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Eukaryotic cells have both membranous and membraneless organelles. While

the formation mechanism of membranous organelles is well understood, the

formation mechanism of membraneless organelles remains unknown. Many

biomolecules in the cytoplasm transition from the liquid phase to the

agglutinated phase are known as liquid-liquid phase separation (LLPS). The

biomolecular agglomerates’ physical properties enable them to function as

dynamic compartments that respond to external pressures and stimuli.

Scientists have gradually recognized the importance of phase separation

during viral infections. LLPS provides a powerful new framework for

understanding the viral life cycle from viral replication to evasion of host

immune surveillance. As a result, this review focuses on the progress of LLPS

research in viral infection and immune regulation to provide clues for antiviral

therapeutic strategies.

KEYWORDS

liquid-liquid phase separation, membraneless organelle, inclusion, viral infection,
immune regulation
Background

The regulation, coordination, and networking of different cellular compartments

underlie the function of biological systems. Among these compartments are membrane

and non-membrane organelles. The membrane-bound organelles carry out functions in a

selective and specific manner without any external disturbance. The exchanging

information between membrane organelles is endorsed by mechanisms such as fusion

and fission and vesicles trafficking in the endomembrane system (1). However, large gaps
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remain in our understanding of the collaboration and regulation

of membraneless organelles (MLOs) in biochemical functions.

Recent studies have shown that macromolecules’ liquid-liquid

phase separation (LLPS) may be the physicochemical basis for

forming non-membrane organelles inside the cells (2–4). In the

compartments formed by LLPS, specific molecules are

concentrated in fluid-like liquid droplets that coexist stably with

the surrounding fluid environment. Some examples of these

biomolecular condensates include processing bodies (P-bodies),

stress granules (SGs), Cajal bodies, Nucleosomes, nuclear speckles,

membrane clusters, signaling puncta, Germ granules, Balbiani

bodies, paraspeckles, DNA damage foci, histone locus, viral

replication compartments (RCs) and inclusion bodies (IBs) (3, 5–

11). After the formation of LLPS, the biomolecule exists in two

forms, one at low concentration in bulk dilute phase and one at

higher concentration in the formed “droplets”. The polymer

molecules usually move within the dense phase or between the

dense and bulk dilute phases (12, 13). The interconversion of these

two phases depends upon the change in the surrounding

cellular environment.

The occurrence of LLPS is highly dependent on the

concentration of biomolecules (proteins, DNA, and RNA) in the

solution, their physicochemical properties, and the solution

environment (temperature, pH, salt concentration, and salt ion

type) (14, 15). The threshold concentration of biomolecules is the

major factor contributing to the phase separation of homogeneous

solutions. When the concentration of biomolecules exceeds the

threshold concentration, they begin to aggregate, leading to the

appearance of LLPS (4). The other influencing factors include

chaperones, ATP, post-transcriptional modification, pH, ionic

strength, and temperature (10). Furthermore, various

intermolecular interactions, including ionic bonds, van der

Waals forces, hydrogen bonds, p-p, and p-cation of aromatic

residue and cation amino acid residue, are also involved in the

occurrence of phase separation (16–19).

Viruses are obligate intracellular parasites that rely on the

host machinery for viral replication. The concept of phase

separation provides new insights into understanding the

mechanisms of viral infection. Several studies revealed that

viral infection is associated with membraneless condensates

(9). Some viruses have been shown to assemble biomolecular

condensates with liquid properties, such as rabies virus (RABV),

vesicular stomatitis virus (VSV), and severe acute respiratory

syndrome coronavirus 2 (SARS-COV-2) (20–22). Moreover,

these condensates are also associated with SGs, suggesting the

condensate’s potential roles in the innate immune responses

(23). A growing body of studies reveals the important role of

LLPS in the viral life cycle, including viral entry, genome

replication, assembly, and viral packaging, as well as antiviral

innate immune signaling (20, 23). In this review, we will focus on

the role of LLPS in viral infection and immune regulation to

provide a novel insight into antiviral therapeutic strategies.
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Cellular factors that drive
phase separation

Studies have revealed that several factors, including

multivalency of proteins, temperature, ionic strength, RNA

elements, and metal ions, contribute to forming liquid

droplets (17). Here, we introduced these factors’ roles in

forming LLPS.
Intrinsically disordered regions

Intrinsically disordered regions (IDRs) of a protein have no

specific three-dimensional structure and can weakly and

multivalently interact with other proteins, resulting in liquid

condensates (11, 15, 24). Numerous studies have shown that

weak and multivalent RNA-protein or IDR-IDR interactions are

critical for the high-order assembly of biomolecules (25, 26). For

example, IDRs in transcriptional coactivators BRD4 and MED1

are integral for driving phase separation (27, 28). Besides this,

prion-like domains (PLDs), similar to low-complexity sequence

domains (LCDs), can also drive LLPS in vivo (29). The valence of

aromatic residues in PLDs plays a major role in LLPS, and a

specific sequence of aromatic residues helps form liquid droplets.

Moreover, intrinsically disordered proteins (IDPs) are also

subject to phase separation resulting in the formation of

membraneless organelles with various cellular functions (30).

IDPs exhibit a high conformational heterogeneity due to lacking

a stable and precise secondary or tertiary structure (31). Polar

charged residues promote the formation of disordered proteins;

therefore, IDPs are also considered polyelectrolytes (32). The

protein IDRs are indispensable for forming membraneless

organelles through LLPS.
Protein multivalency

The multivalency of protein contributes to phase separation.

For example, mixing an engineered protein containing multiple

SRC homology 3 (SH3) repeats and another containing multiple

proline-rich motifs (PRM) repeats resulted in phase separation

in vitro (12). Another example is the nephrin-Nck-N-WASP

system, in which phosphorylated nephrin binds to the SH2

domains of Nck while three SH3 domains of Nck can further

bind to N-WASP six PRMs. The multivalency of these proteins

results in phase separation (33). Besides SH3, other multidomain

modules are also involved in phase separation. For instance, a

coiled-coil trimer formed by SynGAP can bind to multiple

copies of PSD-95, leading to the formation of LLPS (34).

Altogether, the formation of multimers mediated by

multivalent interactions can drive the formation of LLPS.
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Genomic RNA elements

Like specific multivalent protein-binding sites, Genomic

RNA elements are indispensable for phase separation. It has

been found that the phase separation mediated by IDP and RNA

is RNA concentration-dependent. A low amount of RNA

promotes phase separation, while a high amount can inhibit it

(35). A recent study showed that distinct regions of viral

genomic RNA have distinct roles in mediating phase

separation (36). For instance, the nucleocapsid encoding

region located at the 3′end of severe acute respiratory

syndrome coronavirus (SARS-CoV) genomic RNA (gRNA)

can promote phase separation while its frameshifting and

packaging signal region can dissolve the liquid phase (37).

Another study found that the viral gRNAs bind to the IDRs

and RNA-binding domains of the N protein to mediate phase

separation, promoting the assembly of virus particles (38).
Zn2+ ions

The metal ions regulate phase separation and are related to

developing some diseases (39–41). It has been found that Zn2+,

but not other ions (Mn2+, Cu2+, and Fe2+), plays a significant role

in the phase separation of tau protein (42). The multiple zinc-

binding sites of tau are required for the formation of LLPS. Metal

ions can react with prion-like disordered protein domains

(PrLDs), providing us with a doctrine to further understand

phase separation (43). Further study about the mechanism of

tau-mediated phase separation may improve the treatment of

tau-associated degenerative diseases (44). Moreover, Zn2+ is also

involved in the virus-mediated phase separation. For instance,

human immunodeficiency virus type 1 (HIV-1) nucleocapsid

proteins are required for zinc finger (ZnF) protein-dependent

LLPS, regulating genomic RNA positioning and trafficking (45).

The ZnF NC mutant and Zn2+ chelation inhibited NC co-

localization with vRNA and suppressed NC-mediated LLPS (45–

47). RABV and VSV can employ Zn2+ to regulate the formation

of liquid condense mediated by N-protein and nucleic acid,

promoting virus assembly (48). It is interesting to study whether

the inhibition of ZnF protein can suppress viral replication.
Roles of virus-driven phase
separation during virus infection

Because the viral replication cycle is highly dependent on the

infected host cell, viruses have evolved to utilize and remodel

cellular structures to facilitate viral replication and counteract

host cell resistance to viral infections.

Many viruses have been shown to produce biomolecular

condensates with liquid properties. The formation of

biomolecular agglutinates substantially leads to a significant
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increase in local molecular concentration and intermolecular

contacts, thus enhancing the rate of biochemical reactions.

Further study showed that biomolecular condensates play a

role in viral genome replication, transcriptional translation,

nucleocapsid assembly, and egress. For example, DNA viruses

form nuclear viral replication compartments through phase

separation, and many negative RNA viruses induce the

formation of viral IBs (49, 50). Besides, by sequestering

antiviral sensors into viral IBs, biomolecular condensates can

also prevent the activation of innate immune pathways (51–54).

Here, we will cover recent progress on the roles of biomolecular

condensates in the viral infection process and immune

response (Figure 1).
Phase separation regulates
virus replication

The roles of phase separation in DNA virus
replication and transcription

The action of phase separation in virus replication and

transcription has been reported in some members of the

Herpesviridae family. It is generally accepted that the DNA

replication, gene transcription, and nucleocapsid assembly of

herpes simplex virus type 1 (HSV-1), a member of the alpha-

Herpesviridae family, occur in the nucleus of host cells (55). When

the viral genome enters the nucleus, HSV-1 sequentially expresses

immediate-early, early, and late proteins. The immediate-early

proteins activate the transcription and translation of early genes,

which participate in the viral genome replication and replication

compartments (49, 56, 57). Recent studies have shown that the

immediate-early protein ICP4 is an intrinsically disordered protein

that can drive the formation of condensates in the nucleus via

LLPS (58). Since ICP4 is required for viral replication and is

localized to RCs, RCs may be the product of LLPS (59).

It should be noted that not all the proteins in RC are

recruited through LLPS. For example, the recruitment and

retention of RNA polymerase II (Pol II) in the RC is achieved

via the non-specific binding of Pol II to HSV-1 DNA (60).

Therefore, the formation mechanisms of RCs might be complex,

and the roles of LLPS in RC compartmentalization need further

investigation. After completing capsid assembly and genome

packaging in the nucleus, HSV-1 nucleocapsid undergoes

primary envelopment and de-envelopment at the nuclear

envelope, followed by secondary envelopment in the cytoplasm

(55, 61). Tegument protein acts as a link between the capsid and

the viral envelope, promoting secondary encapsulation. A recent

study found that HSV-1 tegument protein UL11 possesses the

IDR and can form LLPS in vitro (62). Interestingly, it is also

found that several HSV-1 tegument proteins have IDRs and

might have the potential to undergo LLPS, suggesting that the

tegument proteins might play a role in tegument assembly

through LLPS.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.985622
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wei et al. 10.3389/fimmu.2022.985622
The first identified human oncovirus is Epstein Barr virus

(EBV), belonging to the gamma subfamily of the Herpesviridae

family. EBV is closely related to multiple malignant tumors,

including nasopharyngeal carcinoma and gastric cancer (63, 64).

EBNA2 and EBNALP are two EBV-encoded transcription factors

expressed early after EBV infection in the B cells (65). Co-

expression of both proteins can drive quiescent B cells into the

cell cycle and promote B cell transformation (66). Importantly,

EBNA2 binding sites are positioned near the promoter and

enhancer elements in viral and cellular genomes. Recent studies

found that EBNA2 can be enriched in super-enhancer regions

formed by many transcriptional enhancers (67–69).

Moreover, EBNA2, EBNALP, and other transcription factors

could form condensate at super-enhancers via LLPS (70).

Furthermore, EBNA2 can remodel chromatin topology

through phase separation, resulting in the formation of

accessible chromatin domains (ACDs) in the host genome.

The N-terminal of EBNA2 is required for ACD induction and

phase separation formation, whereas the C-terminal can recruit

histone acetyltransferase p300 to ACDs for acetylation of ACDs

(71). As a result, phase segregation theoretically supports further

epigenet ic regulat ion of chromatin act ivat ion and

genomic transcription.

Phase separation regulates RNA
virus replication

The effects of phase separation on virus replication were well

explored in the N protein of SARS-CoV-2. The genomes of

SARS-CoV-2 are encapsulated by N protein. The presence of

several RNA binding domains in this nucleocapsid protein,
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including low-complexity areas and oligomerization domains,

suggests that N protein can create biomolecular condensates

(72). It has been demonstrated that N proteins can undergo

LLPS in vitro. The turbidity experiments revealed that increased

RNA concentration would enhance the turbidity of droplets

(23). However, the turbidity decreases when RNA concentration

exceeds a certain threshold due to the classical reentrant

behavior (73). By measuring turbidity and spherical droplet

size at different NaCl concentrations, it is found that

electrostatic interactions inhibit the formation of LLPS

mediated by N proteins and RNA (38). The LINK region of N

protein contains a serine- and arginine-rich SR region. The

phosphorylation of the SR region leads to the formation of salt

bridges between the phosphate groups and arginine side chains,

inhibiting N-protein and RNA-induced LLPS (23).

The N protein-mediated LLPS is a multifunctional protein

involved in multiple infection processes. The SARS-CoV-2

requires RNA-dependent RNA polymerase (RdRp) and a

series of cofactors during replication and transcription (74).

Fluorescence co-localization experiments demonstrate that N

proteins recruit RdRp/RNA complexes and promote virus

replication. LLPS may promote ribonucleoprotein condensate

formation while packaging viral RNA genomes into nascent

virions (72). It is speculated that newly synthesized N proteins

form pre-capsids with viral genomes via LLPS. Then the pre-

capsids are released upon maturation and interact with

structural proteins in the ER-Golgi intermediate compartment

(ERGIC) for subsequent packaging (74–77).

In addition, various experiments have shown that N proteins

can regulate the formation and function of SGs. SG formation
B

C

D E
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A

FIGURE 1

The effect of virus-driven phase separation on the viral infection. (A) HSV-1 ICP4 can drive the formation of condensates in the nucleus via LLPS.
ICP4 is localized to RCs and required for viral replication. (B) EBV EBNA2, EBNALP, and other transcription factors could form condensate at
super-enhancers via LLPS. They may be involved in the epigenetic regulation of chromatin activation. (C) SARS-CoV-2 N protein can undergo
LLPS in the presence of viral RNA, and LLPS may be implicated in the assembly of progeny virions. (D) For HIV-1, nucleocapsid (NC)-mediated
LLPS induces translational silencing and drives viral assembly. (E) IBs are proved to be membraneless organelles. For VSV, viral IBs were formed
in the presence of N, P, and L proteins, and viral RNA synthesis occurs in IBs. (F) For RSV, viral IBs were formed in the presence of N and P
proteins, which play an important role in viral RNA synthesis.
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can inhibit protein synthesis, limit energy consumption, repair

stress-induced damage, and promote cell survival (78). However,

SARS-CoV-2 can phosphorylate eIF2+ by activating the kinases

PKR and PERK, which induce SG formation (79). However, SG

formation does not inhibit viral proliferation, indicating that

SARS-CoV-2 can counteract host cell responses (80). It has been

shown that the stress granule assembly factors 1 and 2 (G3BP1/

2) can interact with N proteins (81). Perdikari et al. further

found that N proteins can partition into liquid phases formed by

hnRNPA2, FUS, and TDP-43, demonstrating that N proteins

can interact with many particle-associated heterogeneous

nuclear ribonucleoproteins (hnRNPs) (38). Therefore, it is

speculated that N proteins, once recruited to SG, may

selectively sequester the key components in SG to convert SG

into a site for promoting viral replication.

Phase separation regulates virus assembly
Here, we take HIV-1 as an example to demonstrate the role of

phase separation in regulatingvirus assembly.HIV-1has a complex

viral life cycle as a retrovirus, including fusion, decapsulation,

reverse transcription, and integration into the host cell to form a

provirus, transcription of a large amount of positive-stranded RNA

before exiting the nucleus. Thesepositive-strandedRNAscan act as

mRNAs directing the synthesis of viral proteins and as vRNAs

assembled with the viral core proteins to form immature viral

particles before budding and becoming mature viral particles (82–

84). The balance between mRNA translation and RNA and core

protein packaging is regulated by nucleocapsids-mediated LLPS.

HIV-1 Gag polyprotein precursor (also known as Pr55Gag)

regulates viral assembly. The Gag is proteolytically sheared into

multiple monomeric protein matrices (MA), capsid (CA),

nucleocapsid (NC), p6 structural domain, and two spacer

peptides SP1 and SP2 (85, 86). NC plays an important role in

key cycle processes such as vRNA capsulization and Gag

multimerization (87). The typical structural features of NC are

two highly conserved CCHC-type zinc finger structures. NC also

has a low-complexity, intrinsically disordered prion-like domain

(43, 88). Anne Monette et al. showed that HIV-1 NC could form

droplets through LLPS. NC-mediated LLPS induces

translational silencing and drives viral assembly by affecting

the balance between viral RNP and NC-mediated SG, resulting

in the formation of infectious viral particles. To avoid viral RNP

overgrowth leading to the production of dysfunctional viral

particles, the formation of RNP is therefore also limited by

NC-mediated SG. It has been shown that overexpression of NC

protein leads to the induction of SG assembly (89).

Phase separation is involved in the formation
of IBs

IBs are proved to be membraneless organelles (90). They play

an important role in virus genomic replication and transcription.

Like other membraneless organelles, RSV IBs are formed in the

presence of N and P through LLPS. In the N-P complex, the C-
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terminus of P protein interacts with NNTD, and its N-terminus

interactswithNCTD. Furthermore, the oligomerizationdomainand

the C-terminal IDR of P are indispensable for forming IBs (91).

VSV can form cytoplasmic inclusions with classical fluidic

properties. When the inclusions are formed, RNA synthesis

machinery is redistributed to inclusions, where RNA synthesis

occurs (90). The cytoplasmic inclusions are membraneless

structures. The live-cell fluorescence microscopy found that they

are dynamic organelles capable of fission and fusion. In addition,

cytoplasmic inclusions can maintain roundness induced by

intrinsic surface tension. Moreover, the proteins in the inclusions

can reversibly exchange with the cytoplasmic pool (21). Although

belonging to the same Rhabdoviridae, VSV partially differs from

RABV that formed the classical liquid compartments, Negri bodies

(NBs), through LLPS (20, 91). In the case of RABV, the presence of

N andPproteins candrive the formationof a very smallNB, but for

VSV, viral IBs were formed in the presence of N, P, and L

proteins (21).

Impact of virus-driven phase separation on
host antiviral innate immunity

Since the phase-separated region can specifically enrich a

protein and its interacting proteins while excluding others, the

virus might use this strategy to evade the host’s innate

immune responses.

Recent studies have shown that LLPS plays an important

regulatory role in the cGAS- stimulator of interferon genes

(STING) immune pathway. cGAS is activated by cytoplasmic

viral DNA and synthesizes the unique second messenger cyclic

GMP- AMP (cGAMP) (92–94). cGAMP binds to the ER-localized

junction protein STING and drives the conformational change of

STING (95). STING can activate the TBK1-IRF3 pathway,

promoting the production of type I IFN (96). The cGAS-STING

pathway is regulated by LLPS in two ways.

On the one hand, cGAS can form a membrane-free cellular

compartment through phase separation. cGAS has two structural

domains: the C-terminal nucleotidyltransferase (NTase) domain

and the non-fixed, positively charged N-terminal. These domains

can induce LLPS by promoting the binding of cGAS to dsDNA

through multivalent interactions (97). High concentrations of

cGAS-DNA complexes can increase the activity of cGAS,

promoting the synthesis of cGAMP.

On the other hand, viruses can also induce the formation of

STING phase-separators through LLPS. Excess 2’3’-cGAMP was

discovered to enable STING to form biomolecular agglutination

in DNA virus-infected cells (98). It recruits excess intracellular

STING and TBK1, but not IRF3, thereby inhibiting the

phosphorylation of IRF3 and preventing overactivation of the

cGAS-STING pathway (Figure 2) (99).

In addition, antiviral sensors isolated in IBs can suppress the

activation of downstream pathways (50). Take the example of

IBs formed by RSV. Initially, MAVS can activate cytosolic kinase

IKK and TBK1 to activate transcription factors NF-kB and IRF3
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(100). Lifland et al. found that MAVS andMDA5 are localized in

IBs. Importantly, the proximity ligation assay showed that RSV

N proteins co-localize with MAVS and MDA5 in IBs (101).

Consequently, sequestering MAVS and MDA5 into IBs leads to

the strong inhibition of type I interferon production.

Furthermore, Fatoumatta et al. observed that p65 recruited

into IBs can block the NF-kB signaling pathway (53).
Conclusion

The role of phase separation in viral adsorption, replication,

assembly, and release is a hot topic. Biomolecular condensates

formed through LLPS can concentrate replication machinery,

facilitate viral gene transcription and expression, and regulate

innate immune responses by constraining the host sensors in

IBs. As a result, phase separation offers a new perspective on

viral replication, assembly, and egress within the host cell and a

promising treatment strategy for viral infections.

However, the underlying mechanisms of LLPS’s formation

and action during viral replication, capsid assembly, progeny

egress, and antiviral immune regulation remain unknown. All

macromolecules can form a network through multivalent

interaction, resulting in phase separation. The intracellular

environment, on the other hand, is harsh. How do viral

proteins recognize and interact before aggregating at a certain

concentration? How do viruses maintain the right balance of
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LLPS assembly and disassembly to meet the needs of viral

replication during the infection? The phase separation

phenomenon has only been observed in RNA viruses;

however, it is unknown whether phase separation occurs

during most other DNA viral infections and HSV-1 and EBV.

Moreover, the proteins’ multivalency is indispensable for

forming phase separation. Proteins containing intrinsically

disordered regions (IDRs) or SRC homology 3 (SH3) repeats can

interact, formingcondensates.Viral proteins, likeHSV-1UL11and

ICP4, have IDRs, which can drive the formation of condensates. In

addition to IDRs, other modules, like SH3 repeats, and multiple

proline-rich motifs (PRM) repeats, are also involved in the

multivalent interactions between proteins, leading to the

formation of multimers. The formation of multimers can drive

the formation of LLPS. Additionally, SH3 repeats and PRM repeats

can usually be found in eukaryotic protein. So, it can be presumed

that viral proteinsmay not have thesemodules and cannotmediate

the formation of LLPS through these modules.

Furthermore, the investigation of LLPS’s roles in antiviral

immune regulation, such as the cGAS-STING signaling

pathway, is still early. It is unclear whether LLPS is involved in

other immune response processes like the oligomerization of the

cytosolic viral RNA sensors RIG-I and MDA5 and the formation

of the inflammasome. More exciting findings on the roles of

LLPS in immune regulation are expected to emerge. Overall,

LLPS provides a solid theoretical foundation for understanding

viral infection. Further investigations into the underlying
FIGURE 2

The mechanism of STING phase separators interferes with innate immune signaling. In DNA virus-infected cells, the recognition of double-
stranded DNA (dsDNA) by STING on the ER membrane is followed by activating the second messenger 2′3′-cGAMP generated by the DNA
sensor cGAS. Due to low levels of 2′3′-cGAMP, STING is transferred to the Golgi apparatus, polymerized, and recruited to activate TBK1 and
IRF3, promoting the production of cytokines such as type I interferon (IFN). However, when the concentration of 2′3′-cGAMP reaches a
threshold, the STING phase separator forms, recruiting cGAMP and unphosphorylated TBK1 into liquid droplets, separating STING and TBK1
from its downstream signaling and preventing the overactivation of the innate immune response.
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mechanism of LLPS formation and its roles during viral

infections will aid in developing novel antiviral therapies.
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Glossary

LLPS liquid-liquid phase separation

MLO membraneless organelle

SG stress granule

RC replication compartment

IB inclusion of body

SARS-COV-2 severe acute respiratory syndrome coronavirus

2RABV rabies virus

vRNA viral RNA

IDRs intrinsically disordered regions

PLDs prion-like domains

LCDs low-complexity sequence domains

IDPs intrinsically disordered proteins

SH3 SRC homology 3

PRM proline-rich motif

gRNA genomic RNA

PrLD prion-like disordered protein domain

HIV-1 human immunodeficiency virus type 1

ZnF zinc finger

HSV-1 herpes simplex virus type

1EBV Epstein Barr virus

RdRp RNA-dependent RNA polymerase

ERGIC ER-Golgi intermediate

Compartment

MA matrix

CA capsid

NC nucleocapsid

STING stimulator of interferon gene

cGAMP cyclic GMP- AMP
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