~ Requi~dforthe ExpresswnofIJ k 

De~rminan~ (~ 

Genes 

/-/-2 jt 
I-Jk Strains 

expression 

k + + 

b + - 
b - -  

b/k + / -  + 

i3/b - /+  + 
i3/k - / -  - 

k + + 

BI0,BR, B6-H-2 k, CBA/J, C3H/HeJ, C 5 8 / J ,  

MA/MyJ, MRL/MpJ ÷, RF/J, AKR-Fv-1 b 
AKR/J, CE/J 
C57L, C57BL/6, C57BL/10 
AKR-H-2 b 
(C57L x AKR)F~, (C57BL/6 x AKR)F1, 

(C57BL/10 X AKR)F~ 
(B10.A(3R) × C57BL/10)F~ 
(B10.A(3R) × AKR)F~ 
AKXL strains 13, 14, 28, 38 
AKXL strains 6, 8, 21 

F. H. Bach (University of Minnesota, Minneapolis, MN). Dr. J. H. Stimpfling (McLaughlin 
Research Institute, Great Falls, MT) kindly donated B10.A(3R) breeding pairs. B6-H-2 k 
mice were the gift of Dr. E. A. Boyse (Memorial Sloan-Kettering Cancer Center, New 
York, NY). Guinea pigs were from Research Animals Resource Center, University of 
Wisconsin, Madison, WI. 

Media. All media and supplements were purchased from Grand Island Biological Co., 
Grand Island, NY. Fetal calf serum (FCS) was from Flow Laboratories, Rockville, MD. 

Antibodies. Anti-Thy-l.2 serum was made according to Reifand Allen (8). Goat anti- 
mouse immunoglobulin was produced in our laboratory (9). Culture supernatant contain- 
ing anti-I-J k monoclonal antibody WF8.C 12.8 was kindly provided by Dr. C. Waltenbaugh 
(Northwestern University Medical School, Chicago, IL). 

Hybridoma Production. B10.A(5R)-immune B10.A(3R) splenocytes were fused with 
P3NS1/1-Ag4-1 (10) or Sp2/0-Agl4 (11) exactly as described (12). Fused cells were 
dispensed into 10 96-well plates giving clonal growth in medium with hypoxanthine, 
aminopterin, and thymidine (12). An enzyme-linked immunosorbent assay (12) or a 
microcytotoxicity assay (I 3) identified clones secreting I-Jk-specific antibodies. Assays used 
B10.A(3R) and B10.A(5R) T cells. Clones were subcloned by limiting dilution (12). 
Ouchterlony gel diffusion on agar-coated microscope slides determined monoclonal 
antibody heavy and light chain isotype (14). Heavy and light chain-specific rabbit anti- 
mouse immunoglobulin reagents were from Litton Bionetics, Kensington, MD. 

Microcytotoxicity Assay. A two-stage, dye-exclusion microcytotoxicity assay was per- 
formed as described (13). With WF8.C12.8 IgG~ monoclonal antibodies, a 15-min incu- 
bation of cells with rabbit anti-mouse IgG~ (0.5% in medium 199 with 5% FCS; Litton 
Bionetics, Kensington, MD) followed by a wash step-preceded guinea pig complement 
addition. Percentage-specific lysis was corrected for background complement lysis (15). 
Complement backgrounds were <15% on untreated T cells, and <30% on neuraminidase- 
treated T cells. 

T Cell Separation. Lymph node cells devoid of plastic-adherent cells were passed 
through a goat anti-mouse immunoglobulin-Sepharose column as described (16). Effluent 
cells were usually 80-90% Thy-1 positive. 

Enzymes. Alpha-mannosidase (from jack bean), a-galactosidase (from Aspergillus niger), 
~-N-acetylglucosaminidase (from bovine epididymus), and C~-L-fucosidase (from bovine 
epididymus) were from Sigma Chemical Co., St. Louis, MO. Vibrea cholerae neuraminidase 
was from Calbiochem-Behring, La Jolla, CA; trypsin, chymotrypsin, and/3-galactosidase 
(from Escherichia coli) were from Miilipore Corp., Freehold, NJ. Glycosidases were purified 
by high pressure liquid chromatography on a Varian TSK G3000 SW column to obtain 
fractions with specific glycosidase activity but without contaminating glycosidase or pro- 
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tease activities. Glycosidase activity was measured by incubating I00 #i enzyme with 100 
#1 p-nitrophenylglycoside (Sigma), 1.0 mM in 0.1 M acetate buffer, pH 4.5, for 1 h, 37°C. 
1 ml glycine buffer, 0.133 M, with 0.06 M NaCI and 0.083 M Na~CO3, pH 10.7, was 
added and absorbance at 400 nm measured. 1 U of  glycosidase will hydrolyze 1 t~mol p- 
nitrophenylglycoside per hour at 37°C, pH 4.5. Specific activities calculated for purified 
glycosidases were: a-mannosidase, 8.37 U/rag; a-galactosidase, 4.15 U/rag;/~-N-acetyiglu- 
cosaminidase, 4.76 U/mg; a-L-fucosidase, 7.22 U/rag; /3-galactosidase, 11.67 U/mg. 
Protease activity was assayed using casein, 1% in 0.05 M Tris-phosphate buffer, as a 
substrate and trypsin and chymotrypsin as standards. Enzyme (0.02 ml) was incubated 
with 1.0 ml casein 10 rain, 37°C. 1 ml 10% trichloroacetic acid was added, the mixture 
was filtered, and absorbance of  the filtrate at 280 nm measured. 

Enzyme Digestion of T Cells. Purified T cells (4 × 106/ml) were incubated in Hank's 
balanced salt solution with 0.1% sodium azide at pH 6.5 (neuraminidase; 0.02 IU/ml), 
7.0 (other glycosidases), or 7.4 (trypsin) containing 0.005-0.1 IU glycosidase/ml or 0.1 
mg trypsin/ml for 30 min, 37°C in 7.5% CO2. Adding excess cold Hank's balanced salt 
solution with 10% FCS terminated the digestion. Hypotonic lysis removed nonviable cells. 
Cell recoveries ranged from 19-65%; cells were 76-96% viable by trypan blue exclusion. 

Cell Culture. Culturing trypsin-treated T cells at I × 106/ml in Mishell-Dutton medium 
(17) supplemented with 1 × 10 -5 M 2-mercaptoethanol and 5% FCS for 30-60  rain, 
37°C, 7.5% CO2, removed sodium azide. Growth at 5 × 106/ml in the same medium for 
18 h, 37°C, 7.5% CO~ allowed protein resynthesis. To  some cultures cycloheximide (15 
t~g/ml; Sigma Chemical Co., St. Louis, MO), tunicamycin (4 #g/ml; Sigma) or monensin 
(1.0 uM; Calbiochem-Behring) were added. After 18 h cells were harvested and nonviable 
cells removed by hypotonic lysis. 

R e s u l t s  

Neuraminidase Digestion Alters T Cells I-j k Expression. T o  detec t  T cell surface  
I-J k de te rminan t s ,  I-Jk-specific monoc lona l  an t i body  W F 8 . C 1 2 . 8  (5) and  five 
o the r s  p r o d u c e d  in o u r  l abora to ry  (Jk.4,  Jk .5 ,  J k . l l ,  Jk ,14 ,  and  Jk .18)  were  
tested on  per iphera l  T cells f r o m  several r e c o m b i n a n t  inbred  strains. T h e  
monoc lona l  an t ibodies  iysed B 10.A, B 10.A(5R),  and  B10.S(9R),  bu t  no t  C 5 7 B L /  
10, B10.A(3R) ,  B 1 0 . H T T ,  o r  A . T H  T cells (Table  I I  and  r e f e r ence  7), charac-  

TABLE II 
Neuraminidase Digestion Enhances T Cell I-J ~ Determinant Expression without Altering the 

Strain Distribution Pattern 

T cell Thy-l.2 antibody % Cells lysed:* Jk.18 
donor WF8.C 12.8 

strain Untreated NA* Untreated NA Untreated NA 

B6-H-2 I' 87 + 1 84 4- 6 13 + 3 42 ± 6 12 4- 2 42 4- 1 
C57B1/10 84 4- 5 87 4- 6 0 4- 0 0 4- 0 0 4- 0 0 4- 0 
B10.A(3R) 82 4- 3 88 ± 2 0 4- 1 1 4- 1 0 4- 0 0 + 0 
BI0.A(4R) 82 + 2 84 4- 0 0 4- 0 2 4- 2 1 4- 1 2 ± 2 
B10.A(SR) 81 4- 1 87 4- 3 13 4- 2 49 4- 10 10 4- 1 46 4- 9 
B10.HTT 80 4- 1 85 4- 5 0 _ 0 0 4- 0 0 4- 0 1 -i- 0 
BI0.S(9R) 854-4 984-2 164-2 514-9 144-2 51±11 
A.TH 83+__6 874-4 1 _ 1  04-0 14-1 2 ± 1  
A/J 844-4 82-1-1 134-1 3 2 ± 1  144-2 32 :t: 3 
AKR/J ND 0 ND 1 4- 1 1 4- 1 0 4- 0 1 ± 1 

* Mean 4- SEM; two to four experiments. 
* Neuraminidase treated. 
~ND, not determined. 
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teristic of the I-J k strain distribution (18). B 10.A(5R)-immune B 10.A(3R) splen- 
ocytes, fused with P3NSI/1-Ag4-1 myeloma cells, produced clones Jk.4, Jk.11, 
and Jk.18; an Sp2/0-Agl4 myeloma cell fusion yielded clones Jk.5 and Jk.14. 
Jk.11 and Jk.18 are IgM antibodies with kappa light chains. None of the I-J k- 
specific antibodies lysed B cells (not shown). 

One difficulty in detecting T cell surface I-J molecules by antibody-mediated 
cytotoxicity is the low I-J determinant frequency in normal T cell populations 
(18). Kanno et al. (6) and others (19) routinely treat cells with neuraminidase 
before I-J detection by cytotoxicity (6), fluorescence-activated cell sorter analysis 
(6, 19), and enzyme immuno-electron microscopy (19). We found that neuramin- 
idase specifically increased T cell I-J k expression without altering the normal I- 
jk strain distribution pattern (Table II). WF8.C 12.8 and Jk. 18 lysis of B 10.A(5R) 
and B10.S(9R) T cells increased three- to fourfold, while B10.A(3R) and 
B 10.HTT T cells remained unreactive. Jk.4, Jk.5, Jk. 11, and Jk. 14 gave similar 
results (not shown). B10.A(3R) anti-B10.A(5R) I-Jk-specific serum lysed up to 
90% of neuraminidase-treated B 10.S(9R) peripheral T cells (not shown). AKR/ 
J (Table II) and CE/J (not shown) T cells remained I-J k negative (7) after 
neuraminidase treatment. 

I-J k Expression on FI Hybrid T Cells. We previously reported (7) that a non- 
expressor Jr- allele possibly accounts for B10.A(3R)'s failure to express I-J k 
structures. Like B 10.A(3 R), B 10.HTT does not express I-J k structures, although 
it has k haplotype genes in I-E. We made F~ hybrids between strains B10.HTT 
and AKR or C57BL/10 (Table III). Without neuraminidase treatment, I-J k 
expression by F1 hybrid T cells was equivocal (not shown). After neuraminidase 
digestion, antibodies to I-J k lysed (C57BL/10 X AKR/J)F1 and (B10.HTT x 
C57BL/10)F~ T Cells (Table III). Without prior neuraminidase digestion, I-J k 
molecules on (3R x C57BL/10)Fb (C57BL/10 x AKR/J), and (B10.HTT X 
C57BL/10)F~ T cells are probably too sparse to detect in our cytotoxic assay 
system. That (C57BL/10 x AKR)F1 hybrid T cells express I-J k determinants 
indicates successful gene complementation between two heterozygous loci. The 
somewhat surprising result that B 10.HTT complements with C57BL/10 but not 

TABLE II1 

Two Complementing Genes Control I-J k Expression in F1 Hybrid T Cells 

T cells* donor strain 

Genes % Cells lysed* 

I-E Jt Anti-Thy- WF8.C12.8 Jk. 18 
1.2 

(C57BL/10 x AKR)Ft b/k + / -  88 ± 2 17 + 3 25 + 4 
(B10.HTT x AKR)FL k/k - / -  91 _+ 1 5 _+ 2 2 - 6 
(B10.HTT x C57BL/10)F1 k/b - / +  92 ± 3 17 + 6 19 ± 6 
(SR x AKR-H-2b)FI k/b + / -  90 __. 2 27 _+ 2 31 _ 7 
(AKR x B6-H-2k)F1 k/k - / +  91 _+ 1 21 _+ 6 22 + 0 
(B6 x B6-H-2k)F1 b/k + /+  85 ± 2 48 + 6 50 + 2 
(B10.A(4R) x AKR)F~ b/k + / -  84 ± 3 18 _+ 2 19 ± 5 
(BI0.A(4R) x B10.A(3R))FI b/k + / -  87 ± 4 20 ±. 11 22 + 6 

* Mean _+ SEM; two to five experiments. 
* Neuraminidase treated as in Materials and Methods. 
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with AKR/J to yield I-J k expression suggests that B 10 .HTT provides the requisite 
14-2 k gene, but may lack the Jr + allele. B10 .HTT must be equivalent to B10.S(9R) 
in H-2, but dissimilar elsewhere. 

FI T cell I-J k expression is lower than I-J k expression by B10.A(5R) or C57BL/ 
6-H-2 k (Table II). We tested possible explanations for this observation (Table 
III). The  hybrid (5R x AKR-H-2b)F1 is heterozygous at both genes, but a single 
parent (B10.A(5R)) donated both positive alleles; I-J k expression on (5R × AKR- 
H-2b)F1 T ceils was not significantly greater than on (C57BL/10 X AKR)F1 T 
cells, where each of the two positive alleles came from a different parent. The  
hybrid (AKR × B6-H-2k)Fx is homozygous H-2 k but heterozygous Jt  +/-. I-J k 
expression on these T cells was also diminished, compared with B10.A(5R) or 
C57BL/6-H-2 k. In contrast, (B6 X B6-H-2k)Ft mice, which are homozygousJt  + 
but heterozygous H-2 b/k, exhibited T cell I-J k expression comparable to 
B10.A(5R) and B6-H-2 k. Thus,  heterozygosity at Jt but not H-2 appeared to 
decrease I-J k expression. 

Mapping the 14-2 k 1-J-Controlling Gene. We investigated the H-2 k gene contrib- 
uting to I-J k expression using recombinant strain B 10.A(4R). B10.A(4R) T cells 
were IoJ k negative even after neuraminidase treatment (Table II). Crossing 
B10.A(4R) with B10.A(3R) and AKR (7) yielded I-J k positive F1 T cells (Table 
III); B10.A(4R) thus has a functional Jt  ÷ gene but lacks the H-2 k gene required 
for I-J k expression. B 10.A(4R) is Aa k, A~ k, Ea k, E~b; the AaA,~ polypeptide complex 
is expressed on the cell surface in B10.A(4R) mice, whereas the EaE~ complex is 
not. These results rule out the possibility that A~ and Aa genes contribute to the 
I-J k determinant.  

Inhibiting Protein Synthesis or Glycosylation Affects T Cell I-J k Reexpression. 
Enhanced I-J k expression after neuraminidase treatment (Table II) suggested 
that carbohydrate structures might be involved in the I-J k molecule. Previous 
studies (16) demonstrated that the I-J k determinant was associated with protein. 
We therefore at tempted to block I-J k reexpression by preventing protein synthesis 
or glycosylation. Trypsin treatment removed T cell surface I-J k determinants 
(16). Digested cells were cultured 18 h to allow cell protein resynthesis. Trypsin- 
treated T cells reexpressed I-J k determinants after 18 h in culture (Fig. 1). Either 
inhibiting protein synthesis with cycloheximide (20), or blocking protein glyco- 
sylation with tunicamycin (21) or monensin (22) prevented I-J k reexpression (Fig. 
1). Four other I-jk-specific monoclonal antibodies with different clonal origins, 

Jk.4, Jk.5, Jk.11, and Jk.14, yielded similar results (not shown). Tunicamycin 
allowed cell surface expression of the unglycosylated protein moiety of HLA 
(23) and Ia (24) proteins. Similarly, unglycosylated membrane-bound IgM was 
detected in the presence of monensin (22). However, blocking glycosylation 
prevents cell surface expression of other membrane glycoproteins such as Thy- 
1 antigen (25). Apparently, a glycoprotein carried the I-J k determinant.  Either 
the I-J k epitope involves carbohydrate chains or unglycosylated I-J protein does 
not reach the cell surface. 

Glycosidase Treatment Affects I-J k Expression. To determine whether the I-J k 
epitope involves carbohydrate residues, we measured binding of I-J k antibodies 
to T cells before and after glycosidase digestion. T cells were treated with 
neuraminidase and then with varying concentrations of different purified gly- 
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trypsin protein addition 
treatment resynthesis to culture 

+ + none 

+ + cyclohex imide F 

+ + tunicomycin l 

+ + monensin 

J I I 
0 I0 20 30 

% cells lysed 
FIGURE 1. Blocking protein synthesis or glycoslyation prevents T cell I-J k reexpression after 
its proteolytic removal. B10.A T cells were treated twice with 0.1 mg trypsin/ml for 30 min, 
37°C. Trypsin-treated T cells were cultured for 18 h with or without cycloheximide (15/~g/ 
m]), tunicamycin (4 gg/m]), or monensin (1.0 gM), I-J k expression was measured by a 
microcytotoxicity assay with Jk.18 (I) and WF8.C12.8 (W). Mean _+ SEM; two to three 
experiments. 

cosidases. Alpha-mannosidase completely abrogated I-J k ant ibody-dependent  lysis 
of  neuraminidase-treated T cells in a concentrat ion-dependent  manner;  heat- 
inactivated o~-mannosidase had no effect (Fig. 2). Alpha-galactosidase,/3-galacto- 
sidase, O~-L-fucosidase, and/3-N-acetylglucosaminidase also had no effect, either 
at concentrations comparable to effective a-mannosidase concentrations (Table 
IV), or at 2-20-fold higher concentrations (not shown). Similar results were 
obtained with Jk.4, Jk.5, Jk. 11, and Jk.14 antibodies (not shown). Adding the 
competitive a-mannosidase inhibitor p-nitrophenyl-a-n-mannoside blocked I-J k 
determinant  removal from neuraminidase-treated T ceils (Fig. 3). Thus  de- 
creased I-J k is due to a-mannosidase activity and not to a contaminating enzyme 
activity. Alpha-mannosidase t rea tment  also destroyed the I-J k epitope on T cells 
without prior neuraminidase t reatment  (not shown). Thus  ~-l>mannosyl residues 
appear to influence the I-J k epitope recognized by the monoclonal antibodies; if  
other  sugar residues are involved, they are not in terminal positions where they 
would be removed by a single glycosidase (26). 

Discussion 
Considerable debate has recently focused on the placement of  the enigmatic 

I-J suppressor determinant  controlling gene (4, 27, 28). Previous experiments 
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Alpha-mannosidase removes I-J k from the T cell surface. B10.BR T cells were 
treated with 0.02 IU neuraminidase/ml for 30 min, 37°C as in Materials and Methods. 
Neuraminidase-digested T cells were then treated with increasing concentrations of a-man- 
nosidase for 30 rain. I-J k was measured in a microcytotoxicity assay with Jk.18 (O) and 
WF8.C12.8 (O). Mean _ SD; one representative experiment of 3. Squares indicate T cells 
treated with 0.018 IU heat-inactivated a-mannosidase/ml and tested with Jk.18 (11) or 
WF8.C ! 2.8 (121). 

TABLE IV 

Alpha-Mannosidase Removes I-J ~ Determinants from Neuraminidase-treated T Cells* 

Enzyme treatment i 
% Cells lysed* 

WF8.C12.8 Jk.18 

None 13 + 3 13 _+ 6 
NA I 44 + 9 35 + 9 
NA + a-galactosidase 47 + 2 46 + 6 
NA + 13-galactosidase 51 _ 5 37 + 10 
NA + a-L-fucosidase 47 + 11 37 _ 16 
NA + a-mannosidase 2 - 3 0 _ 0 
NA + 13-N-acetylglucosaminidase 44 + 4 31 ___ 3 

* B10.BR T cells, neuraminidase treated as in Materials and Methods. 
* Mean _+ SEM; two to six experiments. 
a Enzyme digestion conditions: 0.035 IU a-galactosidase/ml, 0.035 IU O-galactosidase/ml, 0.035 IU 

a-L-fucosidase/ml, 0.018 IU a-mannosidase/ml, 0.035 IU/3-N-acetylglucosaminidase/ml. 
! Neuraminidase. 

p r o v i d e d  e v i d e n c e  t h a t  t h e  a c t i o n  o f  a n  H-2 k g e n e  t o g e t h e r  w i t h  a n o n - H - 2  g e n e  

is r e q u i r e d  f o r  I-J k e x p r e s s i o n  (7).  A n o n - H - 2  a u t o s o m a l  d o m i n a n t  l ocus ,  t e r m e d  

Jt a n d  l i n k e d  t o  t h e  b c o a t  c o l o r  g e n e  a n d  Fv-1 o n  c h r o m o s o m e  4, c o n t r o l s  I-J  k 

e x p r e s s i o n .  T h e  f a i l u r e  o f  s t r a i n  B 1 0 . H T T ,  l ike  B 1 0 . A ( 3 R )  (7),  t o  e x p r e s s  I-J  k 

s p e c i f i c i t i e s  c a n  b e  a t t r i b u t e d  t o  i ts  b a c k g r o u n d  g e n e s ,  r a t h e r  t h a n  t o  a n  i n a p p r o -  
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FIGURE 3. Addition of p-nitrophenyl-a-n-mannose blocks I-J k removal by a-mannosidase. 
Neuraminidase-treated B 10,BR T cells were incubated with 0.018 IU a-mannosidase/ml and 
increasing concentrations ofp-nitrophenyl-~-n-mannoside for 30 rain, 37 °C. I-J k was measured 
by cytotoxicity with Jk. 18 (@) or WF8.C 12.8 (O). Horizontal lines indicate anti-I-J k lysis after 
neuraminidase t reatment  alone with Jk.18 ( ) or WF8.C12.8 (-  - -).  Mean + SEM; two 
experiments. 

priate H - 2  k gene. Hybrid (B10.HTT X C57BL/10)F~ expressed |_ jk d e t e r m i -  

n a n t s ,  whereas (B10.HTT X AKR)FI did not. In the I-Jk-expressing hybrids, 
B10.HTT contributed the needed H-2 k gene (lacking in C57BL/10), while 
C57BL/10 provided the necessary non-H-2 gene. In the non-I-Jk-expressing 
hybrid, neither B10.HTT nor AKR could contribute the requisite non-H-2 
gene. We therefore suggest that B10.HTT is not fully H-2-congenic with 
C57BL/10; it lacks a locus or loci (present in C57BL/10) which permits I-J k 
expression by B 10.A(5R) and B 10.S(9R). Moreover, the B 10.A(3R) - B 10.A(5R) 
(7) and B10.HTT - B10.S(9R) pairs are apparently identical at the H-2 k locus 
required for I-J k expression. 

The original recombinant (H-2 ~l) in B10.HTT's ancestry occurred among 
progeny of a C3H x DBA-T cross (29). This animal, crossed with A.SW, 
produced a second recombinant (H-2") (30). The second recombinant, crossed 
with B10.S, produced a third recombinant, H T T  (30). H T T  was backcrossed an 
unknown number of times to C57BL/10 producing the B10.HTT line (29). One 
of  these parent strains (most likely A.SW) evidently lacks the Jt + gene required 
for I-J k expression, and donated its J t -  genotype to B10.HTT. 

Genes in the I-E subregion probably contribute to the I-J k molecule. Hood et 
al. (4) located only four structural genes, A¢, A~, E¢, E~, and one pseudogene, 
EB2 , in the I region. The I-J k positive strains B10.A(5R) and B10.S(9R) are k at 
E~, but b and s, respectively, at the other three loci. B10.A(3R) and B10.HTT, 
which have the appropriate H-2  k gene, are both k at E~ but not at the other loci. 
B10.A(4R) is A~ k, A, k, Ea k but E, b and is I-J k negative although it has a functional 
Jt  + gene (Table III). The B10.A(4R) results alone do not rule out E0 k as the I- 
Jk-associated H-2 k gene, since the E~ chain is not expressed on the cell surface 
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without intact E~ chain (lacking in B10.A(4R); references 31, 32). Taken to- 
gether, however, these results imply that the E, k gene is required for I-J k 
expression. Alternatively, in differentiated T lymphocytes the Ea2 pseudogene 
product may contribute to I-J k molecules. 

Our data suggest that the integrity of the I-J k epitope recognized by monoclonal 
antibodies depends on terminal a-D-mannosyl residues associated with protein. 
T cells do not reexpress I-J k structures when protein synthesis or glycosylation is 
blocked. Alpha-mannosidase cleaves terminal mannosyl residues (26); this enzyme 
destroyed I-J k epitopes. Wieder et al. (33) drew a different conclusion; they 
found I-J k determinants on in vitro translated proteins presumably devoid of 
carbohydrate. Terminal mannosyl residues occur on simple, or high-mannose 
types of oligosaccharides (34). Neuraminidase treatment increased T cell I-J k 
expression; this probably does not imply that sialic acid residues are attached to 
the nonreducing ends of some high-mannose, I-Jk-bearing carbohydrate chains. 
Only complex type carbohydrate chains have to date borne terminal sialic acid 
residues (34). Furthermore, it seems unlikely that mannosyl groups themselves 
form the I-J k epitope, since these residues are so prevalent on mammalian cells. 
Mannosyl residues might instead be important in maintaining the structure of 
the I-J k protein or carbohydrate chains. 

Mannosyl residues may be implicit in functional suppressor T cell interactions. 
Interestingly, the T cell mitogenic lectin concanavalin A, whose ligand is a-D- 
mannose, bound specifically to I-J positive T cells initiating T cell proliferation 
(35) and increased nonspecific suppressor cell activity (36). Moreover, methyl-a- 
D-mannoside inhibited suppressor T cell induction in an aliogeneic response (37). 
Finally, a-D-mannose reversed infectious mononucleosis-associated suppressor T 
cell activity in vitro (38). 

A number of models may account for expression of the I-J k molecule. It is 
unlikely that the I-J k epitope is formed by association of two polypeptide chains, 
since I-J specificities occur on single polypeptide chains (39, 40). Likewise, DNA 
rearrangements occurring in T lymphocytes to juxtapose the H-2 and Jt genes 
such that a single transcript might encode a polypeptide with two domains are 
unlikely because the two genes are unlinked. Finally, intra-I-region rearrange- 
ments have not been found in T cells (27). 

We consider two models most likely. First, one gene product might modify 
(cleave, glycosylate, phosphorylate, or acylate) the other structural gene product 
(4). Since B cells synthesize 1-region polypeptides but do not express I-J deter- 
minants (4, 15, 17, 18), the Jt gene product might be enzymatically active only 
in differentiated T lymphocytes. I-J k molecules might be formed from E~ or E~ 
polypeptides processed differently in Jt-expressing T cells than in B cells or 
macrophages. Ikezawa et al. (41) concluded that I-J k determinants resulted from 
Ee k chain modification. However, the Y17 monoclonal antibody used in experi- 
ments from which these conclusions were drawn does not bind E~ or Ea chains 
alone (42), but recognizes a combinatorial E~Eo determinant (42). Furthermore, 
if the I-Jk-bearing structure were a receptor binding to E~ or E¢ chains (see 
below) both I-E and I-J determinants could be closely associated, as these studies 
indicate, but not part of  the same polypeptide; conditions that would dissociate 
noncovalently bound polypeptides were not used. T suppressor cell lines did not 
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yield /-region hybridizing mRNA (28). However, I-J k expression is cell cycle 
dependent  (19); nonsynchronous cells were used and I-J k molecule synthesis was 
not demonstrated at the time of mRNA extraction (28). Finally, E~ or E~ 
polypeptide molecular weights do not match reported I-J k polypeptide weights 
(40, 43-46). 

A second hypothesis postulates that I-J synthesis is regulated by a second gene. 
Thus , J t  may be a structural gene, its transcription and/or  translation controlled 
by E~ or Ea gene expression on other cells. For example, the T cell receptor 
molecule specific for self E,Ea complexes on antigen-presenting cells or B cells 
might bear I-J k epitopes. The  receptor may be induced only when appropriate 
H-2 molecule(s) (e.g. I-E) are expressed during maturation. Genetic control of 
the receptor, and therefore of I-J k specificities, would then apparently map to 
the H-2 gene. Some evidence supports this model. I-J-bearing, antigen-specific 
suppressor T cells are restricted by, and probably bind, I-E; Baxevanis and co- 
workers (47-49) demonstrated that monoclonal anti-I-E antibodies blocked 
antigen-specific suppressor T cell induction. Furthermore,  antibodies to I-J k 
blocked binding of pr imed T cells to antigen-pulsed macrophages (K. Klyczek, 
preliminary results). I-J alleles might represent different receptor molecules co- 
selected with the I-E gene product  or selected by adaptive modification of the Jt 
gene product. 

Genetic control of the Murine Leukemia virus (MuLV) antigen Gix shows 
striking similarities to that of I-J k. Glx and I-J ~ are not expressed in all mouse 
strains or tissues. Both show hemizygous expression in heterozygotes and Men- 
delian segregation of loci (50). Gix is expressed as a thymocyte carbohydrate 
differentiation antigen carried on the viral glycoprotein gp70 (51, 52). The  same 
genes that govern Gix viral antigen expression could potentially also affect I-J 
expression. Gv-I governs Gix cell surface density (53). The  exact location of Gv- 
1 is unclear. Segregation data suggested genetic linkage of Gv-1 to both Gpd-1 
(chromosome 4) and H-2 (chromosome 17) (54). Stockert et al. (54) attributed 
this "quasi-linkage" to the fact that both Fv-1 (very near Gpd-1) (55) and an/4- 
2D-linked gene (56) appear to influence MuLV replication, and thus simulate 
genetic linkage. The  apparent chromosomal location of the I-J-controlling genes 
on chromosomes 4 and 17 might reflect a similar mechanism. The  possibility 
that I-J genes may be derived from or associated with genes influencing virus 
expression is intriguing. Others have speculated that integrated viral genomes 
are not simply intruders, but are themselves elements of the cellular genome 
with vital physiological functions (57). 

S u m m a r y  
Two genes acting in concert control murine T cell I-J k expession. We deter- 

mined I-J k expression with I-Jk-specific monoclonal antibodies WF8.C12.8 and 
five others produced in our laboratory in a cytotoxicity assay. Previous experi- 
ments established that an/-/-2 ~ gene and a chromosome 4 gene, Jt, regulate I-J k 
expression (7). We show here that B10 .HTT and B10.S(9R) do not differ at the 
14-2 k locus required for I-J k expression. Rather B10.HTT,  like BI0.A(3R), lacks 
some important  non-H-2 gene (possibly Jr). The  intra-H-2 k I-J-controlling locus 
maps to the right of the I-A subregion. The  I-J k determinant  involves a carbo- 
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hydrate  s t ructure  associated with protein;  inhibiting ei ther  protein synthesis or  
gtycosylation prevents  T cell I-J k reexpression af te r  proteotyt ic  removal.  Trea t -  
ment  with a-naannosidase destroys I-J k determinants ,  implicating terminal a-D- 
mannosyl residues in the I-J k epitope. Models for  H-2 and Jt  control  o f  I-J 
expression are discussed. 
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