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Cancer is one of the most critical human challenges which endangers many people’s lives
every year with enormous direct and indirect costs worldwide. Unfortunately, despite many
advanced treatments used in cancer clinics today, the treatments are deficiently
encumbered with many side effects often encountered by clinicians while deploying
general methods such as chemotherapy, radiotherapy, surgery, or a combination
thereof. Due to their low clinical efficacy, numerous side effects, higher economic
costs, and relatively poor acceptance by patients, researchers are striving to find
better alternatives for treating this life-threatening complication. As a result, Metal
nanoparticles (Metal NPs) have been developed for nearly 2 decades due to their
important therapeutic properties. Nanoparticles are quite close in size to biological
molecules and can easily penetrate into the cell, so one of the goals of
nanotechnology is to mount molecules and drugs on nanoparticles and transfer them
to the cell. These NPs are effective as multifunctional nanoplatforms for cancer treatment.
They have an advantage over routine drugs in delivering anticancer drugs to a specific
location. However, targeting cancer sites while performing anti-cancer treatment can be
effective in improving the disease and reducing its complications. Among these, the usage
of these nanoparticles (NPs) in photodynamic therapy and sonodynamic therapy are
notable. Herein, this review is aimed at investigating the effect and appliances of Metal NPs
in the modulation tumor microenvironment which bodes well for the utilization of vast and
emerging nanomaterial resources.
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INTRODUCTION

Cancer is a significant concern in modern societies worldwide.
Abnormal cell growth and their transformation into different
types of tumors in human organs cause this life-threatening
complication (Zaorsky et al., 2017; Shahab et al., 2018;
DeSantis et al., 2019). Several pathways and molecular defects
are significant in the development and progression of cancer. The
leading cause of tumor formation is due to one or a series of gene
mutations. Moreover, tumor deterioration, benign or malignant
tumor, and metastatic behavior depends on the mutation type
and affected genes. The tumor stage is the single most
determining parameter to select the therapeutic approaches
(Paul and Lal, 2017; Mohd Yusof et al., 2018; Zhao et al., 2020).

Surgery, radiotherapy, chemotherapy, or combination therapy
are employed as the therapeutic procedure for most of the cancer
types (Temple et al., 2004; Giordano et al., 2005; Verbrugge et al.,
2009). Today, blended methods are commonly used in
combination with chemotherapeutic agents for most cancers
treatment, largely trying to control angiogenic, signaling, DNA
replication, and cell cycle process (Urruticoechea et al., 2010;
Yuan et al., 2019). Despite mentioned advances, cancer therapy is
still complicated and sometimes impossible in most cases,
especially in the metastatic stages thus necessitating search for
new treatments.

The use of NPs has garnered much attention lately as they can
be very effective in medicine due to their unique properties,
suitable and tunable features for drug delivery, and their effects
on the treatment process. To optimize loading and delivery
capacity, NP parameters like as shape, size, and surface
chemistry have been carefully designed (Singh et al., 2019).
One of the essential properties of NPs is the high surface-to-
volume ratio, which elevates their surface energy that can be
exploited in various medical applications, especially
photodynamictherapy (PDT) (Singh et al., 2020). Daniel and
Astrum (Daniel and Astruc, 2004) have summarized the history
of the nanoparticles and mentioned the use of metal
nanoparticles historically and reported the popularity due to
uniform size and sharp size distribution. They have provided
various fascinating properties leading to remove barriers in
different field of nanotechnology specially in biomedical field
because of their unique physiochemical properties (Sintov et al.,
2016; Venkatesh et al., 2018). Metal nanoparticles which are
traditionally are known with silver and gold, provides unique
chrematistics such as SPR (surface plasmon resonance) more
effectively that other types of nanoparticles. It has been confirmed
that rational design of metal nanoparticles represented well
biocompatibility and versatility (Patra et al., 2018). Meanwhile,
metal nanoparticles can be engineered as theranostics particles to
provide both therapy and imaging simultaneously (Sintov et al.,
2016). Theranostics based on nanoparticles (NPs) is a promising
paradigm in nanomedicine (Singh et al., 2017). The deployment
of nanotechnology in the right situation can overcome many
challenges in cancer treatment (Alvarez et al., 2017; Maddela
et al., 2021). The proper position in cancer treatment is to identify
the vulnerability of cancer cells and destroy them without
damaging normal cells and tissues. The tumor

microenvironment (TME) in many cancers is now considered
a critical target for therapy and has been ascribed to as a crucial
involved parameter for promoting tumor growth, proliferation,
angiogenesis, invasiveness, and metastasis (Liu et al., 2018a).

Mesenchymal cells, extracellular matrix (ECM), cancer-
associated fibroblasts (CAFs), and immune system cells are
important components of TME in cancer fate and progression
tometastasis (Anton and Glod, 2016; Nadhan et al., 2020a). In the
early stages of TME formation, cells and proteins involved in cell
death are disrupted through an interaction, and the process of cell
proliferation and differentiation is affected (Phan, 2008; Yuan
et al., 2016; Murphy and Weaver, 2017a; Farc and Cristea, 2021).
Proteins involved in the process of reproduction and
programmed death include growth factors and inflammatory
factors of the immune system that are involved in tumor
angiogenesis (Chang et al., 2002; Phan, 2008; Dumont et al.,
2013; Yuan et al., 2016). Out-of-regulation function of immune
system cells inhibits their function and reduces suppression of
tumorigenesis (Samstein et al., 2012; Lei et al., 2020). By reducing
the function of immune cells in addition to reducing the
immunogenic function of lymphocytes, increasing
inflammatory factors such as cytokines and chemokines cause
more tumor metastasis (Talmadge and Gabrilovich, 2013; Wolf
et al., 2015; Zhou et al., 2018a).

Due to the prominent effect of TME on the proliferation,
migration and metastasis of cancer cells, targeting it can be
effective in reducing tumor progression (Labani-Motlagh et al.,
2020a; Liu et al., 2020). Due to the fact that the effect of MNPs
on TME has been rarely studied, so their study can be effective
in further understanding these nanoparticles. In the present
study, we first identify TME and its characteristics. Then,
nanoparticles and their effects on TME and treatments were
investigated.

TUMOR MICROENVIRONMENT

Cancer tissue has a supportive environment in which various
components can infiltrate as homeostasis, fighting, or helping
elements. TME can involve many cancer processes such as tumor
growth, proliferation, angiogenesis, invasiveness, and metastasis
via interaction with cancer cells as a dynamic cellular
environment. Mesenchymal cells and the extracellular matrix
(ECM) as the components of the TME are responsible for
secreting various factors which affect cancer fate. Cancer-
associated fibroblasts (CAFs) are known to be the main
cellular components of TME, which by secreting multiple
factors including EGF (endothelial growth factor), VEGF
(vascular endothelial growth factor), and HGF (hepatocyte
growth factor), can metastasize cancer cells by disrupting and
rupturing the ECM via the RTK signal pathway (Anton et al.,
2017; Nadhan et al., 2020b). Different cell types are present in
TME (Figure 1), Such interaction of cells leads to establishing a
complex network that can promote or inhibit cancer reliant on
tumor condition and cell interaction (Phan, 2008; Murphy and
Weaver, 2017b; Farc and Cristea, 2021). Reprograming the
surrounding cells, mostly fibroblasts, immune cells, and
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vascular cells by tumor cells, is the first step for TME formation
(Yuan et al., 2016).

Fibroblasts constitute the main component of the tumor
stroma which can be recognized through distinctive markers
such as vimentin, smooth muscle actin-α (SMAα), fibroblast
activation protein (FAP) (Chang et al., 2002; Phan, 2008). To
create CAFs, tumor cells induce fibroblasts and blood vessels by
different factors such as PDGF (platelet-derived growth factor) or
FGF (fibroblast growth factor) and hypoxia through activating
PDGF, IL1, stromal cell-derived factor (SDF), TGFβ, and reactive
oxygen species (ROS). Thus, CAFs formed the overall shape of
TME through ECM secretion and cytokines and growth factors
activating such as TGFβ, HGF, SDF, and MMPs, and inducing
angiogenesis by VEGF and PDGF (Dumont et al., 2013).

Immune-related cells are the other most dominant cells in
TME. It has been reported that both tumor-antagonizing and
tumor-promoting cells are present in TME. Macrophages,
neutrophils, natural killer cells, T cells, and dendritic cells are
the essential tumor-antagonizing cells of the immune system,
while myeloid-derived suppressor cells (MDSCs) and regulatory
T cells (Tregs) are among the most significant tumor-promoting
immune cells (Lei et al., 2020). Foxp3 is the distinctive marker of
Tregs, which is essential for their function (Samstein et al., 2012).
Besides the suppressive role, Tregs represent a regulatory
function on effector T cells which is significant in some severe
conditions, including autoimmune disease that suppresses the
over-reactive immune response. Therefore, cancer suppression by
cytotoxic T cells possibly can be inhibited due to the presence of
Tregs in TME (Wolf et al., 2015). On the other hand, MDSCs use
a different mechanism for tumor promotion; they are seemingly
induced in TME followed by cytokines and chemokines
secretions. Thus, MDSCs exert their impact through cancer

cell migration, promote metastasis and angiogenesis
(Talmadge and Gabrilovich, 2013; Zhou et al., 2018b).

TME MODULATION

TME has a substantial effect on metastasis and cancer resistance,
so that it is introduced as the primary barrier against the clinical
use of immunotherapy. Furthermore, in view of its prominent
effect in proliferation, migration, and metastasis, it can be
considered an extraordinary target in the treatment of cancer
(Liu et al., 2020; Labani-Motlagh et al., 2020b). Given the
challenges and limitations of current therapies, TME
modulation can be regarded as an alternative approach, which
can significantly enhance the effectiveness of existing treatments.
In addition, TME represents some unique features, including
hypoxia, low pH, and immunosuppressive environment that can
be recruited as the target for TME modulation (Figure 2) (Chen
et al., 2015; Janoniene et al., 2017; Mpekris et al., 2017).

TME and Hypoxia
One of the essential elements for energy metabolism is oxygen.
Hypoxia causes intratumorally oxygen gradients and increase the
hypoxia-inducible factor 1α (HIF-1α), a key marker in hypoxia
mechanisms and the central mediator of hypoxia-induced
signaling. On the other hand, hypoxic TME leads to tumor
development and drug resistance through uncharacteristic
angiogenesis, desmoplasia, and inflammation (Mayer et al.,
2008; Jain, 2014; Whatcott et al., 2015). HIF-1α has been
reported to be overexpressed in various cancer types and has
accounted for tumor survival through drug resistance (Sun et al.,
2007; Mayer et al., 2008; Simiantonaki et al., 2008). The effect of

FIGURE 1 | Different cell types are present in TME: macrophages, fibroblasts, endothelial cells, neutrophils, eosinophils, mast cells, lymphocytes, dendritic cells,
and dendritic cells, each representing a diverse impact on cancer tissue.
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HIF has been proven in cancer stem cell (Emami Nejad et al.,
2021). Besides, hypoxic TME is apparently involved in p53 and
mitochondrial regulation and modulation in cancer cells (Jing
et al., 2019).

TME, Low pH and Immunosuppressive
Environment
Nevertheless, a low pH environment can be induced by hypoxia
in TME, leading to multidrug resistance. Multiple mechanisms
have been attributed to this cause, such as genetic alteration, ion
trapping, or multidrug transporter p-glycoprotein (P-gp)
overactivity. Due to the semi-permeable properties of the
cellular membrane, unlike the charged particles, small
uncharged molecules can diffuse into the cells (Zub et al.,
2015). Considering the pH-depending property of several
chemotherapeutic agents, intracellular pH alteration leads to
low diffusion of chemotherapies into the cell membrane,
resulting in drug resistance. On the other hand, as mentioned
P-gp is an essential drug-resistant mechanism in low pH TME
(Triner and Shah, 2016).

Considering mentioned properties, treatments based on
targeting acidic conditions and hypoxia TME can be very
effective. As an example, one approach could target hypoxia
by inhibiting VEGEF or PI3K/AKT/HIF-1α pathway (Jing
et al., 2019). In general, accurate targeting of one of the
main features of TME and its disruption, including hypoxic
conditions that subsequently cause high acidity of this
structure, can be considered a critical therapeutic approach.
However, one of the main problems in this area is the accurate
delivery and targeting, which possibly can be overcome with
nanotechnology.

EFFECT OF NPS ON TME MODULATION

TME modulation, as described in the previous section, can be
exploited as one of the main treatments for various types of solid
cancers. In this section, the effects of nanotechnology and NPs on
TME modulation are highlighted.

NPs are generally referred to as particles with dimensions of
about 1–100 nm and possess various attributes and different
properties than their bulk sample. Such difference creates very
distinctive properties that are generally ascribed to their high
surface-to-volume ratio (Maddela et al., 2021). The antibacterial
properties of silver NPs have long been recognized (Mozafari
et al., 2021). However, in the last few decades, due to the
availability of new technologies, it has become possible to
make a wide range of NPs, from quantum dot nanoparticles
to nanofibers.

The use of NPs for targeted drug delivery has been studied in
many diseases, and excellent clinical results have been observed
(Tietze et al., 2013;Mu et al., 2020). Due to the NPs’s size and high
surface-to-volume ratio, it is possible to load the drug in different
parts of NPs, including the surface of the NPs, inside the capsule-
like structures and connecting to internal components such as
those seen in dendrimers. Therefore, they can provide effective
TMEmodulation (Dadwal et al., 2018; Hu et al., 2019). One of the
critical drug accumulators in cancer is the enhanced permeability
and retention (EPR) effect. It has been well understood that NPs
(20–200 nm) can effectively get accumulated in cancer cells due to
their adoptable size to the vascular endothelial pores and
permeability (Huai et al., 2019).

Despite the unique opportunities that EPR plays in NPs
accumulation in cancer cells, studies have shown that due to
the high heterogeneity of cancer cells and the abnormality of

FIGURE 2 | Some special features of the TME: hypoxia, low pH, and immunosuppressive environment. The immunosuppressive environment of TME has been
observed in many cancers. Because of rapid proliferation and the imbalance between oxygen supply and consumption, the TME oxygen level tends to be reduced,
which is ascribed as hypoxic regions observed in most tumors. PH reduction is another feature of TME.
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vasculature in cancer tissue, NPs did not reach the cancer tissue
more effectively. Therefore, researchers have resorted to active-
targeted drug delivery approaches because the EPR effect in drug
delivery systems is considered passive. In this regard, NPs are
designed to target specific cancer markers. Due to the extremely
high cancer antigenicity, one of the factors that are mainly
considered in the active targeting of cancer cells is the VEGF
receptor. Consequently, the design of NPs based on this factor
and the simultaneous use of the EPR effect can increase the drug
accumulation in TME to an adequate level. Among other cancer-
targeting agents, anginex and RGD peptides can be mentioned for
targeting galectin-1 and integrin αvβ3, respectively (Byrne et al.,
2008; Zhu et al., 2017; Liu et al., 2018b; Fu et al., 2019).

Moreover, metal NPs can be considered as a therapeutic agent
in addition to being drug delivery entities. In this regard, plasmon
resonance and photoluminescence properties of metal NPs can be
mentioned (Hu et al., 2019). Furthermore, NPs have been used in
various studies for TMEmodulation as follows: for modulation of
the acidic TME, modulation of tumor ECM structure,
immunosuppressive TME modulation, and also for the
reduction of tumor hypoxia by oxygen delivery, oxygenation,
and alleviate oxygen consumption (Liu et al., 2018a).

METAL NANOPARTICLES FOR TME
MODULATION

One of the most attractive NPs in the field of biomedicine and
especially drug delivery are metal NPs. These NPs, which are
generally between 1 and 100 nm in size, have extraordinary
properties that distinguish them from other NPs. These
unique properties include magnetic, optical, and catalytic
properties. Metal NPs have various capabilities depending on
the type, material, shape, composition, and size. With the precise
engineering of these NPs, one can expect to receive multiple
responses under the same conditions. Also, with the accurate
design of Metal NPs in terms of composition and size, the
bioavailability, biological activity, and toxicity, as one of the
central Metal NPs limitations, can be controlled (Sharma
et al., 2018).

Due to the unique properties, Metal NPs are widely studied in
cancer therapy through various approaches, including drug
delivery, PDT, and antioxidants. However, one of the essential
properties of Metal NPs, especially gold, silver, and copper
nanoparticles, is the presence of surface plasmon resonance
(SPR); SPR refers to the oscillation resonance of surface
electrons in particles that are excited by light. Because
nanoparticles have a larger surface-to-volume ratio compared
to their bulk particles, SPR will be much more pronounced in
them. Therefore, the SPR property has been widely used in
photodynamic therapy through nanoparticles. Specifically,
individual nanoparticles can be designed to be responsive to
near-infrared absorbance to acquire photothermal agents to treat
the tumor (Bhattacharyya et al., 2011). Furthermore, gold-based
nanostructures, rhodium, and CuS nanoparticles have been
proposed to provide photothermal responses, which can be
recruited as biosensors despite the therapy approach.

Considering all these properties and simultaneous use as a
drug delivery system, Metal NPs appear to be an ideal option
for TME modulation (Figure 3).

Metal NP -based sensors can lead to significant signal
amplification, higher sensitivity, and great improvements in
the detection and quantification of biomolecules and
different ions. Nanoparticles with antioxidant properties
increase cell damage by increasing cellular ROS (Sharma
et al., 2018; Fu et al., 2019). ROS are group of materials
including H2O2 and hydroxyl radicals (·OH) generated in
eukaryotic cells. Despite previous thought that considered
ROS as the byproduct of cells, it has been confirmed that
ROSs are involved in several signaling pathways. ROS are
produced in mitochondria through reduction of oxygen
molecules form superoxide anions, peroxisomes and the
endoplasmic reticulum. ROS are essential for multiple
cellular functions at the normal level, such as gene
expression (Chakraborty et al., 2021; Grebinyk et al., 2021).
However, excess ROS production have been documented in
various tumor cells due to increased metabolic rate, gene
mutation and relative hypoxia (Wilson et al., 2018). The
overload ROS can damage the normal cell causing various
pathological conditions (Xiao et al., 2012a; Shanmugam et al.,
2014a). Hence, the ROS modulation can be an appropriate
approach regarding cancer treatment. cerium dioxide
nanoparticles (CeNPs) is an almost new emerging
nanoparticle regarding cancer treatment via ROS modulation
(Shanmugam et al., 2014b). CeNPs have presented a powerful
redox property through witching the oxidation state of Ce3+
and Ce4+ (Wang et al., 2009; Tsai et al., 2013). According to
previous studies CeNPs can modulate ROS state through
catalase- and superoxide dismutase (SOD)-like activity (Choi
et al., 2007; Xiong et al., 2020). Filippi et al. have reported that
CeNPs exert high ·OH scavenging activity in both phosphate
buffered saline and surrogate lung fluid (Shanmugam et al.,
2014b). In drug delivery, they cause programmed death by
entering cancer cells (Bhattacharyya et al., 2011).

Metal NPs for Modulation TME Hypoxia
Hypoxia, low oxygen, and oxygen overconsumption is a
significant feature of TME. Therefore, modulation of TME
hypoxia appears to be a practical approach for tumor
treatment. One system to modulate TME is related to
oxygenation which is most often used during photodynamic
therapy. Oxygen molecules can produce highly stable
peroxides that bind to the broken ends of DNA, which
dramatically enhances photodynamic therapy. It can be
acknowledged that the oxygen molecule has a dual behavior in
the treatment of cancer.

On the one hand, by increasing the amount of oxygen in the
TME, ionizing radiation produces free radicals that can destroy
DNA beyond repair. On the other hand, with the lack of oxygen,
the effect of ionizing radiation on photodynamic therapy on the
breakdown of DNA dual strands seems to be seriously reduced
(Yoshimura et al., 2013). In this context, Metal NPs can function
well as photosynthesizers and significantly increase the effect of
radiation on TME modulation.
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One of the most exciting nanoparticles in photodynamic
therapy as photosynthesizers due to their catalytic
properties, is gold nanoparticles. The effect of gold
nanoparticles is due to their high energy transfer in the
excited state to molecules such as oxygen. In this regard, it
causes highly toxic ROS species that modulate TME and
eventually kill the cancer cell mass. Due to this mechanism,
the presence of molecules such as O2 can significantly
increase the ability of nanoparticles to produce ROS,
including 1O2; it also prevents the PDT from being
endangered due to the hypoxic state of TME
(Dhakshinamoorthy et al., 2020; Yang et al., 2021).

Liang et al. have used gold nanocages@manganese dioxide to
impede tumor metastasis through PDT and oxygenation. First,
they fabricated core-shell anocage@manganese dioxide (AuNC@
MnO2, AM) nanoparticles using the template method. Next, a
laser instrument has been recruited to induce PDT of this
nanoparticle. The mechanism underlying oxygen generation
was due to the degradation MnO2 part in the low pH
microenvironment of cancer, which leads to a large amount of
production of O2, which finally significantly enhanced the PDT
effect on breast cancer cell line (Liang et al., 2018). In another
study, wang et al. have reported the benefit of a rhodium-gold
metals-based porous core-shell nanoparticle-elevated

oxygenation to promote PDT for cancer therapy (Wang et al.,
2020a).

As mentioned earlier, TME hypoxia itself is a barrier to
successful PDT. However, developing hypoxia in TME using
other systems is a treatment procedure. For example,
sonosensitizers is a substance that reacts with ultrasound
waves to produce ROS in cancer cells (Liang et al., 2018;
Wang et al., 2020b). However, one of the problems with
organic sonosensitizers is their stability and low solubility in
aqueous media. For this reason, much attention has recently been
paid to develop inorganic sonosensitizers, comprising Metal NPs
(Figure 4).

Titanium dioxide nanoparticles, for example, can serve as a
sonosensitizer on their own (Pan et al., 2018; Yang et al., 2020a).
Zhong et al. developed a type of sonosensitizer using copper metal
where copper divalent ions cause GSH depletion through the
redox reaction, which ultimately increases the hypoxia of cancer
cells. This group used the Pt and Cu elements to fabricate PtCu3
PtCu3 nanocage sonosensitizer via solvothermal method.
Furthermore, they pegylated the nanocage that induced
peroxidase activity wherein pegylated PtCu3 nanocages could
act as glutathione peroxidase, accelerating the process of GSH
depletion in the presence of oxidase molecules. Additionally, their
anticancer effect was examined both, in vitro and in vitro in

FIGURE 3 | Miscellaneous biomedical applications of metal nanoparticles: Metal nanoparticles cause further damage to cancer cells and cell death through
photodynamic treatment with TME irradiation. Metal nanoparticles can also be used as biosensors.
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cancer mice models. The results showed that these metal
nanosonosensitizer with ultrasound had the excellent effect on
killing cancer cells (Zhong et al., 2020).

Metal Nanoparticles for TME Modulation
Using Low pH
Another exciting feature of TME is its high pH compared to
normal cells due to the increased metabolism of cancer cells. This
feature has been used in many cancer treatment approaches
(Barar and Omidi, 2013; Justus et al., 2013). Zhang et al. have
proposed a pH-responsive loaded-doxorubicin (DOX) metal-
organic framework (MOF, ZIF-8) gold nanocluster (AuNCs@
MOF-DOX) for modulation of the breast cancer TME as a PDT/
chemotherapy combination therapy; both, the AuNCs and DOX
are released through ZIF-8 collapse due to the low pH condition
in TME. Next, AuNCs and DOX serve as the PDT and
chemotherapy agents, representing significant cancer cell
killing compared to a single action (Zhang et al., 2020).

One effective nanoparticle subdivision for TME modulation is
attributed to the ferromagnetic nanoparticles (γ-Fe2O3 or Fe3O4

NPs). In normal cells, they transform the toxic H2O2 into H2O
and O2, while in the low pH condition of TME, ferromagnetic can
catalytically produce highly toxic ROS such as hydroxyl radicals
(·OH) from H2O2 (Huai et al., 2019). In addition, Fu et al. have
investigated the effect of the different structures of Fe3O4 on
cancer therapy. The intrinsic peroxidase-like activity of Fe3O4 has
been well established as various designs, including nanoclusters,
nanoflowers, and nanodiamonds, were used to analyze the
peroxidase activity of Fe3O4 in the low pH of the cancer
microenvironment. According to their in vitro evaluation, the

nanoclusters form had the most critical effect on the peroxidase-
like activity of Fe3O4 NPs. They also reported that the cancer cell
death followed by Fe3O4 could be attributed to the ROS
generation just after the endocytose and concluded that cancer
cell-killing performance of Fe3O4 NPs is a function of cell
endocytosis and enzyme-like activity (Fu et al., 2017).

Metal NPs for Modulation TME ECM
Like any other tissue in the human body, the tumor has its own
ECM, which serves as a supportive structure for tumor growth,
migration, and metastasis. Collagens, elastin, fibronectins,
laminins, glycoproteins, and proteoglycan are the common
tumor ECM components. Therefore, ECM alteration is of
great importance for TME modulation. The ECM modulation
of tumors can be performed in various ways, including ECM
disruption that mimics the tumor ECM to obstruct tumor
progression, and intrusion in native ECM construction.
Multiple methods are used for ECM elimination, including
physical processes such as photothermal, hyperthermia,
ultrasound, biochemical enzymes, and chemical agents (Chen
et al., 2018). For example, Kolosnjaj-Tabi et al. have proposed a
silica-coated iron oxide nanochain as an efficient, super magnetic
NPs for ECM degradation of cancer tissue through PDT. The
effect of fabricated metal-based nanochain was evaluated in the
cancer model through near-infrared irradiation. According to the
in vitro investigation, the cancer cells were eliminated, wherein
the potency of this nanochain to melt the collagen matrix has
been proposed (Kolosnjaj-Tabi et al., 2019).

Nevertheless, ECM degradation is an essential step in the
metastasis process, where cancer cells need more space to be
overproliferated, and ECM represents a substantial obstacle.

FIGURE 4 |Mechanism of photodynamic therapy (PDT) with metal nanoparticles. During photodynamic therapy, nanoparticles increase oxygen production; This
increase in cell oxygen production is associated with damage to nucleic acid, and the cascade created by the nanoparticles leads tumor cells to planned death (Liang
et al., 2018; Yang et al., 2020b).
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Consequently, maintaining the tumor ECM or rebuilding it
appears to be a logical procedure to overcome tumor cells in
such a situation. Hu et al. proposed a transformable formulation
as an artificial ECM for preventing the tumor metastasis. The
primary mechanism of their proposed procedure depended on
the NPs transformation into nanofibers. An RGD ligand-integrin
receptor performed this transformation structure. The RGD
binding process to integrins is significantly dependent on the
RGD interactions metal ions such as Ca2+, Mg2+ at “metal ion-
dependent adhesion site” (MIDAS) (Hu et al., 2017).

STRATEGIES FOR METAL NPS TO
MODULATE IMMUNE RESPONSES

Instead of killing cancer cells directly, Metal NPs mainly
modulate immune organs or immune cells to eradicate cancer
cells. By injecting into the tumor medium, Metal NPs activate
APCs to improve antigen delivery and T cell immune
responses. They also increase antitumor efficacy by
stimulating the immune system in situ and regulating
T cell viability. Cytokines engineered into NPs can be
transported to TME to increase antitumor activity (Liu
et al., 2014).

Lymph node dendritic cells (DCs) are vital cells for
processing and delivering antigens. The results showed that
by attaching the nanoparticles to these cells, the nanoparticles
could be directed to the specified TME. Because these immune
cells are constantly delivering antigens to the tumor
environment, transfecting them into tumor tissue can
increase T lymphocytes and lead to more cancer cell death
(Liu et al., 2014; Wilson et al., 2019).

The findings show that the binding of metal nanoparticles
to immune cells can increase the effectiveness of cancer
treatment and be used as anti-cancer vaccines in the future.
Cancer vaccines use immune system mechanisms to identify

tumor cells. In this way, cancer cells are detected by the
immune system after antigenic changes and the progression
of cancerous tissue is prevented (Li et al., 2018). However, after
preparation and presentation of antigen by DCs, activation
and proliferation of T cells is very important for cancer
immunotherapy (Xin Yu et al., 2019; Li and Burgess, 2020;
Zhu et al., 2020) (Figure 5).

The results show that different nanomaterials can be used as
immune stimulants to activate T cells in TME (Stephan et al.,
2010; Park et al., 2012; Schmid et al., 2017). Poly (lactic-co-
glycolic acid) (PLGA) is a nanomaterial that binds to drug
nanoparticles and targets T cells in TME to activate these cells
and eradicate tumor cells. In most cases, nanomaterials are
attached to nanoparticles by encapsulation (Zheng et al., 2013;
Tang et al., 2018; Wang et al., 2018).

Various molecular mechanisms have been proposed to
increase the effectiveness of this method, and in short, all of
these strategies are based on increasing the death of tumor cells by
the immune system. In fact, by this mechanism, it detects and
destroys the specific immunity of cancer cells, thus reducing the
inflammatory response in TME (Francis and Thomas, 2017; Meir
et al., 2017; Smith et al., 2017).

METALLIC NANOPARTICLES AND
CLINICAL EFFECTS OF CANCER

Various studies have shown the role of different nanoparticles
on cancer inhibition (Table 1). In one study, the anti-cancer
effect of an organic metal nanoparticle was investigated. These
findings showed the stability of nanoparticles and its effect on
reducing tumor growth was significant. This was the first
report to use MOF-derived nanoparticles in targeted nuclear
PDT (Zeng et al., 2020). In another study, MOF-derived
nanoparticles were used to alter cellular redox homeostasis.
The findings show the high potency of these nanoparticles in
improving the anti-cancer performance of PDT and suggest a
new way to increase the therapeutic power based on ROS
(Cheng et al., 2019).

Other studies have shown the effect of PLGA encapsulation
in docorbiocin on immune stimulation (Wohlfart et al., 2011;
Malinovskaya et al., 2017). The findings of this study confirm
the innovation in immunotherapy methods with the help of
metal nanoparticles and suggest different methods to increase
the efficiency and cost-effectiveness of treatment (Abu-Serie
and Eltarahony, 2021; Grebinyk et al., 2021). Findings on the
effect of CSNP nanoparticles on inhibiting the growth of
uterine cancer cells showed the effectiveness of this
nanoparticle. The researchers stated that future research
could examine the CSNP-modulating immune mechanism
as potential treatment strategies aimed at escaping
immunity as an important feature of cancer (Chakraborty
et al., 2021). Another study showed that PBAE
nanoparticles in the nanoparticle-mediated cytosolic
delivery method for STING agonists synergize with cell
cycle inhibitors, and this synergy has a strong potential to
enhance cancer immunotherapy (Wilson et al., 2018).

FIGURE 5 | tumor antigen-specific T-lymphocytes for cancer
immunotherapy. During cancer immunotherapy, after preparation and
presentation of antigen by different molecular methods on dendritic cells,
T cells are activated. Immune cells are one of the most important
components. Activation of T cells is associated with the development of a
specific immune response and destroys the tumor (Yoon et al., 2018).
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TABLE 1 | Metallic nanoparticles for the modulation of tumor microenvironment.

Result Sample Type of
nanoparticle

Type of
study

Running title Author/Year

Au nanorods (NRs), Au
nanoshells, other Au-related
nanomaterials, graphene oxide,
upconversion nanoparticles, and
other related materials [including
materials such as CuS, Fe3O4-
related systems, and carbon
nanotubes (CNTs)] proposed as
good NIR nanomaterials

Cell lines Near-infrared light-responsive
(NIR) nanomaterials

review Near-infrared light-responsive nanomaterials
in cancer therapeutics

Shanmugam
et al. (2014a)

The in vitro and in vivo results
demonstrate that this platform
selectively delivers anti-cancer
drugs to target cells, releases
them upon NIR irradiation, and
effectively inhibits tumor growth
through thermo-chemothera

Tumor growth in a
mouse model

near-infrared (NIR):
complementary DNA strands,
the gold NR (50 nm × 10 nm),
and a polyethylene glycol (PEG)
layer

Animal DNA Self-Assembly of Targeted Near-
Infrared-Responsive Gold Nanoparticles for
Cancer Thermo-Chemotherapy†

Xiao et al.
(2012b)

This targeting vehicle provided
remote-controlled delivery of this
high toxic cargo cocktail at the
tumor site, ensuring extra
specificity that can avoid acute
toxicity, where release of Dox and
Pt (IV) was achieved upon NIR
808 nm diode laser irradiation

Tumor growth in a
mouse model

Au nanorods (NRs) Animal Oligonucleotides—Assembled Au Nanorod-
Assisted Cancer Photothermal Ablation and
Combination Chemotherapy with Targeted
Dual-Drug Delivery of Doxorubicin and
Cisplatin Prodrug

Shanmugam
et al. (2014b)

Rod-in-shell structure was a
promising hyperthermia agent for
the in vivo photothermal ablation
of solid tumors when activated
using a continuous-wave 808 m
(first NIR window) or a 1,064 nm
(second NIR window) diode laser

Tumor growth in a
mouse model

Au nanorod (NR) Animal Au Nanorod Design as Light-Absorber in the
First and Second Biological Near-Infrared
Windows for in Vivo Photothermal Therapy

Tsai et al. (2013)

Multifunctional nanoparticle
composed of a single, amine-
modified gold nanorod,
decoratedwithmultiple “pearls” of
Fe3O4 nanoparticles capped with
carboxy groups showed
simultaneous targeting, dual-
mode imaging, and photothermal
ablation of breast cancer cells is
demonstrated

Breast cancer cells Gold Nanorod/Fe3O4
Nanoparticle

In vitro Wang et al.
(2009)

The multifunctional APS/AuNR/
PLGA-PEG nanoparticles can
serve as an excellent synergistic
agent for Focused ultrasound
(FUS) therapy, facilitating real-time
imaging, promoting thermal
ablation effects, and boosting
FUS-induced immune effects

Tumor growth in a
mouse model

EGylated PLGA nanoparticles
encapsulating astragalus
polysaccharides (APS) and gold
nanorods (AuNRs)

In vitro
and in
vivo

Multifunctional Nanoparticles Encapsulating
Astragalus Polysaccharide and Gold
Nanorods in Combination with Focused
Ultrasound for the Treatment of Breast
Cancer

Xiong et al.
(2020)

The efficient phagocytosis of Au
nanoshells by both monocytes
and macrophages, photoinduced
ablation of Au-nanoshellladen
monocytes/macrophage, tumor
recruitment, and photoinduced
cell death of macrophages in the
hypoxic microenvironment of a
human breast tumor spheroid
have all been successfully
demonstrated

Human breast
tumor spheroids

Au nanoshells In vitro A Cellular Trojan Horse for Delivery of
Therapeutic Nanoparticles into Tumors

Choi et al. (2007)

(Continued on following page)
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TABLE 1 | (Continued) Metallic nanoparticles for the modulation of tumor microenvironment.

Result Sample Type of
nanoparticle

Type of
study

Running title Author/Year

Cancer cells targeted with the
MagGNS AbHER2/neu in vitro
were detectable by a commercial
clinical MRI system, and were
rapidly destroyed upon short
exposure to femtosecond laser
pulses with an NIR wave-length
and a low power

SKBR3 cells Magnetic gold nanoshells
(Mag-GNS)

In vitro Designed Fabrication of Multifunctional
Magnetic Gold Nanoshells and Their
Application to Magnetic Resonance Imaging
and Photothermal Therapy

Kim et al. (2006)

HeLa cells incubated with GNS-
MCs in vitro can be killed
photothermally by exposure to
NIR light

HeLa cells Novel multifunctional theranostic
agent based on gold-
nanoshelled microcapsules
(GNS-MCs)

In vitro Gold-Nanoshelled Microcapsules: A
Theranostic Agent for Ultrasound Contrast
Imaging and Photothermal Therapy

Ke et al. (2011)

The Aptamer AS1411 show
excellent stability. Significantly,
the Mn3O4-PEG @ C & A
inhibited tumor growth in a high-
performance mouse model
without any biotoxicity

Tumor growth in a
mouse model

A new nanoenzyme (Mn3O4-
PEG @ C & A) with the inherent
activity of catalase

Animal
Clinical

nanoenzyme for enhancing nucleus-
targeted photodynamic therapy

Zeng et al. (2020)

Inside tumor cells can effectively
block the Rx removal pathway
mediated

Liver tumor cells A porous metal-organic (MOF)
framework as a photodynamic
therapy agent (PDT) and a
transporter for the alkaloid
transporter piperlongumin (PL)

Animal
Clinical

Nanotherapeutics interfere for highly
photodynamic therapy

Cheng et al.
(2019)

PDT and TrxR inhibition causes a
profound increase in cellular ROS
levels

Within 1 h, doxorubicin could
reach its destination, DNA, in the
nucleus without degradation,
while PLGA nanoparticles, were
still in the chamber and lysosomes
were observed

Brain tumor cells doxorubicin-loaded PLGA
nanoparticles

Human
clinical

Delivery of nanoparticles into glioblastoma
cells

Malinovskaya
et al. (2017)

Significant antitumor effect of
doxorubicin nanoparticles was
observed. PLGA-coated poloxamer
nanoparticles with doxorubicin
transport through are effective in the
treatment of glioblastoma

Tumor cells in mice Poly (lactic-co-glycolic acid)
(PLGA) nanoparticles

Animal
clinical

Efficient Chemotherapy Using Nanoparticles
with Different Stabilizers

Wohlfart et al.
(2011)

This nanoparticle is able to
improve the therapeutic index.
The strong anti-cancer activity of
this nanomedicine is promising.
The strong anti-cancer activity of
this nanomedicine is promising

lung cancer cell
line, liver cancer cell
line and Breast
cancer cell line

Copper oxide nanoparticles
(CuO NPs)

Human
clinical

copper oxide nanoparticles for augmenting
anticancer activity

Abu-Serie and
Eltarahony
(2021)

Combining the natural alkaloid
Ber with C60 could be a new
treatment strategy for lung cancer

LLC cells in mice Berberine (Ber) combined
with C60

Human
clinical

Antitumor efficiency of the alkaloid
complexed with C60 fullerene in Lewis lung
carcinoma

Grebinyk et al.
(2021)

Unlike Nanoparticles, showed an
inhibitory effect on the expression
of genes encoding the NLRP3
inflammatory complex, but also
reduced activation of the NLRP3
inflammatory complex. The
combination of gallic acid with
CSNP suppressed the immune
system in cervical cancer

Cervical cancer cell
lines

Nanoparticles (CSNP) and gallic
acid conjugated gallic acid
(gCSNP)

Nanoparticles modulates NLRP3
inflammasome complex activation in cervical
cancer

Chakraborty
et al. (2021)

Gold nanorods have been
specifically mentioned as a new
agent for simultaneous
bioimaging and cancer treatment

Tumor cell lines in
breast cancer

Gold Nanorods (GNRs) review Synthesis of gold nanorods and
photothermal therapy

Khan et al.
(2021)

(Continued on following page)
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CONCLUSION

The distinctive features of TME provide the opportunity to
exploit its use as a new approach to cancer treatment. The
high metabolism of cancer cells and the excessive craving for
proliferation prevents the development of new vascular tissues
and vessels, and this in itself can be used in the successful delivery
of therapeutic agents to these cells, which today are known as the
EPR effect. Furthermore, due to the high metabolism of these
cells, the tumor environment has high hypoxia conditions which
can be utilized extensively in sonodynamic therapy. The use of
metal nanoparticles as sonosensitizers addresses the problem of
natural sonosensitizers, which have low solubility and viscosity,
and as a result, ensuing ROS can destroy tumor tissue. Besides,
the fantastic optical properties of metal nanoparticles, including
gold nanoparticles, have received much attention in
photodynamic therapy. By producing oxygen in cancerous
tissues and using suitable radiation, photosynthesizers such as
metal nanoparticles can create highly toxic ROS. The effect of
acidic environment on TME has been discussed, and it was shown
that systems designed with metal nanoparticles could use this low
pH condition to release their drug and provide a high-impact
combination therapy. At low pH, ferromagnetic nanoparticles kill
cancer tissue by converting H2O2 to toxic singlet O2 species.

Overall, we see special consideration to metal nanoparticles.
Given the tremendous potential metal nanoparticles have
resemblance in TME modulation, there looks to be a
promising future for cancer therapy. The most critical
challenges to be considered in future research are targeting
and toxicity, which should be carefully considered. In addition
to the above, it is important to consider new therapeutic strategies
for the use of metal nanoparticles in immunotherapy. Because
despite the progress, many efforts are still needed to apply cancer
treatment with minimal side effects. Barriers to biological
research must be removed. Then, the necessary conditions for
clinical research will be provided so that in the future, like
conventional treatments, nanoparticles can be taken as an
effective step to reduce the problems of cancer patients.
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