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Reactive oxygen species (ROS) production has been associated with neuronal death. ROS are also involved in mitochondrial fission,
which is mediated by Dynamin-related protein 1 (Drp1). The regulation of mitochondrial fragmentation mediated by Drp1 and its
relationship to mitochondrial ROS (mtROS) in neuronal death have not been completely clarified. The aim of this study is to
evaluate the role of mtROS in cell death and their involvement in the activation of Drp1 and mitochondrial fission in a model of
cell death of cultured cerebellar granule neurons (CGN). Neuronal death of CGN induced by potassium deprivation (K5) and
staurosporine (ST) triggers mitochondrial ROS production and mitochondrial fragmentation. K5 condition evoked an increase
of Drp1 phosphorylation at Ser616, but ST treatment led to a decrease of Drp1 phosphorylation. Moreover, the death of CGN
induced by both K5 and ST was markedly reduced in the presence of MitoTEMPO; however, mitochondrial morphology was
not recovered. Here, we show that the mitochondria are the initial source of ROS involved in the neuronal death of CGN and
that mitochondrial fragmentation is a common event in cell death; however, this process is not mediated by Drp1
phosphorylation at Ser616.

1. Introduction

Neuronal apoptotic death can be identified by multiple bio-
chemical features [1–3] that involves the activation of several
signaling pathways [3–6]. In addition to the classical bio-
chemical changes, an elevation of ROS levels responsible for
cell death is frequently reported [7–11]. The main sources
of ROS implied in cell death are the mitochondria and the
NADPH oxidases (NOX). In the first case, the elevation of
ROS levels is caused by an impairment of the mitochondrial
function and is mainly produced by complex I [12–15].
Depending on the cell death conditions, ROS are produced
by the activation of different NOX homologues [5, 16, 17].

Additionally, the high levels of ROS observed during neu-
ronal death have been associated with morphological
changes of mitochondria [18, 19]. These alterations have
been linked to a process known as mitochondrial dynamics

that refers to a highly coordinated event responsible for the
fusion and fission of the mitochondria [20–23]. This process
is orchestrated by a family of GTPases called mitofusin 1
(Mfn1), mitofusin 2 (Mfn2), and optic atrophy 1 (Opa1) that
are responsible for the fusion of the inner mitochondrial
membranes. Other proteins, including Dynamin-related pro-
tein 1 (Drp1), are in charge of the scission of the outer and
inner membranes [24–28]. An impairment in the expression
or function of these proteins has been associated with pathol-
ogies of the nervous system such as Parkinson’s disease,
autosomal dominant optic atrophy, Charcot-Marie-Tooth
disease, Leigh syndrome, and amyotrophic lateral sclerosis,
among others [29–33].

Drp1 activation has been related to excessive mitochon-
drial fragmentation during neuronal death [19, 34–36]. The
process involves the phosphorylation of Ser616, which gener-
ates the translocation of Drp1 from the cytoplasm to the
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outer mitochondrial membrane resulting in the initiation of
the shortening of the mitochondria. Mitochondrial fission
is usually related to mitochondrial dysfunction and increased
production of mitochondrial ROS [37–43]. Since mitochon-
dria are one of the main sources of ROS and the pivot organ-
elle of apoptotic death, the regulation of its fragmentation
mediated by Drp1 and its relationship to mitochondrial
ROS have been implicated to apoptotic neuronal death, but
their association is not still completely elucidated.

In previous studies, it has been shown that cerebellar
granule neurons (CGN) must be cultured under depolarizing
conditions to survive, which can be attained by maintaining
neurons in high potassium (25mM, K25). Under these con-
ditions, treatment of CGN with staurosporine (ST) or potas-
sium deprivation (K5) induces an early NOX-mediated
production of ROS, activation of JNK and p38 signaling
pathways, and apoptotic death [3, 8, 11], but no information
is available on the role of mitochondrial ROS in the cell death
and their involvement in the activation of Drp1 and mito-
chondrial fission. In the present study, we, therefore, assessed
the effect of two cell death conditions, K5 and ST, on the
mitochondrial (mtROS) and cytoplasmic ROS (ctROS) pro-
duction, as well as their participation in the Drp1 activation
and mitochondrial morphology.

Here, we found that K5 and ST induced an early increase
in mtROS and a decrease in mitochondrial length, as well as a
rise of Drp1 phosphorylation at Ser616 for K5, but a reduc-
tion for ST. A mitochondrial antioxidant inhibited cell death
and the phosphorylation of Drp1 induced by K5, suggesting
that mtROS play a role in CGN death. Although mitochon-
drial fragmentation is a common process in neuronal death
of CGN, Drp1 phosphorylation at Ser616 seems not to be
involved in this process. These findings place mtROS as key
regulators of neuronal death in a manner independent of
mitochondrial fragmentation.

2. Materials and Methods

Fetal calf serum, penicillin/streptomycin, and basal Eagle’s
medium were purchased from GIBCO, Invitrogen (Carlsbad,
CA, USA). Dihydroethidium (DHE), MitoTracker green, and
MitoTracker red CMH2XRos were purchased from Molecu-
lar Probes, Invitrogen (Carlsbad, CA, USA). Poly-l-lysine,
trypsin, trypsin inhibitor, DNAse, cytosine arabinoside,
DMSO (dimethyl sulfoxide), staurosporine, MitoTEMPO,
and reagents for polyacrylamide gel electrophoresis (PAGE)
were acquired from Sigma (St. Louis, MO, USA). Protease
inhibitor cocktail tablets (Complete) were purchased from
Roche (Mannheim, Germany), and phosphatase inhibitor
minitablets were obtained from Thermo Scientific (Rockford,
USA). ProSieve Quad Color Protein Marker was purchased
from Lonza (Rockland, Maine, USA). Polyvinylidene fluo-
ride (PVDF) membranes and Immobilon Western HRP sub-
strate were acquired from Millipore (Concord Road,
Billerica, MA, USA). Antibodies against Drp1, Drp1
(Ser616), and GAPDH were from Cell Signaling Technology
(Danvers, MA, USA); peroxidase-conjugated anti-mouse was
purchased from Jackson ImmunoResearch (West Grove, PA,
USA).

2.1. Cell Culture. All animals used for the experimentation
described in the present study were treated by the accepted
standards of animal care and with the procedures approved
by the local Committee of Research and Ethics of the Insti-
tuto de Fisiología Celular, Universidad Nacional Autónoma
de México (protocol number: JMA120-17). The protocol
used followed the Guidelines for the Care and Use of Mam-
mals in Neuroscience as well as guidelines released by the
Mexican Institutes of Health Research and the National
Institutes of Health guide for the care and use of laboratory
animals. All efforts were made to minimize animal suffering
and to reduce the number of animals used.

Cerebellar granule neuron (CGN) cultures were prepared
as previously described [44]. Briefly, cell suspensions dissoci-
ated from 8-day-old Wistar rat cerebellum were plated at a
density of 265 × 103 cells/cm2 in plastic dishes coated previ-
ously with poly-l-lysine (5 μg/mL). The culture medium con-
tained basal Eagle’s medium supplemented with 10% (v/v)
heat-inactivated fetal calf serum, 2 mM glutamine, 25 mM
KCl, 50 ?g/mL streptomycin, and 50 U/mL penicillin. The
medium described previously is referred in the text as K25.
Cytosine arabinoside (10 ?M) was added 24 h after seeding
to prevent the proliferation of nonneuronal cells. The cul-
tures were kept at 37°C in an atmosphere of CO2 (5%) and
saturated air with water vapor (95%). Cultures were main-
tained 7 days in vitro (DIV) in the depolarizing medium
(K25), and cell death was induced by two different protocols:
(1) the neurons were transferred to a serum-free medium
containing 5 mM KCl (referred as K5 or potassium depriva-
tion) or (2) cultures were added with 0.5 ?M of ST.

2.2. Determination of Cytoplasmic ROS Levels. CGN were
cultured in K25 medium during 7 DIV and then treated with
K5medium or ST as previously described. After the indicated
times, the CGN were incubated with 3.2 ?M of DHE for 30
min at 37°C and cells were observed in an epifluorescence
microscope with a rhodamine filter. Cells were photo-
graphed, and fluorescence intensity was measured with the
ImageJ platform.

2.3. Determination of Mitochondrial ROS Levels. CGN were
cultured in 35mm Petri dishes during 7DIV, and cells were
preincubated for 30min with MitoTracker red CMH2XRos
(100 nM) at 37°C. Cells were then subjected to the cell death
conditions for the indicated times, and pictures were col-
lected by a LSM 710-Zeiss microscope at 740/599 nm excita-
tion/emission, with a 63x immersion objective. Fluorescence
intensity was measured with the Fiji ImageJ platform.

2.4. Mitochondrial Imaging. CGN were cultured on cover
glass (FluoroDish™) in 35mm Petri dishes, and after 7DIV,
the cells were treated with K5 medium or ST during the indi-
cated times. Cells were then incubated with MitoTracker
green (100 nM) for 30min at 37°C, and cells were then
washed twice with Locke medium (154mM NaCl, 25 or
5mM KCl, 3.6mM NaHCO3, 2.3mM CaCl2, 5.6mM glu-
cose, and 10mM HEPES) and imaged with Eclipse-Ti-S
Nikon by using a 63x oil objective with a fluorescein filter.
The mitochondrial length was measured by using the Fiji
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ImageJ platform by selecting 20 individual mitochondria per
image. After calibrating the images with the objective 60x of
the Eclipse-Ti-S Nikon microscope, we draw a line over the
individual mitochondria and we measured the mitochondrial
length.

2.5. Western Blot. CGN were cultured in a K25 medium for 7
DIV and then switched to K5 medium or treated with ST at
different times. Cells were washed twice in ice-cold PBS and
were homogenized in lysis buffer (25 mM Trizma, 50 mM
NaCl, 2% Igepal, 0.2% SDS and complete protease inhibitors,
pH 7.4). Homogenates were centrifuged at 4,500 rpm for 5
min, and the supernatants were recovered. The protein
concentration of homogenates was estimated by the Lowry
method. Cell homogenates (30 ?g protein per lane) were
subjected to 10% SDS-PAGE and transferred to PVDF
membranes at 100V for 1.5 h. The membranes were blocked
with Tris-buffered saline (TBS)/Tween 20 (TTBS) buffer
(100mM Tris-HCl, 150 mM NaCl, and 0.1% Tween, pH
7.4) containing 5% or 2.5% nonfat dry milk at 4°C per
one hour and were incubated overnight at 4°C with the
primary antibodies. After washing, the blots were incu-
bated with peroxidase-conjugated anti-mouse (1 : 10,000)
or peroxidase-conjugated anti-rabbit (1 : 10,000) for 1 h at
room temperature. Bands were visualized using chemilu-
minescence according to the manufacturer’s recommenda-
tions and exposed to Kodak BioMax-Light Film.

2.6. Viability.We evaluated cell viability by the MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
reduction technique, which is based on the ability of mito-
chondrial succinate dehydrogenase to transformMTT to for-
mazan blue. The amount of formazan produced is directly
proportional to the number of viable cells present in the cul-
ture. The cells were incubated with MTT (100?M) for 15min
at 37°C at the indicated times. Cells were then washed, and
formazan blue crystals formed were dissolved with DMSO
and measured in the spectrophotometer at 570nm.

2.7. Statistical Analysis.Data are presented asmean ± SE, and
the statistical significance of the results was determined by
one-way analysis of variance (ANOVA), followed by Fisher’s
test. p values less than 0.05 were considered statistically
significant.

3. Results

3.1. K5 and ST Induce an Elevation of ROS Levels. In order to
determine whether K5 or ST generated changes in ROS
levels, we assessed a temporary course of mtROS and ctROS
levels. First, we evaluated the effect of K5 and ST (0.5?M) on
mtROS and we observed a ROS increase after 10min in both
death conditions. Remarkably, K5 condition induced more
than a twofold elevation in the levels of ROS (Figure 1(a)),
while ST showed a significant increase in mtROS by about
65% (Figure 1(a)).

Regarding ctROS levels, we found, in a temporal course
measurement, that both K5 and ST induced a significant
increase after 45min and 5 h, but not at 15min
(Figure 1(b)). These data indicate that the mitochondria are

the first source of ROS during the apoptotic process and a
subsequent increase of ROS levels occurs in the cytosol, as
previously demonstrated [45].

3.2. Elevation of ROS Correlates with Loss of Viability in
Neurons Treated with K5 and ST. Because ROS occurs at dif-
ferent times of neuronal death in both models, it is important
to know whether ROS elevation correlates with the loss of
viability. For this, we evaluated the ability of neurons to
reduce MTT as a viability indicator, over a period of 15min
to 8 h of K5 and ST treatment. Under these conditions, we
observed a decrease in MTT reduction of 23% after 30min
that continues decreasing for 8 h of K5 treatment
(Figure 2(a)). Similarly, in neurons treated with ST
(Figure 2(b)), the reduction in MTT decreased by 28% after
15min of treatment that continued decreasing after 8 h of
treatment. These results suggest that the viability is compro-
mised from the first minutes of the process of cell death
induced by both stimuli and that the initial loss of viability
correlates with the early mtROS production and with the
progressive rise of ctROS.

3.3. mtROS Are Involved in the Neuronal Death Induced by
K5 and ST. To evaluate the contribution of mtROS in cell
death of CGN, cultures were treated with MitoTEMPO and
we measured cell viability in cells treated with K5 or ST. After
24 h, K5 and ST treatment reduced the neuronal viability to
58% and 45.45%, respectively. When cells were pretreated
with MitoTEMPO for 30min, the observed decrease in cell
viability was prevented to 80.11% (Figure 3(a)) and 64.87%
(Figure 3(b)), respectively. These results suggest that mtROS
production is a critical early signal in neuronal death.

3.4. Cell Death Conditions Induce Changes in Mitochondrial
Morphology. In numerous models of cell death, mitochon-
drial morphological changes have been reported. These
changes are characterized by swelling, rounding, and short-
ening of mitochondria that has been identified as mitochon-
drial fragmentation [46–48]. Under our conditions, we
observed that CGN subjected to K5 showed mitochondrial
morphological changes at 8 h (Figure 4(a)). These neurons
showed rounded and shorter mitochondria when compared
to those observed in control conditions (K25); the average
length of mitochondria was reduced by 18% at 8 h and 25%
after 24 h of K5 treatment (Figure 4(b)). In the case of ST
treatment, rounded mitochondria were observed starting at
8 h and a significant mitochondrial shortening of 11.86%
was observed after 24 h of treatment (Figure 4(b)). When
we quantified the number of mitochondria, we did not
observe any difference between the evaluated conditions
(not shown). These results demonstrate that a decrease in
mitochondrial length is a common event during neuronal
death induced by different apoptotic stimuli.

3.5. K5 Induces mtROS-Dependent Drp1 Phosphorylation. In
order to clarify the role of potassium deprivation in the pro-
cess of mitochondrial fission, we evaluated the activation of
Drp1 measured as Drp1 phosphorylation at Ser616. We car-
ried out a temporal course of K5 treatment, and we observed
a rise in Drp1 phosphorylation after 15min of stimulation,
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Figure 1: ROS levels induced by cell death conditions. The levels of mitochondrial and cytoplasmic ROS were measured at different times
after potassium deprivation (K5) or staurosporine (ST) treatment. (a) CGN stained with MitoTracker red were imaged after 10 minutes to
determine the mtROS levels under control (K25), K5, and ST treatments. The graphs show mitochondrial ROS production measured as
indicated in Materials and Methods. (b) Cytoplasmic ROS were determined with DHE staining under control conditions (K25) or after
45min and 5 h of K5 and ST treatment. The graphs show cytoplasmic ROS production measured as indicated in Materials and Methods.
Bars are the means ± SE of three independent experiments. ∗p < 0:05 vs. K25.
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which remained constant for 8 h of treatment. After 24h,
Drp1 phosphorylation decreased (Figure 5(a)). As men-
tioned above, mtROS elevation was detected early during
the cell death process (Figure 1(a)); thus, we evaluated the
effect of the mitochondrial antioxidant MitoTEMPO on
Drp1 phosphorylation in a temporal course. Data showed
that MitoTEMPO inhibited the Drp1 phosphorylation
induced by K5 from 15min to 24h of treatment
(Figure 5(b)). These data suggest that mtROS are required
for Drp1 activation, evidenced as Ser616 phosphorylation,
during potassium deprivation.

3.6. ST Decreases Drp1 Phosphorylation Levels. Interestingly,
when we explored the effect of ST on Drp1 phosphorylation
in a time course assay, we found an early decrease in the
phosphorylated form of Drp1 starting at 1 hour and further
reducing after 5, 8, and 24h (Figure 5(c)). The observed

decrease in phosphorylation was not modified by treatment
with MitoTEMPO (Figure 5(d)). These data suggest that
mitochondrial fragmentation induced by ST treatment
(Figure 5(c)) is not mediated by either Drp1 Ser616 phos-
phorylation, which is unrelated to mtROS production.

3.7. Mitochondrial Fission Induced by Cell Death Is Not
Prevented by Treatment with a Mitochondrial Antioxidant.
Since mtROS mediated the phosphorylation of Drp1
(Ser616) induced by potassium deprivation, we examined
whether MitoTEMPO affected the observed effect of K5 on
mitochondrial morphology; however, we did not observe
any effect of MitoTEMPO on the decrease in mitochondrial
length induced by K5 at 24h (Figure 6(a)). Similar results
were obtained for ST (Figure 6(b)). MitoTEMPO alone did
not exert any effect on mitochondrial length (Figures 6(a)
and 6(b)). Additionally, when cultures were incubated with
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Figure 2: Time course of MTT reduction of CGN treated with K5 and ST. Cell viability was evaluated by MTT reduction after different times
in cell death conditions. (a) Temporal course of the viability of CGN treated with K5 (●). (b) Viability of CGN treated with ST (♦). Symbols●
and ♦ show the mean ± SE of the percentage of viability compared with time 0 (K25) of three independent experiments. ∗p < 0:05 vs. time 0
(K25).
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Figure 3: Role of mtROS in the viability of CGN treated with K5 and ST. Cell viability was evaluated by MTT reduction after 24 h of death
induction in cells pretreated for 30min with the mitochondrial antioxidant MitoTEMPO (10 μM). (a) Viability of CGN treated with K5. (b)
Viability of CGN treated with ST. Bars show the mean ± SE of the percentage of viability compared with the control (K25) of three
independent experiments. ∗p < 0:05 vs. K25.
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10μMMDiVi-1, an inhibitor of Drp1, the cell death of CGN
induced by K5 or ST was not reduced (Suppl. Fig. 1).

4. Discussion

One of the major findings in this study was the observation of
an early increase of mtROS production in response to two
different cell death conditions: K5 and ST (Figure 1(a)).
Interestingly, the observation that mitochondrial ROS scav-
enging ameliorated neuronal viability under K5 and ST treat-
ments indicates that the observed increase in mtROS is an
event that contributes to neuronal death. This proposal is

supported by previous studies in other experimental models
where antioxidants improved mitochondrial function [49,
50]. The protective effect of MitoTEMPO on cell viability in
both models was partial, suggesting that other sources of
ROS are involved in the cell death process.

Mitochondria is a hub in many physiological functions
and one of the main sources of ROS in the cell. There is a
large body of evidence showing the role of mitochondrial
ROS (mtROS) in the regulation of many physiological pro-
cesses [51]. For example, mtROS are involved in neuronal
differentiation [52] and cell proliferation [53]. Some of the
mtROS actions are mediated by the regulation of calcium
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Figure 4: Morphological changes in mitochondria of CGN after cell death induction. Temporal course of CGN stained with MitoTracker
green and treated with K5 and ST. (a) Image of mitochondrial morphology of CGN after potassium deprivation or ST at different times.
The red arrows indicate the interconnected mitochondria in K25 condition and fragmented mitochondria after 8 and 24 h of treatment.
(b) The graphs show the mitochondrial length in a temporal course during cell death. The bars represent the mean ± SE of three
individual experiments. ∗p < 0:05 vs. K25.
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transport into the cell and intracellular stores [54, 55].
Accordingly, deregulation of mtROS can lead to pathological
conditions. It is known that the release of mtROS by mito-
chondrial permeability transition pore opening is a crucial
step in the pathogenesis of diverse diseases [56–58]. Particu-
larly, alterations in mtROS have been related to several neu-

rodegenerative diseases [59]. For example, mtROS have been
associated with an alteration of the long-term potentiation in
an Alzheimer’s disease (AD) model [60] and the use of mito-
chondrial antioxidants prevents the expression of the charac-
teristics of AD in mice [61]. In addition, mitochondrial
fission is related to an increased mtROS levels in an AD
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Figure 5: Effect of mtROS in the activation of Drp1 induced by K5 and ST. The levels of total Drp1 and Drp1 phosphorylated at
Ser616 (p-Drp1) were evaluated in a temporal course in lysates of CGN pretreated for 30min with the mitochondrial antioxidant
MitoTEMPO under death conditions. The levels of the protein were determined by Western blot analysis as indicated in Materials and
Methods. (a) Levels of p-Drp1 (Ser616) from CGN treated with K5. (b) Levels of p-Drp1 from CGN pretreated with MitoTEMPO and
treated with K5. (c) Levels of p-Drp1 (Ser616) from CGN treated with ST. (d) Levels of p-Drp1 from CGN pretreated with MitoTEMPO
and treated with ST. GAPDH was used as loading control. The bars show the densitometric ratio between p-Drp1 and Drp1 that were
normalized to the control K25. Values are the mean ± SE of three individual experiments. ∗p < 0:05 vs. K25.
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model [39]. Other neuropathologies related to mtROS
overproduction includes frontotemporal dementia [62]
and Parkinson’s disease [63], among others. Thus, mtROS
are essential to maintain physiological homeostasis of the
cell, but a misbalance can cause serious pathological
alterations.

In this regard, our group previously demonstrated, and
we corroborated here (Figure 1(b)), that cytoplasmic ROS
elevation is a determinant process in neuronal death [3, 6,
64]. The observed increase in ROS levels has been associated
with the promotion of apoptosis, but the specific mechanism
remains elusive. We and others have shown that NOX is a
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Figure 6: Role of mtROS in the morphological changes of mitochondria in CGN treated with cell death conditions. CGN stained with
MitoTracker green and pretreated with MitoTEMPO (10 μM) were stimulated with K5 or ST, and neurons were imaged after 24 h. (a)
Image of mitochondrial morphology of CGN after potassium deprivation. (b) Image of mitochondrial morphology after ST treatment.
The bars show the mitochondrial length in μm measured after 24 h of treatment with the death conditions. The bars represent the mean
± SE of three individual experiments. ∗p < 0:05 vs. K25.
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crucial ROS source implicated in apoptosis [8, 16, 65]. Here,
we showed an early production of both mtROS and ctROS
induced by K5 and ST. The initial ROS produced by mito-
chondria could be related to ctROS produced later by NOX.
Previous studies have suggested an interrelationship between
mtROS and NOX activation [65], and a feedback mechanism
between mtROS and ROS generated by NOX has also been
proposed [66].

We and others have demonstrated that an increase of
ROS levels is related to the progression of cell death [8, 15,
45, 54]. Thus, we assessed the capacity of neurons to reduce
MTT and we observed that K5 and ST induce a reduction
in the viability from the first 15-30min that continued
decreasing for 8 h (Figure 2). These results suggest that the
neuronal death process is an event triggered from the first
minutes of the treatments as it occurs for the increase of
ROS levels (Figures 1 and 2). Previously, the early impair-
ment of viability has been reported in CGN under oxidant
conditions [55], showing that ROS has a role in the sudden
loss of viability and acts as a determinant to the neuronal fate.
In our study, we confirmed that two death conditions
induced mtROS and ctROS levels and this correlates with a
rapid loss of viability.

There are evidence supporting the idea that altering
mitochondrial function by K5 and ST is an early episode
likely involved in the death of cerebellar granule neurons
and that K5 and ST could have different actions in mitochon-
drial activity. For example, some studies suggest that apopto-
tic conditions alter the mitochondrial function early in the
cell death process. For example, Jekabsons and Nicholls
[67] showed a decrease in the oxygen consumption from
the first few minutes of potassium deprivation.

A recent study has shown that the suppression of ROS
production from both sources was not additive in preventing
Aβ toxicity of cultured cortical neurons [68]. This result is in
agreement with the observed partial protective effect of Mito-
TEMPO observed in our model (Figures 2(a) and 2(b)) and
supports the idea that other intracellular signals besides
mtROS contribute to the neuronal death.

Changes in mitochondrial morphology and their rela-
tionship to the process of neuronal death have gained
relevance as an essential issue in the progression of neurode-
generation caused by harmful stimuli [39, 69, 70]. Interest-
ingly, and consistent with previous studies, we observed
morphological alterations in mitochondria at different times
of treatment with both cell death conditions. CGN main-
tained in basal conditions showed highly connected mito-
chondria, which after several hours of treatment with K5 or
ST became shorter and rounded along neurites (Figure 3),
in agreement with previous studies [47, 50].

The impairment of mitochondrial morphology has been
related to increased ROS levels in different experimental
models [43, 46, 50, 71], including the use of hydrogen perox-
ide in neuroblastoma cells and cultured hippocampal neu-
rons [50, 70]. Particularly, it has been reported that a
reduction in mtROS decreased the mitochondrial fragmenta-
tion [50, 72]. Since in our study, the use of a mitochondrial
antioxidant ameliorated the loss in cell viability of the neu-
rons (Figure 2), we evaluated the role of mtROS on the mito-

chondrial morphology under cell death conditions; however,
we found that MitoTEMPO did not prevent mitochondrial
fragmentation in any of the cell death conditions studied
(Figure 6). It remains to evaluate whether ctROS are involved
in the morphological changes induced by K5 and ST.

The redox balance has been linked to the regulation of the
core of the mitochondrial dynamics regulating proteins [73].
Drp1 is the main protein involved in the regulation of mito-
chondrial fission [26, 34, 74]. Mitochondrial fragmentation
requires the translocation of Drp1 to the outer mitochondrial
membrane [75], which involves its phosphorylation at several
sites, including Ser616 and Ser637 [76, 77]. To further assess
the role of mtROS in mitochondrial fission, we evaluated the
activation of Drp1 mediated by its phosphorylation at
Ser616 in neurons treated with K5 or ST. In the case of K5,
we found an increase in Drp1 phosphorylation that correlated
with the observed increase in mtROS and mitochondrial fis-
sion (Figure 4(a)), in agreement with previous studies [42,
71]. Moreover, we observed that MitoTEMPO significantly
reduced the increase of p-Drp1 induced by K5 (Figure 4(b)),
suggesting that Drp1 phosphorylation could be mediated by
the mtROS induced by potassium deprivation.

In contrast to K5, although ST induced a rise in mtROS
that correlated with decreased mitochondrial length, we did
not observe any activation of Drp1 measured as phosphory-
lation at Ser616. In fact, we observed a marked decrease in
both total Drp1 and p-Drp1 by ST (Figure 5(a)). In addition,
MitoTEMPO did not modify the decrease in total Drp1 and
p-Drp1 induced by ST (Figure 5(b)). Unexpectedly, we
observed a decrease in Drp1 total levels from 15min to 24 h
in neurons treated with ST (Figures 5(c) and 5(d)). A
decrease in phosphorylated Drp1 levels has been reported
to promote mitochondrial elongation in the hippocampus
[78]. Thus, these results show that Drp1 and mtROS do not
mediate the mitochondrial fission induced by ST. It is possi-
ble that the observed Drp1 degradation by ST could be medi-
ated by a mechanism dependent on the proteasome, as it has
been observed in other models of neuronal death [79].

Alternatively, other Drp1 phosphorylation sites could be
responsible for mitochondrial fission induced by ST, as it has
also been suggested during neurodegeneration [80].
Although the most commonly reported phosphorylation of
Drp1 is at Ser616 [29, 39, 81], a decrease in phosphorylation
at Drp1 Ser637 has also been shown in hippocampal neurons
[76, 82, 83]. In addition, the phosphorylation at Ser585 was
related to an enhanced mitochondrial fission in CGN in
response to excitotoxicity [84]. Thus, we cannot discard
other possible sites of Drp1 phosphorylation involved in
the process of mitochondrial fission.

A possible explanation for the observed differences in
Drp1 phosphorylation by K5 and ST could be the distinct
signaling pathways activated by each condition. Drp1-
dependent mitochondrial fragmentation is regulated by
several kinases, including CDK5 [84], CaMKII [82, 83],
ERK1/2, PKC, JNK, and p38 in different models [71, 85,
86]. We have previously reported that both models of apo-
ptotic death showed differences in their molecular mecha-
nisms of action. K5 induces a reduction in cytoplasmic
calcium, while ST induces an early increase of calcium [44,
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87]; K5 evokes the release of K+, while ST produces a Cl-
release [88], and although both conditions activate NOX,
only ST induces the activation of NOX2 [16]. Finally, we have
also highlighted the differential activation of signaling path-
ways by K5 and ST during apoptotic neuronal death; the
effect of K5 was mediated by JNK, while ST required p38 acti-
vation [6]. We hypothesize that any of these differences could
be responsible for the discrepancies in K5 and ST conditions
in the Drp1 phosphorylation.

In the present study, we observed mitochondrial fragmen-
tation in both experimental models. However, in the case of the
neurons subjected to K5, the total abolition of the Drp1 phos-
phorylated levels by MitoTEMPO was not enough to reduce
mitochondrial fission. In the ST model, we also observed a sig-
nificant mitochondrial fragmentation even with very low levels
of total and phosphorylated Drp1 at Ser616. It is worth men-
tioning that we do not observe any effect of the putative
Drp1 inhibitor MDiVi-1 on the viability of CGN treated with
K5 or ST suggesting that Drp1 could not be critical for cell
death of CGN. It should be noted that in other models, includ-
ing cell reprogramming [89] or cell proliferation in tumor
growth [90], the mechanisms and consequences of mitochon-
drial fission might be different from those of neuronal death.

These results suggest alternative mechanisms to induce
mitochondrial fission. It has been recently proposed that
actin cytoskeleton modulates mitochondrial morphology
changes [91, 92] that are involved in neuronal death [93],
but the role of actin-cofilin has not been explored in neurons.
Particularly, cofilin seems to participate in the mitochondrial

fission and apoptosis through the dephosphorylation of Drp1
at Ser637 [94].

5. Conclusions

In conclusion, our findings suggest that mtROS are necessary
for the process of neuronal death, but not for the mitochon-
drial fragmentation. However, the cell death conditions induce
mitochondrial fragmentation in CGN. In addition, mitochon-
drial fragmentation and neuronal death of CGN seem not to
be mediated by Drp1 phosphorylation at Ser616. Our data
suggest that mitochondrial fragmentation is carried out by dif-
ferent mechanisms depending on the cell death condition. The
details of the suggested mechanism are described in Figure 7.

More experiments are needed to explore the relationship
among mtROS, mitochondrial dynamics, and cell death
induced by different conditions, as well as the fine mecha-
nisms involved, including the alternative sites of Drp1
phosphorylation. Future experiments may clarify how the
different sources of ROS, including NOX, may induce mito-
chondrial fragmentation and cell death. Furthermore, other
core proteins of the mitochondrial dynamic process, like
Opa1 and mitofusins, could have a specific role in K5 and
ST induction of cell death.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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