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Cleft lip with or without cleft palate (CL/P) is one of the most com-
mon birth defects; it is a multifactorial disease affecting N 1/1,000
live births in Europe, and its etiology is largely unknown, although
it is very likely genetic and environmental factors contribute to
this malformation. Orofacial development is a complex process in-
volving many genes and signaling pathways. Mutations in the gene
for the interferon regulatory factor 6 (IRF6) cause a hereditary
dominant malformation syndrome including CL/P, and polymor-
phisms are associated with non-syndromic CL/P (MIM 119530).
Five SNPs at the locus with high heterozygosity in Caucasian pop-
ulations were chosen for the present research due to their very
strong association with CL/P. A case–parent trio study was
performed using 292 samples from Mexico. Association with the
rs1319435-C/C genotype (P = 0.02) was found in patients (73)
as compared to pseudocontrols (219), while the genotype
rs1319435-T/C was related with protection (P = 0.041) in
the triad design. Significant over-transmission of the G allele
for marker rs2235375 (P = 0.049) was found. Only the TACGT
haplotype was diminished in the affected child, either in single
(P = 0.0208) or double (P = 0.0208) dose. The pairwise analysis
showed rs2235543 and rs2235371 were in strong linkage
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disequilibrium. These results point to a substantial contribution of
IRF6 in the etiology of non-syndromic CL/P in a sample of the
Mexican population.
© 2015 The Authors. Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Cleft lip with or without cleft palate (CL/P) is a common congenital structural anomaly notable for sig-
nificant lifelong morbidity and its complex etiology. The prevalence of orofacial clefts varies from 1/500 to
1/2,500 births depending on geographic origin [Vanderas, 1987], racial and ethnic backgrounds [Croen
et al., 1998; Tolarova and Cervenka, 1998], and socioeconomic status [Murray et al., 1997]. Non-syndromic
CL/P (MIM 119530) is a complex multifactorial disease affecting 1/1,000 live births in Europe [Carinci et al.,
2003]. The causes of orofacial clefts involve genetic and environmental factors [Schutte and Murray, 1999].
Epidemiological data in different populations have shown the prevalence of CP is generally lower than that
of CL/P and families at high risk for one type of cleft are not at increased risk for the other type. A further sub-
division of orofacial clefts into syndromic vs. isolated forms depends on whether additional structural and/or
developmental anomalies occur with the cleft [Jugessur and Murray, 2005]. Orofacial development is a
complex process involving many genes and signaling pathways [Murray and Schutte, 2004]. Alterations in
one or more genes could cause CL/P.

Interferon regulatory factor 6 (IRF6) on 1q32.2 is consistent in its contribution to orofacial clefting among
the large number of candidate genes and mutations in this gene cause a dominant malformations syndrome
including CL/P and polymorphic markers strongly associated with CL/P [Jugessur et al., 2008; Rahimov et al.,
2008].

IRF6 belongs to a family of nine transcription factors that share a high conservedwinged helixDNAbinding
domain and a less conserved protein-binding domain [Kondo et al., 2002]. IRF6mutationsmay produce a non-
functional protein leading to haplo-insufficiency, affecting the DNA binding domain and cause a dominant
negative effect, resulting in severe phenotypes [Houdayer et al., 2001]. Also mutations in the IRF6 transcrip-
tional activation domain may inhibit transcriptional activation, conferring different effects on the function
of IRF6 [Little et al., 2009].

A common polymorphic variant, in which isoleucine is substituted for valine at amino acid position
274 (V274I) in the protein-binding domain of IRF6, was identified in an analysis of IRF6 mutations [Kondo
et al., 2002]. A family study showed highly significant transmission disequilibrium for this V274I variant
with CL/P [Zucchero et al., 2004]. In an Italian population, four different SNPs were analyzed and revealed
strong evidence of linkage disequilibrium between CL/P and the markers rs2013162 and rs2235375
[Scapoli et al., 2005].

In the present study, we analyzed five IRF6 SNPs (rs1319435, rs2013162, rs2235375, rs2235371,
rs2235543) in 68 Mexican families to test for association with non-syndromic CL/P.

Materials and methods

Sample study

Our study sample consisted of 73 families including father, mother, and two brothers or sisters (without
CL/P) of the affected child, corresponding to 292 subjects. All participants were recruited between 2009 and
2011, and all patients were screened for the presence of associated anomalies or syndromes by expert genet-
icists, and only those determined to have isolated cleft lip with or without cleft palate were included. This
study was approved by the local Ethics and Research Committees of the Hospital General “Dr. Manuel Gea
González”. Written informed consent was obtained from each person or legal representative of children.
DNA was extracted from peripheral blood [Sambrook et al., 2001]. Polymerase chain reaction (PCR) of the
IRF6 gene was performed using the primers described by Zucchero et al., 2004 and Scapoli et al., 2005. PCR
was performed followingmanufacturer indications (Epicentre Biotechnologies, USA), and alleles were deter-
mined by dot-blot and specific digoxigenin-11-ddUTP-labeled oligonucleotide probes and visualized by
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chemiluminescence [Bignon and Fernandez-Vina, 1995]. Hybridization results were interpreted by direct
observation, considering positive as a strong black dot [Jimenez-Gonzalez et al., 2012].

Statistical analysis

Two approaches were performed: cases and pseudocontrols, according to the Falk and Rubistein, 1987,
and Spielman et al., 1993 description, “two parental genes not transmitted to their diseased offspring could
be used as the control sample.” This would assure that both samples of the case's genes and its matched
control genes (i.e., nontransmitted parental genes) would come from the same genetic population. The
second one consisted in a triad analysis considering child, mother, and father.

The data were analyzed by bivariate and multivariate statistics. Allele frequencies (AF) and genotype
frequencies (GF) were calculated by direct counting of alleles and genotypes and were compared between
the patients and the pseudocontrols using a Chi-squared test or a two-tailed Fisher's exact test when the
expected frequency in at least one cell was less than 5. Relative risk for alleles, genotypes, and haplotypes
were calculated as an odds ratio (OR) according to Woolf formula [Woolf, 1955], using a 2 × 2 contingence
table for each instance. Ninety-five percent confidence intervals (95%CI) were obtained by using Cornfield's
approximation. A log-linear method to test for asymmetric distribution of a particular variant allele among
affected offspring and their biologic parents assuming Mendelian inheritance with or without Hardy–
Weinberg equilibrium (HWE) was performed [Weinberg et al., 1998; Wilcox et al., 1998; Weinberg, 1999],
using the program HAPLIN (version 5.3) [Gjessing and Lie, 2006]. This program was chosen because it was
specifically designed to analyze genetic risk factors in offspring-parent triads and case–control collections,
based on log-linear modeling, implementing a full maximum-likelihood model for estimation. It computes
Table 1
IRF6 allele and genotype frequencies in CL/P patients and pseudocontrols analyzed by bivariate statistic.

Alleles and genotypes Affected (n = 73; %) Non-affected (n = 219; %) P OR(95%IC)*

rs1319435
T 60 61 0.89 0.97 (0.66–1.43)
C 40 39 0.89 1.02 (0.69–1.50)
T/T 29 24 0.43 1.27 (0.70–2.30)
T/C 63 74 0.08 0.61 (0.35–1.07)
C/C 8 2 0.02 3.84 (1.12–12.78)

rs2013162
A 62 63 0.81 0.95 (0.65–1.40)
C 38 37 0.81 1.04 (0.71–1.54)
A/A 23 25 0.71 0.89 (0.48–1.66)
A/C 77 75 0.71 1.13 (0.60–2.10)

rs2235375
C 45 50 0.25 0.80 (0.55–1.17)
G 55 50 0.25 1.25 (0.85–1.82)
C/C 12 21 0.09 0.52 (0.24–1.12)
C/G 64 58 0.30 1.34 (0.77–2.32)
G/G 23 21 0.72 1.12 (0.60–2.11)

rs2235371 (V274I)
A 56 56 0.89 1.03 (0.70–1.50)
G 44 44 0.89 0.98 (0.67–1.42)
A/A 12 13 0.97 0.98 (0.44–2.20)
A/G 88 86 0.74 1.15 (0.52–2.55)
G/G 0 1 0.64 0.49 (0.02–9.89)

rs2235543
T 52 51 0.81 1.04 (0.72–1.52)
C 48 49 0.81 0.96 (0.66–1.39)
T/T 4 3 0.57 1.50 (0.37–6.16)
T/C 96 96 0.88 0.90 (0.23–3.48)
C/C 0 1 0.85 0.74 (0.03–16.60)

A character in bold and italics indicates association.
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explicit estimates of relative risks with asymptotic standard errors and confidence intervals. It uses the
expectation-maximization (EM) algorithm to impute genotypes that are missing [Jugessur et al., 2012]. The
most frequent haplotype was use as reference for estimating the effect in a multiplicative model.

Linkage disequilibrium (LD)was determined using Haploview (version 4.2) to reconstruct haplotypes
and to estimate the relative risk associated with a single or double dose of each haplotype among the
mother–father–child triads. Association analyses were performed under additive or genotype-wise
models using family-based conditional logistic regression analysis [Cordell et al., 2004; Barrett et al.,
2005; Gjessing and Lie, 2006].

To establish the most informative model of Mendelian association (dominant, co-dominant, recessive,
overdominant, or log additive), the online SNPStats program was used in case–pseudocontrols and triads
(Solé et al., 2006).

Results

Allelic and genotypic frequencies of all IRF6 polymorphisms, showing P, OR, and 95% CI, obtained by the
bivariate analysis in patients and pseudocontrols, are summarized in Table 1. The most frequent alleles
were rs1319435-T, rs2013162-A, rs2235375-G, rs2235371-A, and rs2235543-T, while the more frequent
genotypes were the heterozygous ones of each SNP. No association was found with any allele when consid-
ered alone. However, the genotype rs1319435-C/C showed increased risk (P = 0.02, OR (95 % IC) = 3.84
(1.12–12.78), while the C/C genotype at rs2235375 showed a marginal association with a protective effect
P = 0.09, 0.52 (0.24–1.12). Allele and genotype frequencies in these triads (mother–father case) showed
no significant differences with any individual allele, but the genotype rs1319435-T/C was significantly
Table 2
IRF6 allele and genotype frequencies of CL/P triads mother–father case analyzed by bivariate statistic.

Allele/genotype Cases (n = 68; %) Parents (n = 136; %) P OR(95%IC)*

rs1319435
T 61 60 0.83 1.05 (0.69–1.60)
C 39 40 0.83 0.95 (0.62–1.46)
T/T 31 23 0.21 1.51 (0.78–2.90)
T/C 60 74 0.04 0.53 (0.28–0.98)
C/C 9 3 0.07 3.19 (0.87–11.73)

rs2013162
A 62 62 0.66 0.91 (0.59–1.39)
C 38 38 0.66 1.10 (0.72–1.68)
A/A 24 25 0.49 0.78 (0.39–1.57)
A/C 76 75 0.49 1.27 (0.64–2.55)

rs2235375
C 43 50 0.13 0.72 (0.48–1.10)
G 57 50 0.13 1.39 (0.91–2.10)
C/C 12 19 0.10 0.50 (0.21–1.16)
C/G 63 62 0.71 1.12 (0.62–2.03)
G/G 25 19 0.29 1.44 (0.73–2.83)

rs2235371 (V274I)
A 56 57 0.93 1.02 (0.67–1.54)
G 44 43 0.93 0.98 (0.65–1.49)
A/A 12 14 0.85 0.92 (0.39–2.17)
A/G 88 85 0.95 0.97 (0.44–2.17)
G/G 0 1 0.53 1.88 (0.26–13.67)

rs2235543
T 52 51 0.84 1.04 (0.69–1.58)
C 48 49 0.84 0.96 (0.63–1.45)
T/T 4 2 0.40 1.98 (0.39–10.11)
T/C 96 98 0.40 0.50 (0.10–2.57)

A character in bold and italics indicates association.



Table 3
Transmission disequilibrium test (TDT) results.

SNP Overtransmitted T:Ua Chi-square P value

1 rs2235543 T 68:65 0.07 0.794
2 rs2235371 G 60:56 0.14 0.710
3 rs2235375 G 51:33 3.86 0.049
4 rs2013162 C 52:50 0.04 0.843
5 rs1319435 T 52:49 0.09 0.765

a Ratio of transmissions to non-transmissions of the overtransmitted allele. A character in bold and italics indicates association.
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increased among parents (Table 2). Table 3 shows overtransmitted alleles in the child obtained with
Haploview v4.2, being allele rs2235375-G significant (P = 0.049).

The haplotype frequencies of the child and the mother in a single dose (one copy) or double dose (two
copies) were obtained with HAPLIN v5.3 and are shown in Fig. 1, where OR are presented as relative risk
(RR), and 15 haplotypeswere dropped from the analysis because their frequencywas less than 1%. Seventeen
5 SNP haplotypes were found for both mother and child, using CCGGT as the reference haplotype. TACGT
haplotype was underrepresented in the affected child, either in single (P = 0.0208 RR (95% CI) = 0.157
(0.032–0.762)) or double (P = 0.0208; RR (95% CI) = 0.0247 (0.00102–0.58)) dose. Heterozygotes for the
haplotype TAGGT showed a slight excess (P = 0.0674; RR (95% CI) = 6.95 (0.856–57.3)).
Fig. 1. Estimated relative risks of cleft lip with orwithout cleft palate (CL/P) in 68Mexican children carrying one or two copies of the each
haplotype. Upper half estimates based on haplotypes in the child; lower half estimates based on haplotypes in the mother. Vertical bars,
95% confidence intervals are on a logarithmic scale.



Fig. 2. Linkage disequilibrium (LD)between the IRF6 genotyped SNPs is shown forwhich thepairwise LD plotwas created byHAPLOVIEW
4.2. Within each diamond the pairwise correlation coefficient (r2) or the standardized coefficient of LD (D′) are presented. Standard color
coding was used for the Haploview LD plots using the confidence limits as a color scheme, for D′ LD plots: white = strong evidence of
recombination; light gray = uninformative; dark gray = strong evidence of LD; for r2 LD plots: white r2 = 0, shades of gray 0 b r2 b 1,
black r2 = 1. White squares indicate absence of LD r2 = 0 or D′ = 0. Intragenic SNPs rs2013162and rs2235371 are shown in green. A
marker pair showsmoderate or usable LD ifD′ is between 0.33 and 0.5, and strong LD ifD′ is 0.5 or above (i.e., at least half the maximum
value).
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The pairwise LD (D′ and r2) for all 5 SNPs is presented in Fig. 2. Two SNPs were in coding regions:
rs2235371 in exon 7 producing a change of the amino acid valine to isoleucine at codon 274 (V274I) and
rs2013162 in exon 5 is a silent variant (Ser153Ser), which are noted in green in Fig. 2. SNP rs2235543 is
also intragenic, located in intron 6, rs1319435 is 70 kb 5' of IRF6 and rs2235543 is 100 kb 3' of IRF6 [Scapoli
et al., 2005]. The LD plot in Fig. 2 indicates alleles at rs2235543 and rs2235371 are in strong LD among parents
in these trios, while rs2235543, rs2235375, and rs1319435 seem be almost independent of one another.
However, rs2235543 with rs2013162 and rs2235543 with rs1319435 also showed strong LD.

Genetic models were fitted for each SNP; odd ratios (OR) and 95% confidence intervals (CI) were calculate
to check the relative risk for association with the online SNPStats program (Solé et al., 2006). The results are
showed in the Table 4. No inheritancemodelwas found for rs2013162 in the case–pseudocontrol approach, as
well as for rs2013162 and rs2235543 in triads.
Table 4
SNP model inheritance for case–pseudocontrols and triads.

SNP Model Genotype OR (CI 95%) P value

Case–pseudocontrols
rs2235543 Log additive − .1.76 (0.48–6.39) 0.40
rs2235371 Co-dominant G/A 0.97 (0.43–2.17) 0.41
rs2235375 Recessive C/C 1.92 (0.89–4.16) 0.08
rs1319435 Recessive C/C 0.26 (0.08–0.89) 0.035

Triads
rs2235371 Co-dominant G/A 0.81 (0.34–1.97) 0.60
rs2235375 Recessive C/C 1.77 (0.76–4.16) 0.17
rs1319435 Overdominant C/T 1.90 (1.02–3.53) 0.043

A character in bold and italics indicates association.
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Discussion

The objective in this studywas to test for evidence of association and linkage betweenfive SNPs in the IRF6
gene and to calculate the risk of cleft lip with or without cleft palate. We used a population based case–
pseudocontrol and case triad study of CL/P in a Mexican sample. Two studies that analyzed Asian and South
American populations [Zucchero et al., 2004, Srichomthong et al., 2005] showed a significant association
between CL/P and the rs2235371 (V274I) polymorphism in IRF6; in the Zucchero et al. (2004) study, no asso-
ciationwith IRF6was found between cleft palate alone and the V allele in the South American population, but
in the South American and Asian groups, the results were highly significant (P b 0.001) for the association
between cleft lip or palate and the V allele and also between cleft lip alone and the V allele. In the bivariate
analysis of our study, this polymorphism alone did not show association with CL/P. However, an association
with increased risk (P = 0.02; OR [95%CI] = 3.84 [1.12–12.78]) was seen with the homozygous genotype
rs1319435-C/C in the case–pseudocontrol comparison, while the rs1319435-T/C genotype in the triad analy-
sis was underrepresented among cases (P = 0.04; OR [95%CI] = 0.53 [0.28–0.98]).

Vieira et al. (2002) describe that Amerindian-specific haplotype D of mtDNA had a high frequency.
Afterward, Vieira et al. (2007) investigated the specific maternal origin association with IRF6. Individuals
with mtDNA haplotype D did not show association with the IRF6 alleles (P= 0.259), but individuals with
mtDNA haplotypes other than haplotype D showed a trend for association with IRF6 (P= 0.08). Nevertheless,
when they stratified by mitochondrial haplotype and for CL/P, the results indicated an association of
IRF6 and risk of NSOFC among individuals with mitochondrial DNA haplotype other than haplotype D
(P = 0.023).

On the other hand, admixture analysis of Mexicanmestizos from different regions of the country has been
carried out with different genetic systems. Few analyses have described the maternal lineages variability
(mtDNA) throughout the Mexican territory. Martínez-Cortés et al. (2013) studied the mtDNA variation in
10 populations from different regions of Mexico. The matrilineal diversity estimated in the 742 Mexican
mestizos studied was defined by nine haplogroups and paragroups. In the whole population sample Native
American haplogroups A, B, C, and D were prevalent (92.9%), with frequencies of 47, 23.7, 15.9, and 6.2,
respectively. In the Martínez-Cortés et al., 2013 work, the haplogroup D had the lowest total frecuency
(6.2%) without a clear geographical pattern. In our study, mtDNA was not analyzed, but if we considered
the results of Vieira et al. (2007) and Martínez-Cortés et al. (2013) , one would think that similar results
could be found in our C/LP population. This kind of analysis would be important to perform in the next future,
since in this moment it is not possible.

Since we had families with only one affected child, nomodel free linkage approach could be done because
it is necessary the inclusion of multicase families for the calculation of identical-by-descent allele-sharing-
based method.

The fitted models obtained by the SNPStats program were the recessive model for rs1319435 in case–
pseudocontrols, which was associated with a protective effect (P = 0.035 OR (95% CI) = 0.26(0.08–0.89)),
and the overdominant model for rs1319435 in triads, that was significantly increased in affected child
(P = 0.043 OR (95% CI) = 1.90 (1.02–3.53)).

Linkage disequilibrium between markers rs2235543, rs2235375, and rs1319435 was low in this popula-
tion. TDT analysis showed a significant under-transmission of the C common allele and significant over-
transmission of the G allele at marker rs2235375 (P = 0.0495) similar to the data of Huang et al., 2009].
SNP rs2235375 showed the strongest association with over-transmission of the G allele with CL/P in our
population, as reported in European-American, Taiwanese, Singaporean, Korean, and Western Chinese
case–parent triads in a genome wide TDT analysis; however, the SNP rs2013162 was also significant in the
same populations, except forWestern Chinese [Huang et al, 2009; Park et al., 2007] andMexican (this study).

IRF6 genotypes influence the risk of CL/P during development, and environment and ethnic factors should
be considered as triggers since they could interact with the IRF6 pathway, altering fetal cell differentiation
during palate formation. Our results agree with Park et al. (2007), who pointed that “significant results
observed from SNPs other than rs2235371 (p.V274I) suggest that rs2235371 itself is not causal, but rather
in LD with some causal mutation in IRF6.” Additionally, the lack of association of the rs2235371 SNP and
CL/P may be influenced by the relatively small sample size analyzed in this work, although we calculated
the statistical power for the case–pseudocontrol and triads association, being 0.62 and 0.53, respectively,
and these values are under the rejection level of the null hypothesis, it is important to describe the behavior
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of these polymorphisms in a sample of the Mexican population, to increase the knowledge of CL/P for further
extensive analysis.
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