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ABSTRACT

Connectivity between populations plays a key role in the long-term persistence of
species in fragmented habitats. This is of particular concern for biodiversity preservation
in drylands, since water limited landscapes are typically characterized by little suitable
habitat cover, high habitat fragmentation, harsh matrices, and are being rapidly
degraded at a global scale. In this study, we modelled landscape connectivity between 11
guanaco Lama guanicoe populations in Chile’s arid Norte Chico, a region that supports
the last remnant coastal populations of this emblematic herbivore indigenous to South
America. We produced a habitat suitability model to derive a regional surface resistance
map, and used circuit theory to map functional connectivity, investigate the relative
isolation between populations, and identify those that contribute most to the patch
connectivity network. Predicted suitable habitat for L. guanicoe represented about 25%
of the study region (i.e., 29,173 km?) and was heterogeneously distributed along a
continuous stretch along the Andes, and discontinuous patches along the coast. As
a result, we found that high connectivity current flows in the mid and high Andes
formed a wide, continuous connectivity corridor, enabling connectivity between all
high Andean populations. Coastal populations, in contrast, were more isolated. These
groups demonstrate no inter-population connectivity between themselves, only with
higher altitude populations, and for two of them, animal movement was linked to the
effectiveness of wildlife crossings along the Pan-American highway. Our results indicate
that functional connectivity is an issue of concern for L. guanicoe in Chile’s Norte Chico,
implying that future conservation and management plans should emphasize strategies
aimed at conserving functional connectivity between coastal and Andean populations,
as well as the protection of habitat patches likely to act as stepping stones within the
connectivity network.
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INTRODUCTION

Understanding and managing connectivity has become a key concern for the conservation
of biological populations and communities in the face of rapid habitat loss and
fragmentation driven by anthropogenic and climate change effects (Mitchell, Bennett

& Gonzalez, 2013; Correa Ayram et al., 2014; Riordan et al., 2015; Dilts et al., 2016). By
facilitating genetic exchange between habitat patches, connectivity plays a fundamental
role in the long-term persistence of species in fragmented habitats (Fahrig & Merriam,
1994; Coughenour, 2008; Kindlmann & Burel, 2008). This is of particular concern in
highly fragmented landscapes, where habitat loss results in exponential increases in patch
distances, and thus dramatically intensifies habitat isolation (Andrén, 1994). Connectivity
depends on both the proportion of suitable habitat across the landscape as well as the
permeability of the surrounding matrix. According to empirical and theoretical evidence,
patch isolation negatively impacts population size and species richness in birds and
mammals when suitable habitat cover is low (Andrén, 1994; Radford, Bennett & Cheers,
2005). It is believed to become a significant factor when the amount of suitable habitat in
the landscape falls below 10-30% (Andrén, 1994; Betts et al., 2006), although this threshold
may be greatly underestimated for many species (Monkkonen ¢» Reunanen, 1999). The
surrounding matrix, on the other hand, may either facilitate or hinder patch connectivity
by determining the permeability of the landscape to species movement.

The guanaco, Lama guanicoe (Artiodactyla, Camelidae), is an emblematic herbivore
indigenous to South America, occurring in Peru, Bolivia, Chile, Paraguay and Argentina
(Fig. 1). L. guanicoe has disappeared from 75% of its original range during the last
century due to anthropogenic habitat disturbance and overhunting (Cunazza, Puig ¢
Villalba, 1995; Ceballos ¢ Ehrlich, 2002; Baldi et al., 2016), and its distribution appears
discontinuous along its northern range (see map in Marin et al., 2013). While still classified
as a species of least concern at the continental scale (Baldi et al., 2016), its conservation
status varies across its distribution range. In Chile, L. guanicoe is considered vulnerable,
particularly in the north of its distribution, where it occurs in small and isolated populations
(Marin et al., 2013; Gonzdlez ¢» Acebes, 2016). Because guanacos need expansive areas (Baldi
et al., 2016), movements between habitat patches may not only be necessary to maintain
effective population sizes, and thereby the evolutionary potential and long-term survival
of the species, but also for individuals to meet their essential needs. L. guanicoe is able to
travel long distances, which is demonstrated by large home-ranges (up to 600 km? in the
Payunia reserve, western Argentina) and the extensive migratory movements that have
been recorded (i.e., up to 160 km) (Novaro, 2010). Human development and pressures
may act to limit movement in this species, however, threatening populations in areas where
resources are heterogeneously distributed, scarce, or transitory (Hobbs et al., 2008).

In this study, we modelled functional connectivity for L. guanicoe over the semi-arid
region of Chile’s Norte Chico (between 26°S and 32°S latitude), home to the last remnant
populations on the Pacific coast, comprising both cordilleran and pre-cordilleran groups.
Chile’s Norte Chico is one of the most environmentally fragile areas in South America
(Downing, 1994), and has experienced accelerated rates of desertification exacerbated by
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Figure 1 Distribution range of Lama guanicoe according to Baldi et al. (2016) and location of the
study area.
Full-size Gal DOI: 10.7717/peer;j.4429/fig-1

human activities (i.e., mining, agriculture, livestock production and tourism) and the
overexploitation of scarce natural resources such as scrublands and seasonal grasslands
for firewood collection and livestock grazing (Campos-Ortega & Jorquera-Jaramillo, 2008;
Estevez et al., 2010). No information regarding movement and dispersal by individuals
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between populations in this region is available. Although distances between coastal and
cordilleran populations (<200 km) are within the movement range of this species, various
landscape features potentially obstruct displacement across the landscape, and in particular
may result in isolation of coastal populations. These include several human settlements,
which are interspersed among the coastal populations, and a fenced four-lane highway
that transects the study zone from north to south, effectively segregating inland and coastal
populations. This connectivity issue has been identified in a recent regional scale habitat
modelling study (Gonzilez et al., 2013), which predicted large areas of unsuitable habitat
between coastal and inland populations that potentially act as a biogeographical barrier.
Given that the predictive power of large scale models is often impaired due to local niche
variation (Osborne & Sudrez-Seoane, 2002; Murphy & Lovett-Doust, 2007), regional-scale
studies are required to evaluate possible effects of local landscape characteristics on
animal movement. The goals of our study were thus to identify potential inter-population
migration routes between L. guanicoe populations in the region, assess the degree of
connectivity of coastal populations in particular, and to identify habitat patches that most
contribute to the network connectivity of the study area. To accomplish these objectives,
we applied a resistance-surface-based connectivity modelling approach, first generating a
surface resistance layer using a regional-scale habitat surface model, and finally mapping
functional connectivity based on circuit-theoretic connectivity models.

MATERIALS AND METHODS

Study area

The Norte Chico region in Chile is located between 26°S and 32°S (Fig. 1). It spans about
115,756 km? and encompasses five hydrologic basins (Fig. 2). It is characterized by steep
topography, with altitude increasing from zero to ~5,000 masl within a distance of only
200 km inland from the coast (Squeo, Arancio ¢ Gutiérrez, 2008; Zabala ¢ Trigos, 2009).
The climate is predominantly arid, although average temperature, precipitation, and
relative humidity vary strongly according to both altitude and latitude (Julid, Montecinos
& Maldonado, 2008). The vegetation is composed of xeric shrublands, woody-stemmed
shrubs, spiny scrubs and columnar and spherical cacti patchily distributed within an arid
matrix (Novoa, Tracol & Lépez, 2008). Evergreen trees and shrublands dominate slopes,
while elevations >2,800 masl are dominated by cushion-forming plants, xeric herbs adapted
to low temperatures, and high Andean wetland plant species (Squeo et al., 2006; Arancio ¢
Marticorena, 2008).

Chile’s Norte Chico region is one of the most environmentally fragile areas in South
America (Downing, 1994); important climatic changes over the last century (Fiebig-
Wittmaack et al., 2012) have resulted in accelerated rates of desertification in the region,
exacerbated by human activities (i.e., mining, agriculture, livestock production and
tourism) and the overexploitation of scarce natural resources such as scrublands and
seasonal grasslands for firewood collection and livestock grazing (Campos-Ortega ¢
Jorquera-Jaramillo, 2008; Estevez et al., 2010). The road network includes a coastal highway
with four-lanes that crosses the region from north to south and various secondary roads.
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Figure 2 Map of landscape resistance for the guanaco Lama guanicoe in Chile’s Norte Chico. Resis-
tance values were estimated by inverting and rescaling the habitat suitability values, generated with Max-
Ent, to a continuous scale from 1 (low resistance/high suitability for dispersal) to 100 (high resistance/low
suitability for dispersal). Numbers represent patches of habitat corresponding to the guanaco populations
(1, Pan de Azucar National Park; 2, Nevado Tres Cruces National Park; 3, Llanos de Challe National Park;
4, Oso Negro sector; 5, El Morro; 6, Los Choros; 7, Calvario stream; 8, Tres Quebradas river; 9, El Tambo
stream; 10, Estero Derecho nature sanctuary; 11, Pelambres area).

Full-size Gl DOI: 10.7717/peer;j.4429/fig-2
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Lama guanicoe ocurrence data
We collated presence data throughout the study zone, which includes eleven recorded
L. guanicoe populations, comprising three coastal (Pan de Azdcar National Park (1),
Llanos de Challe National Park (3) and Los Choros (6)), two mid-slope (El Calvario stream
(7) and Oso Negro sector (4)) and six high altitude populations (Nevado Tres Cruces
National Park (2), El Morro Private Protection Area (5), Tres Quebradas River Area of
high conservation value (8), El Tambo stream (9), Estero Derecho Private Protection Area
and Nature Sanctuary (10), and Pelambres Private Area (11)) (Fig. 2). While there have
been no reports of any other coastal or mid elevation populations in the northern or
southern extents of the study area, eastern Andean populations do exist on the Argentinean
side. Both genetic (Marin et al., 2013) and telemetric (ULS, 2012-2015, unpublished data)
data suggests that dispersal among the Chilean and Argentinean populations can occur.
For populations 3, 6, 7, and 8, we took GPS coordinates of fresh fecal deposits in each
season from 2012 to 2014. Additionally, we considered geolocation data registered at ten
day intervals between December 2012 and December 2015 for three collared individuals,
one in Los Choros (6) (GPS-GSM Ecotone collars), and two in Tres Quebradas River
Area (8) (Argos satellite telemetry). Finally, we completed our occurrence database by
incorporating information from published sources (Gonzdilez et al., 2013; Bonacic et al.,
2014) and observations recorded by researchers of the Department of Biology at the
University of La Serena. The occurrence data were essentially recorded between 2002 and
2015 (Table S1), except for the El Tambo stream sector which were observed between 1994
and 2008 (Table S1). To minimize spatial autocorrelation issues, we filtered the records
using ENMtools (Warren, Glor ¢ Turelli, 2008; Warren, Glor ¢» Turelli, 2010), so that the
distance between any two presence data was at least 500 m. The final occurrence dataset
used in suitability modeling included 937 spatially unique records, of which 12.8% were
obtained from collared individuals (Table S1).

Environmental variables

Eight environmental variables were considered for the ecological niche models (Table 1),
based on a priori expectations of their influence on guanaco populations. All raster maps
were prepared and analyzed with a ~90 m spatial resolution. The landscape variables
included characteristics of topography and vegetation cover. Topographic factors were
considered because available evidence indicates that guanacos tend to prefer mountainous
areas with high and medium slopes (Travaini et al., 2007; Acebes et al., 2010; Pedrana

et al., 2010). We derived elevation and slope layers from Shuttle Radar Topography
Mission digital elevation data (SRTM, Farr et al., 2007), with a spatial resolution of

3 arc-seconds (http://srtm.csi.cgiar.org), using Spatial Analyst in ArcGIS 10.2.1 (ESR],
2014). In addition, we calculated the surface roughness as recommended by Riley (1999)
using the Geomorphometry and gradient metrics toolbox version 2.0 (Evans et al., 2014)
for ArcGIS. Since local vegetation plays a determinant role in habitat selection by animals
at fine spatial scales (Kotliar & Wiens, 1990; Chetkiewicz, Clair ¢& Boyce, 2006), including
guanacos (Puig et al., 2008), we derived vegetation cover types from the classification of
Chilean vegetation communities (Luebert ¢ Pliscoff, 2006). This information is summarized
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Table 1 Environmental variables used for habitat suitability modeling of Lama guanicoe in Chile’s Norte Chico.

GIS data layer Description Potential relevance for guanacos Reference
Elevation Altitude above sea level Preference for mountainous areas Travaini et al. (2007) and Acebes et al.
(2010)
Roughness Surface roughness Surface roughness influences Dickson, Jenness & Beier (2005)
terrestrial animal movement
Slope Rate of maximum change in z-values  Preference for high and medium Travaini et al. (2007) and Acebes et al.

Distance to urban areas

Distance to water bodies

Distance to roads
Vegetation communities

Protected areas

Euclidean distance to nearest urban
area

Euclidean distance to nearest water
bodies

Euclidean distance to nearest paved
roads

Main vegetal communities described
in the study region

Protected areas along the Coquimbo
and Atacama regions

slopes

Negative impact of dog attacks,
poaching, competition with livestock
and human activities in general

Water is necessary for survival and
physiological functions

Vehicule collisions constitute an
important threat in northern Chile

Determinant role of local vegetation
in habitat selection

Protected areas bring safety, stability
and resources to the fauna

(2010)
Vargas, Bonacic & Moraga (2016)

Lautier, Dailey & Brown (1988),
Packard (1991) and Prenda, Lopez-
Nieves ¢ Bravo (2001)

Vargas, Bonacic & Moraga (2016)

Puig et al. (2008)

Geldmann et al. (2013) and Gray et al.
(2016)

in Table S2. Access to water and statutory protected status are both considered to positively

influence L. guanicoe’s survival, and layers representing distance to both water sources

and protected areas were accordingly generated for use in habitat suitability modelling.

Water sources and protected area boundaries were identified based on the National
Wetlands Inventory (MMA, 2011), and Coquimbo and Atacama red books (Squeo, Arancio
& Gutiérrez, 20015 Squeo, Arancio & Gutiérrez, 2008), respectively. We used distance to

both human settlements and roads as proxies for human disturbances. The roads layer
was generated based on data from the Ministerio de Obras Publicas de Chile (MOP, 2013).
Only paved roads were included. Finally, the distance to human settlements raster was

produced based on the Open Street Map database (https://www.openstreetmap.org).

Habitat suitability modelling and resistance surface
Habitat suitability was modelled based on a maximum entropy approach using MaxEnt

version 3.3.3k (Phillips, Anderson ¢» Schapire, 2006). MaxEnt is a machine-learning method
that minimizes the relative entropy between the probability density at the presence sites and
the probability density at background locations, the latter representing a random sample
of the available environment (Elith et al., 2011). It is widely recognized as the most reliable
approach in cases where only presence data are available (Phillips, Anderson ¢ Schapire,
2006; Elith, Kearney & Phillips, 20105 Yackulic et al., 2013). The logistic output of MaxEnt
provides a habitat suitability index (HSI) ranging from 0 to 1 (Phillips & Dudik, 2008,
Anderson et al., 2016). We generated MaxEnt models using a bootstrap approach, where
70% of the occurrence data (i.e., 656 points) were used for training, while the remaining
30% (i.e., 281 points) were used to validate the model. A mask was applied to the study
area, excluding non-continental areas and large areas with no historical occurrence data, in
order to force MaxEnt to pick background information in areas within which the presence
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data were collected so that all the modelled data (presence and background) contained the
same collection bias (Elith, Kearney ¢ Phillips, 20105 Elith et al., 2011). We used the default
number of background (or pseudo-absence) locations, 10,000.

To identify the best solution, MaxEnt uses a regularization multiplier and a set of features
(i.e., transformations of the original predictor variables). Because the default settings
can generate highly complex models (Kumar, Neven ¢ Yee, 2014a; Kumar, Neven ¢ Yee,
2014b), we first explored different combinations of features and various regularization
multiplier values. For the selection of the features, we inspected the species responses (i.e.,
curves showing the probability of occurrence in relation to each predictor) obtained from
various feature combinations. We opted for the linear and product features because their
combined use resulted in simpler, more interpretable variable effects. The regularization
multiplier is a smoothing parameter designed to reduce model overfitting and complexity
(Radosavljevic & Anderson, 2014). To identify the optimal parameter value, we generated
models with regularization multipliers varying from one to 20 with increments of one. Based
on the Akaike Information Criteria corrected for small sample sizes (AICc), calculated using
ENMTools (Warren, Glor & Turelli, 2008; Warren, Glor & Turelli, 2010; Warren & Seifert,
2011), optimal model performance was achieved using a regularization parameter of two.
The collinearity of the variables was then analyzed by calculating Pearson correlations using
the “raster” R-package (Hijmans et al., 2016). In cases where two variables were strongly
correlated (|r| > 0.75), we discarded the variable with the least ecological significance.
The final set of environmental variables comprised elevation, distance to wetlands and
rivers, vegetation communities, distance to protected areas, distance to urban settlements,
and slope.

To construct the habitat suitability model, we ran 20 different bootstrap replicates and
used the average results and area under the curve (AUC) scores. AUC scores are used to
evaluate model performance, with values of one indicating a perfect fit of the presence data,
and values close to 0.5 indicating that the model does not better predict the presence data
than random background locations (Elith et al., 2011). The suitable habitat threshold was
defined as the HSI value that maximized the sum of sensitivity (correct predictions of the
occurrence) and specificity (correct predictions of the absence), as recommended by Liu,
White ¢ Newell (2013). To assess the performance of the model, we tested the significance
of the extrinsic omission rate (i.e., the fraction of test localities falling outside the predicted
suitable habitat) with a one-tailed binomial test (Phillips, Anderson ¢ Schapire, 2006).

We derived the resistance surface from the habitat suitability scores by inverting and
rescaling the HSI values into a continuous scale from one (low resistance/highly suitable
for movement) to 100 (high resistance/low suitability for dispersal) using a linear scaling
function available in ArcGIS 10.2.1 (ESRI, 2014). A barrier layer was then incorporated
to generate the final dispersal cost map. We defined areas of intensive agriculture, towns
and cities, mining extraction sites and large dams as impenetrable barriers to guanaco
movement. Because vehicle collision is a leading cause of L. guanicoe mortality in the
region (Vargas, Bonacic ¢ Moraga, 2016), we considered unfenced highways as major
barriers with a very low permeability, allocating them a very high resistance value (i.e., 95).
Fencing potentially presents an absolute barrier to mammal movement (Van Langevelde,
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Van Dooremalen & Jaarsma, 2009) and decreases the survival probability of ungulates
crossing highways, even in low traffic conditions (Harrington ¢» Conover, 2006). We
therefore allocated the maximum resistance value of 100 in fenced sections of the highway.

Modelling landscape connectivity for L. guanicoe

We used Circuitscape 4.0 (McRae et al., 2008) to model connectivity and routes of dispersal
across the landscape. Circuitscape, based on circuit theory, treats the landscape as a
conductance surface, where each pixel represents a resistor with an assigned resistance (or,
conversely, conductance) value. Pairwise electrical resistances between locations (McRae,
2006; McRae et al., 2008) are calculated by running a theoretical electrical current between
each population pair, with one population being set as the current source and the other as
the ground. Contrary to least cost resistance methods, Circuitscape does not assume that
animals disperse according to previous knowledge of the surroundings, but is based on
random walks (McRae, Shah ¢ Edelman, 2016). It thus links populations through multiple
pathways (McRae et al., 2008), such that connectivity between habitat patches increases
according to the number of connected pathways, and the effective resistance between two
populations is derived from the overall resistance across all pathways. To estimate effective
resistance and densities, one ampere of current was injected to the current sources using
the resistance surface derived from the habitat suitability model. A cumulative flow map
based on all possible pairs of nodes was constructed displaying the amount of current
flowing through each pixel according to the model. A map of maximum current densities
between any pair of populations was also generated to identify areas that facilitate the most
efficient movement between populations, and to identify pinch points, which correspond
to areas where connectivity is most tenuous (McRae ¢» Shah, 2009), and therefore essential
for connectivity due to the lack of alternative pathways (i.e., McRae et al., 2008).

We used Linkage Mapper Connectivity Analysis Software (available at: http:
/[www.circuitscape.org/linkagemapper) to build a network of least-cost corridors (McRae
& Kavanagh, 2011). The resulting linkage network was then analyzed with the Centrality
Mapper module to calculate current flow centrality (CFC) across the networks. CFC is
a measure of the amount of dispersal passing through any given link or population as a
function of its position in the network topology, thus allowing the contribution of each
population and least-cost corridors to the linkage network to be assessed.

Ethics statement

The capture and handling of guanacos for installation of tracking devices were performed
according to the highest standards designed to ensure the safety of the animals. Prior
approval was obtained from the Chilean authority for wildlife management (Servicio
Agricola y Ganadero—SAG; authorization No: 3346/2013 and 7899/2014), whose agents
controlled all field manipulations of guanacos to ensure strict compliance with standards
and regulations.
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Table 2 Relative contribution of the environmental variables to the final habitat suitability model of
Lama guanicoe in Chile’s Norte Chico.

Environmental variable Contribution (%)
Vegetal communities 58.9

Elevation 15.6

Distance to wetlands and rivers 13.2

Distance to urbane settlements 7.2

Distance to protected areas 3.4

Slope 1.7

RESULTS

Habitat suitability model generated by MaxEnt

The final model of habitat suitability for Lama guanicoe across the study area performed
better than random, with an average test AUC value of 0.87 (95% CI [0.84-0.88]; standard
error: £0.009). Extrinsic omission rate was 0.13 (P < 0.01), indicating that the variables
of the pruned model contributed significantly to the habitat suitability predictions.
Elevation, distance to wetlands, and vegetation communities were the most important
predictors of habitat suitability, with a combined contribution of 87.7% to the final
MaxEnt model (Table 2). The occurrence probability response of L. guanicoe to each
predictor variable varied considerably, showing a strong negative association with distance
to wetlands, distance to protected areas, and elevation (Figs. 3A, 3B and 3F), a positive
association with scrubland vegetation communities (Andean Mediterranean sclerophyll
forest, Andean Mediterranean underbrush, Andean tropical Mediterranean underbrush,
Mediterranean pastureland, Mediterranean Coastal Desert Thicket, Mediterranean interior
desert scrubland, Fig. 3D, Table S3), and a weak positive association with slope and distance
to urban settlements (Figs. 3C and 3E). Maps of the six environmental variables, including
guanaco occurrences, are provided in Fig. S1. Overall, our model predicted 29,173 km?
of suitable habitat heterogeneously distributed throughout the landscape, equivalent to
approximately 25% of the total study area (Fig. S2A). Medium to high HSI values were found
all along the Andes, forming a continuous stretch of suitable habitat from south to north
of the study area up to the Nevado Tres Cruces National Park (Fig. S2B). By contrast, non-
continuous patches of high HSI values surrounded by extensive zones of unsuitable habitat
were predicted along the coast, particularly in the Limari, Huasco, and Copiapé basins
(Figs. S2A and S2B).

Habitat resistance map of the study region for L. guanicoe

The resistance surface derived from the HSI scores showed a gradient of increasing
resistance costs from south to north of the study area, with marked intermediate zones of
high resistance costs within each river basin, being continued north of the Copiapé river
basin (Fig. 2). Most of the areas of lower resistance cost were spatially coincident with high
HSI value areas (see Fig. 2 and Fig. S2B), forming a contiguous expanse along high and
mid elevation zones as far as the Copiap¢ river basin, and discontinuous patches along
the coast, separated by all major transverse river basins except the Limari. The Copiapd
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basin also represents the northern limit of the large predicted coastal areas with low habitat

resistance, above which only a few discrete low resistance patches were identified (Fig. 2).

Patterns of landscape connectivity for L. guanicoe across the study

area

The cumulative current density map based on all possible pairwise combinations between

the 11 populations in the study area shows different current density patterns between coastal

and mountainous areas. Similar to what was observed in the HSI and habitat resistance
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maps, highest cuamulative current flow occurred within a wide corridor encompassing the
mid and high elevation Andean sectors (28°00'02”-30°20"25"S and 69°45'0"-70°26'35"W),
which harbor five guanaco populations (El Morro (5), Calvario (7), Tres Quebradas (8),
El Tambo (9) and Estero Derecho (10); Fig. 4). Relatively high cumulative current flow
was also found between the populations of Pelambres (11) and Estero Derecho (10) in the
south of the study area. By contrast, current flows appeared discontinuous along the coast.
Other areas with middle to high movement probabilities were revealed in the center of the
study region between and along the transversal Elqui, Huasco and Copiapé valleys, as well
as along the highway (Fig. 4). Overall, lowest current flows included the Pan de Azdcar (1)
and Nevado Tres Cruces (2) national parks in the north and the Limari and Choapa river
basins in the south (Fig. 4). Seven pinch-points were identified by our maximum current
flow model: one in the high Andes, two at mid altitudes, three at wildlife crossings located
on the highway, and one in the coastal region (Fig. 5).

Current flow centrality analysis between L. guanicoe populations
across the study area

Our linkage map revealed a greater density of corridors connecting habitat patches above
600 masl between the Copiapé and Elqui river basins (Fig. 5). All three coastal populations
were associated with relatively low centrality scores (Fig. 5). They connected to other
populations by only one or two least resistance routes that crossed the highway, and which,
in most cases (four out of five), harbored a pinch point (Fig. 5). No corridors directly
linking coastal habitat patches were generated. Most pre-cordilleran and cordilleran
habitat patches showed higher centrality scores and connected to other geographically
close patches by at least two corridors. Only the northern and southernmost high Andean
populations of Nevado Tres Cruces (2) and Pelambres (11), respectively, displayed low
current flow centrality scores (Fig. 5), only receiving least cost paths with low or medium
centrality scores.

DISCUSSION

Habitat suitability of Lama guanicoe in Chile’s Norte Chico

In this study, we identified connectivity pathways for L. guanicoe in a region of Chile
characterized by small and fragmented populations (Marin et al., 2013). To achieve this
goal, we first developed a regional scale habitat suitability model. Consistent with Gonzdlez
et al. (2013), we identified areas of suitable habitat along both the coastline as well as the
Andes. Overall, predicted habitat suitability comprises an area of 29,173 km?, which slightly
exceeds the prediction of Gonzdlez et al. (2013) for the same region (i.e., 23,481 km?).
Differences in the predictor variables, the definition of the habitat suitability threshold or
resolution of the models may explain the observed discrepancy. Because Gonzdlez et al.
(2013) aimed to evaluate habitat suitability across the entire L. guanicoe distribution range
in Chile, they used data layers of a much lower resolution (3 x 3 km) than ours (90 x 90
m). Models built over large areas are expected to have weak local predictive power due to
regional niche variation (Osborne ¢ Sudrez-Seoane, 2002; Murphy ¢ Lovett-Doust, 2007),
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Figure 4 Cumulative current flow density map for the guanaco Lama guanicoe across Chile’s Norte
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and higher resolution models are therefore better suited for regional scale applications
(Carroll, McRae ¢ Brookes, 2012), as was the case here.

We found that resource factors most strongly influenced L. guanicoe distribution in
Chile’s Norte Chico, followed by elevation and then disturbance factors. Vegetation and
distance to water resources accounted for 72% of the predictive ability of the Maxent
model; constraining L. guanicoe’s presence to seven of the 33 vegetation communities of
the study area (Luebert ¢ Pliscoff, 2006), and to areas located less than 5 km from water
resources. The seven vegetation communities included at least one plant species foraged
by L. guanicoe (Table S3). The importance of the resource factors identified in this study
is consistent with Lucherini et al. (2000)’s habitat use study in a high Andean ecosystem of
North-Eastern Argentina, which showed that free-ranging guanacos most often occurred
in vegetation-rich areas close to streams. Overall, these results suggest that forage and water
availability are key drivers of guanaco distribution patterns, at least in environments where
resources are limited and heterogeneously distributed. In the study area, these factors
resulted in a heterogeneous distribution of habitat suitable for L. guanicoe. The largest
sector was predicted in the foothills of the mid and high elevation areas (2,000—4,500 masl),
where four of the influential vegetation communities (Andean Mediterranean sclerophyll
forest of K. angustifolia and G. trinervis, Mediterranean pastureland of N. spathulatus
and M. spathulata, Andean tropical Mediterranean underbrush A. subterranea and A.
echinus, Andean Mediterranean underbrush Laretia acaulis and Berberis empetrifolia) as
well as numerous Andean wetlands occur (Squeo, Arancio ¢ Gutiérrez, 2001; Squeo et al.,
20065 Squeo et al., 2008). High Andean wetlands may not only provide water supply for
L. guanicoe, but also fulfill various other needs such as food and shelter (Torres, 1992). The
other three influential vegetation communities (Mediterranean Coastal Desert Thicket
O. gigantean and E. breviflora, Mediterranean Coastal Desert Thicket H. stenophyllum,
Mediterranean interior desert scrubland H. stenophyllum and F. thurifera) are constrained
to coastal areas, and in a section excluding the southernmost and northernmost regions.
In the coastal areas, water resources are sparse and scattered, resulting in large stretches of
unsuitable habitat along the coast.

Elevation accounted for 16% of the model’s predictive ability, with occurrence
probabilities gradually declining with increases in elevation. However, even at the highest
elevations, the HSI values did not fall below the habitat suitability threshold. This finding
is consistent with literature reports of physiological and physical adaptations of guanacos
to high altitude (Wilson, 1989; Starck & Wang, 2005). Compared to resource factors and
elevation, disturbance factors only moderately influenced L. guanicoe distribution. Distance
to urban settlements and distance to protected areas accounted for a combined 10.6% of
the predictive ability of the model; as anticipated, proximity to protected areas exerted a
positive effect on occurrence probability, while proximity to human settlements had the
opposite effect. While none of the distance to human settlements was associated with HSI
corresponding to unsuitable habitat, the fact that adverse effects were detected suggests
that the current growth in urbanization in the region (INE, 2012) may become a serious
threat for L. guanicoe in the near future.
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Landscape connectivity and conservation priorities

The proportion of predicted suitable habitat (i.e., 25%) fell below the threshold at which
patch isolation increases the risk of extinction in bird and mammal populations (Andrén,
19945 Betts et al., 2006), indicating that population connectivity is an issue of concern for
L. guanicoe in Chile’s Norte Chico. In this context, our study contributes pertinent
knowledge. Clear connectivity patterns were identified, including both connectivity
corridors and hotspots, as well as areas of low movement probability and functionally
isolated populations. The area most permeable to L. guanicoe movement was predicted in
the Andes, in a sector spanning about 2/3 of the latitudinal extent of the study area. This
corridor enables movement between all the high Andean populations, of which five (Estero
Derecho, El Tambo, Calvario, Tres-quebradas and El Morro) in particular demonstrate
high probability of inter-population movement, being crossed by multiple pathways. Only a
single pinch point was detected in this area, located upstream of the Elqui river, but did not
affect connectivity since it was not located on any connectivity pathway. Altogether, these
results suggest a relatively high resilience of the population network in the pre-cordilleran
and cordilleran regions, which could further benefit from transboundary movements with
the Argentinean populations.

Population connectivity nevertheless remains an issue of concern in the Andean
region, which is facing multiple threats due to mining (Squeo et al., 2006, Table 54)
including habitat loss and water contamination, exacerbated by the high density of mining
concessions located close to important water resources such as high-altitude wetlands
(Troncoso et al., 2017). In the absence of adequate regulation, mining therefore has the
potential to significantly increase habitat fragmentation in this sector. Environmental
impact assessments and mitigation programs should thus consider population connectivity
in future baseline studies, and particularly for those populations that may be at higher
extinction risk, such as El Tambo and Nevado Tres Cruces National Park, which may be less
resilient to local threats due to small population size (i.e., N < 80, Table S4), and Nevado
Tres Cruces National Park, which displayed a low centrality score. Because our estimates
did not consider populations outside the study area, some neighborhood populations of
the Andean sites might have been omitted, which may have resulted in an underestimate of
the centrality scores in the cordilleran region. Further analyses, such as population genetic
studies, are needed to confirm the isolation status of the Nevado Tres Cruces National Park.

Connectivity patterns along the coast contrasted strongly with those observed in the
Andes. The coastal landscape was essentially dominated by low to medium current areas.
Low current areas reflect either barriers to movement or very large corridors (Cushman,
Chase & Griffin, 2010). In the present case, they occurred in high-resistance areas (i.e.,
low quality habitat), coinciding with urban areas or areas of intensive agriculture (Novoa
¢ Lopez, 2001). As a result, no connectivity was detected between coastal populations
themselves, only to populations at higher altitudes. The actual effectiveness of these
connections was unclear, however. Indeed, they implied crossing the four-lane highway
that extends vertically across the study area. Fenced highways increase animal mortalities
due to vehicle collisions and animals becoming trapped in the barbed wire (Vanak,
Thaker ¢ Slotow, 2010). Besides, two pinch points along the highway were coincident
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with locations of wildlife underpasses, located in the pathways linking Llanos del Challe
to Oso Negro and Los Choros to El Cavario. To date, it is unknown if guanacos utilize
these structures effectively. This should be a topic of future research, particularly since
evidence suggests that ungulates tend to demonstrate a preference for utilizing overpasses
rather than underpasses (Simpson et al., 2016). Overall, our results suggest that the coastal
populations may be functionally isolated, a situation that would endanger their long-term
persistence. This threat could be further compounded if anthropogenic activities like
mining were developed in the mid elevation sector, which could severely affect the few
remaining connectivity links of the coastal populations. Actions to protect or restore
connectivity might thus be crucial for the conservation of the remnant coastal populations
of L. guanicoe.

Other areas that should be prioritized are those playing a key role in the connectivity
network. Our model recognized El Morro and Calvario patches as the most important
habitat patches for overall connectivity, facilitating individuals’ dispersal between several
pairs of populations. If these resource patches were to be lost, it would result in considerable
increases in the distance and/or transit times between populations (Carroll, McRae ¢
Brookes, 2012). Future regional planning should consider maintaining their integrity for
the long-term persistence of this emblematic species in this region of Chile.

CONCLUSIONS

The identification of biological corridors, defined as areas of natural habitat that allow
species dispersal processes essential for their persistence in a landscape, is of prime
importance for the conservation of endangered species, and also has implications for
the maintenance of important biological patterns and processes at large regional scales
(Chetkiewicz, Clair ¢ Boyce, 2006; Rouget et al., 2006). In this study, we used a resistance-
surface-based connectivity modelling approach to investigate functional connectivity of
L. guanicoe in Chile’s Norte Chico. To appraise the actual pertinence of our results in
terms of dispersal, future studies contrasting our connectivity model predictions against
gene flow would be needed (Baguette et al., 2013). Yet our study suggests that functional
connectivity is an issue of concern for L. guanicoe in Chile’s Norte Chico. Indeed, we found
that isolation may jeopardize the viability of the three coastal populations, which are the
last remaining in Chile. Very few of the connectivity pathways may in fact facilitate access
to these populations, and the effectiveness of these routes needs to be investigated, since
their functionality appears to be wholly dependent on wildlife crossing structures that may
or may not be appropriate for L. guanicoe. Our results were rather comforting for most
Andean populations, for which we predicted high connectivity levels; and two populations
in particular were found to play a central role in the connectivity network. Collectively, these
results indicate that future conservation and management plans involving L. guanicoe in
the region should adopt a landscape strategy designed to conserve functional connectivity
between coastal and Andean populations, as well as protect habitat patches that likely
function as stepping stones within the connectivity network.
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