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Abstract 

Infections caused by SARS-CoV-2 may cause a severe disease, termed COVID-19, with 

significant mortality. Host responses to this infection, mainly in terms of systemic 

inflammation, have emerged as key pathogenetic mechanisms, and their modulation 

has shown a mortality benefit. 

In a cohort of 56 critically-ill COVID-19 patients, peripheral blood transcriptomes were 

obtained at admission in an Intensive Care Unit (ICU) and clustered using an 

unsupervised algorithm. Differences in gene expression, circulating microRNAs (c-

miRNA) and clinical data between clusters were assessed, and circulating cell 

populations estimated from sequencing data. A transcriptomic signature was defined 

and applied to an external cohort to validate the findings.  

We identified two transcriptomic clusters characterized by expression of either 

interferon-related or immune checkpoint genes, respectively. Steroids have cluster-

specific effects, decreasing lymphocyte activation in the former but promoting B-cell 

activation in the latter. These profiles have different ICU outcome, in spite of no major 

clinical differences at ICU admission. A transcriptomic signature was used to identify 

these clusters in two external validation cohorts (with 50 and 60 patients), yielding 

similar results.  

These results reveal different underlying pathogenetic mechanisms and illustrate the 

potential of transcriptomics to identify patient endotypes in severe COVID-19, aimed to 

ultimately personalize their therapies. 

  



 

Infections caused by SARS-CoV-2 have a wide range of severity, from asymptomatic to 

life-threatening cases. The most severe forms of Coronavirus-induced disease (termed 

COVID-19) [1] lead to respiratory failure fulfilling the acute respiratory distress 

syndrome (ARDS) criteria [2]. These critically ill patients often require mechanical 

ventilation and supportive therapy in an intensive care unit (ICU) and show mortality 

rates that range from 12 to 91% depending on patient and hospital factors [3]. 

Local and systemic inflammation are key pathogenetic mechanisms in severe COVID-19 

[4]. Viral infection triggers a host response that involves not only anti-viral mechanisms, 

such as release of interferons, but may also activate a systemic, non-specific 

inflammatory response that has been related to multiple organ failure and death [5]. In 

addition to standard supportive care, the only treatments that have shown a survival 

benefit in critically-ill COVID-19 patients aim to modulate this inflammatory response 

[6]. However, it has been suggested that these treatments do not benefit patients with 

less severe forms of the disease or with only a mild activation of inflammation [7, 8].  

There is increasing evidence that ARDS patients show different clinical features or 

systemic responses to severe diseases (phenotypes and endotypes respectively) [9]. 

Although the underlying causes responsible for this heterogeneity are not fully 

understood, clinical data showing different outcomes in response to a given treatment 

suggest that pathogenetic mechanisms may be different [10]. Therefore, identification 

of patient pheno/endotypes may be relevant not only for risk stratification, but also to 

design specific, personalized therapies in the ICU. Interestingly, whereas clustering of 

severe COVID-19 patients using respiratory data at ICU admission did not identify 

different phenotypes [11], addition of circulating biomarkers allowed the translation of 

the previously identified ARDS phenotypes to COVID-19 showed two groups of patients 



 

with different responses to steroid therapy [12], highlighting the relevance of the 

systemic response in this setting. 

Transcriptomic profiling after sequencing of whole blood RNA may be useful to identify 

groups of critically-ill patients with different underlying pathogenetic mechanisms [13–

15]. In addition, microRNAs have been proposed to confer robustness to biological 

processes by reinforcing transcriptional programs, with important pathophysiological 

consequences [16]. Preliminary results suggest that circulating micro-RNA (c-miRNA) 

expression could also play a role in this setting [17]. We hypothesized that clustering of 

COVID-19 patients using transcriptomics at ICU admission could help to identify 

subgroups with different pathogenesis. To test this hypothesis, we prospectively 

sequenced peripheral blood RNA and serum c-miRNA at ICU admission in a cohort of 

COVID-19 patients, applied an unbiased clustering algorithm and compared gene 

expression, clinical data and outcomes in the identified subgroups. Finally, we validated 

our findings in an external cohort. 

 

Methods 

Study design 

This prospective observational study was reviewed and approved by the regional ethics 

committee (Comité de Ética de la Investigación Clínica del Principado de Asturias, ref 

2020.188). Informed consent was obtained from each patient’s next of kin. Fifty-six 

consecutive patients admitted to one of the participant ICUs at Hospital Universitario 

Central de Asturias (Oviedo, Spain) from April to December 2020 were included in the 

study. Inclusion criteria were ICU admission and PCR-confirmed COVID-19. Exclusion 

criteria were age<18, any condition that could explain the respiratory failure other than 



 

COVID-19, do-not-resuscitate orders or terminal status, refusal to participate or severe 

comorbidities that may alter the systemic response (immunosuppression, history of 

organ transplantation, disseminated neoplasms). All patients were managed following a 

standardized written clinical protocol. 

 

Sample acquisition and processing 

After inclusion, two samples of peripheral blood were drawn in the first 72 hours after 

ICU admission. One sample was collected in Tempus Blood RNA tubes (Thermo Fisher) 

to facilitate cell lysis, precipitate RNA and prevent its degradation. The other sample 

was immediately centrifuged to obtain serum and mixed with TRI reagent for serum 

RNA precipitation. These tubes were stored at -80°C until processing. Whole blood RNA 

was extracted by isopropanol precipitation and sequenced in an Ion S5 GeneStudio 

sequencer using AmpliSeq Transcriptome Human Gene Expression kits that amplify 

canonical human transcripts (18,574 coding genes and 2,228 non-coding genes with a 

complete annotation in RefSeq [https://www.ncbi.nlm.nih.gov/refseq/]). Details on RNA 

extraction and sequencing have been provided elsewhere [8]. FASTQ files containing 

RNA sequences were pseudoaligned using a reference transcriptome 

(http://refgenomes.databio.org) and salmon software [18] to obtain transcript counts. 

Total serum RNA was extracted using miRNEasy kit (Qiagen), following manufacturer’s 

instructions, and c-miRNA isolated and sequenced at BGI Genomics (Wuhan, China). c-

miRNA readouts were mapped using bowtie2 [19], with an index built using the hg38 

human reference genome. Quantification of sequenced miRNAs was performed using 

miRDeep2 [20] with reference human mature and hairpin miRNA sequences 

downloaded from miRBase (release 22, https://www.mirbase.org). 

http://refgenomes.databio.org/


 

 

Clustering 

Clustering of RNA samples was performed following a previously described protocol 

[21]. Briefly, log2-transformed gene expression data (expressed as transcripts per million 

reads) were filtered to keep the 5% of features with the largest variance. Clusters were 

built based on Euclidean distances following the Ward clustering algorithm [22] and 

represented after dimensionality reduction using a uniform manifold approximation and 

projection (UMAP) algorithm [23]. Cluster p-values, indicating how strong the cluster is 

supported by the data (this is, the p-value with the alternative hypothesis that the 

cluster does not exist), were calculated by multiscale bootstrap resampling using the 

pvclust package [24] for R. 

 

Analysis of differentially expressed genes and circulating microRNA 

Gene raw counts obtained after pseudoalignment were compared between clusters 

using DESeq2 [25]. Log2 fold change for each gene between clusters and the 

corresponding adjusted p-value (corrected using a false discovery rate of 0.05) were 

calculated. Genes with an absolute log2 fold change above 2 and an adjusted p-value 

lower than 0.01 were used for Gene Set Enrichment Analysis (GSEA) using the 

clusterProfiler R package [26].  

A correlation analysis was performed in genes annotated to a Gene Ontology category 

involved in interferon pathway. Correlation coefficients between each gene pair were 

transformed to z-scores and the p-values for each comparison calculated using the 

DGCA package for R [27]. Genes with opposite correlations in each cluster were 

selected and the networks defined by their significant correlations traced. 



 

Differentially expressed genes between clusters were also matched with the c-miRNAs 

expressed for each group using the MicroRNA Target Filter tool from Ingenuity Pathway 

Analysis (Qiagen Digital Insights), to identify predicted interactions. Intersected mRNA 

and miRNA datasets were filtered to explicitly pair opposed and reciprocal expression 

changes. Only experimentally observed predictions were considered. Key mRNA-miRNA 

relationships identified were overlayed onto the networks of interest to explore the 

predicted functionality in our datasets. Pathways related to humoral, and T and B 

cellular immune responses were selected as relevant. miRNAs with <3 targeted mRNAs 

were filtered out from the network. 

 

Changes in gene expression after steroid therapy 

To study the effects of steroids in each cluster, peripheral blood gene expression after 4 

days in the ICU was assessed in 27 patients (18 assigned to CTP1 and 9 to CTP2), 

comparing those receiving treatment with dexamethasone (6 mg/12 h) to those who 

were not treated with this steroid. RNA extraction, sequencing and analysis were 

performed as described. Pathways with a differential response to steroids were 

identified after GSEA as those with significant enrichment scores with opposite signs. 

 

Clinical data 

Demographics and comorbidities were collected at ICU admission (day 1). Data on gas 

exchange, respiratory support, hemodynamics, received treatments and results from 

routine laboratory analyses were prospectively collected at days 1 and 7 after ICU 

admission. Patients were followed up to ICU discharge. During this period, duration of 

ventilatory support and vital status were collected for outcome analysis. 



 

 

Circulating cell populations 

Proportions of transcriptionally active circulating cells in each sample were estimated 

using Immunostates [28], a previously published deconvolution algorithm. From the 

original reference matrix, cell populations not commonly identified in peripheral blood 

(Mast cells and macrophages) were removed. Using this modified reference matrix 

containing expression of 318 genes for 16 different blood cell types, the percentage of 

each one of these types was estimated from the bulk RNAseq.   

 

Validation 

To validate our results in an external cohort, we used two publicly available dataset of 

50 and 60 transcriptomes from severe and critically-ill COVID-19 patients [29, 30]. 

Sample acquisition was performed at enrolment. Clinical data and gene counts were 

downloaded from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/, 

accession number GSE157103)[29] or Zenodo 

(https://zenodo.org/record/6120249)[30]. First, we identified differentially expressed 

genes that best discriminate between clusters in our data, as those with an Area Under 

the Receiver Operating Characteristic curve (AUROC) above 0.95. A transcriptomic score 

was calculated as the geometric mean of these genes, and the AUROC for this score 

determined and a threshold between clusters was defined. Finally, raw gene expression 

data from validation cohorts were normalized using DESeq2, transcriptomic scores 

calculated, and each sample assigned to one cluster using the previously established 

threshold, scaled to the range of obtained values (to account for the variability in 



 

sequencing techniques). Clinical data, outcomes and estimated cell populations (by bulk 

RNA-seq deconvolution as previously described) were compared between clusters. 

 

Statistical analysis 

Given the observational nature of the study and the lack of previous results, no formal 

sample size calculations were done. Data are expressed as median and interquartile 

range. Missing data were not imputed. Differences between clusters were assessed 

using two-tailed Wilcoxon or chi-square tests (for quantitative and qualitative data 

respectively). For survival analysis, patients were followed up to ICU discharge, with ICU 

discharge alive and spontaneously breathing being the main outcome measurement. 

Differences in this outcome between clusters were assessed using a competing risk 

model as previously described [8], and hazard ratio for the main outcome, with the 

corresponding 95% confidence interval, was calculated. All the analyses were 

performed using R v4.1.1 [31] and packages ggplot2 [32], pROC [33] and survival [34], in 

addition to those previously cited. All the code and raw data can be found at 

https://github.com/Crit-Lab/COVID_clustering. 

 

Results 

Patient clustering 

Peripheral gene expression was sequenced in 56 consecutive critically-ill patients (20% 

female, age 68 [61 - 75] year) admitted to one of the participant ICUs. Amongst 16903 

genes counted, 1727 were used for hierarchical clustering (Figure 1A). The two main 

branches of the obtained clustering tree showed the highest p values for an alternative 

hypothesis that the clusters do not exist (Figure 1B and supplementary Figure 1). 



 

Therefore, the sample was divided in two mutually exclusive groups, termed COVID-19 

transcriptomic profiles (CTP) 1 and 2. Bidimensional representation of the study 

population using a UMAP algorithm confirmed the separation of the two clusters 

(Figure 1C). Supplementary figure 2 shows a heatmap with the expression of the genes 

used for clustering.   

 

Differences between transcriptomic profiles 

Then we assessed the overall differences in gene expression. Using an adjusted p-value 

cut-off point of 0.01, there were 9700 differentially expressed genes (Supplementary 

file 1), with 3640 having an absolute log2 fold change above 2 (Figure 2A). Interestingly, 

most of these genes were downregulated in CTP2. Then, GSEA was used to identify the 

molecular pathways involving these differentially expressed genes. One hundred and 

ten biological processes with significant differences between clusters were identified 

(Supplementary Figure 3). Among these, several categories related to the interferon-

mediated response and lymphocyte activation were identified (Figure 2B), and 

participating genes were plotted (Figure 2C-E). Patients included in CTP1 showed an 

enrichment of several interferon genes, linked to the activation of a number of immune 

populations related to innate and adaptative responses (Figure 2C), whereas CTP2 was 

enriched in genes involved in B-cell receptor signaling (Figure 2D) and regulatory T-cell 

differentiation (Figure 2E).  

In addition to these quantitative changes in expression of interferon-related genes, we 

explored the existence of qualitative differences between clusters. We calculated the 

linear correlation coefficients among the 145 genes included in the Gene Ontology 

categories involving interferon signaling in each cluster. There was a significant 



 

difference between the two correlation matrices (Figure 3, p<0.001 calculated using a 

Chi-square test), thus demonstrating differences in the orchestration/structure of IFN 

responses between groups. In addition, pairwise differences in correlation coefficients 

for each gene pair were assessed. Gene pairs with correlation coefficients with an 

adjusted p-value for their difference below 0.05 and opposite signs in each cluster were 

selected, and networks including these genes traced (Figure 3 and Supplementary 

Figure 4). These results suggest that both clusters have a qualitatively different 

activation of the interferon pathway, with some genes such as HSP90AB1 and JAK1 

acting as hubs with opposite correlations. Of note, CTP1 was hallmarked by strong, 

positive correlations among effector IFN proteins, whereas this was not the case for 

CTP2. 

 

Differences in circulating cell populations 

The previous results suggest that the identified clusters may have a different circulating 

lymphocyte profile. To further explore this finding, cell populations were estimated by 

deconvolution of RNAseq data. This analysis revealed a higher granulocyte proportion in 

patients assigned to CTP1, a lower proportion of lymphocytes and no differences in 

monocytes or NK cells (Figure 4A-D). Although no differences in absolute lymphocyte 

counts were found (645 [483 — 948] vs 730 [580 – 908] /mm3, p=0.71, Table 1), 

deconvolution and adjustment by total lymphocyte fraction revealed a higher 

proportion of CD4+ T cells (Figure 4E) and a lower proportion of CD8+ T cells (Figure 4F) 

and naïve B-cells (Figure 4G), with no differences in memory B-cells (Figure 4H) in this 

group. Detailed data on other cell populations can be found in the online supplement 

(supplementary figure 5). 



 

 

Potential regulatory miRNAs 

To identify c-miRNA potentially related to the observed changes in RNA expression and 

immune cell populations, we analyzed miRNA content using the MiRNA Target Filter 

tool included in Ingenuity Pathway Analysis. After filtering by experimentally confirmed 

miRNA-gene relationships, and only opposed changes in miRNA/gene expression levels, 

83 miRNAs targeting 608 genes were identified in our dataset of differentially expressed 

genes. Given the observed differences in lymphocyte populations, we focused on 

miRNAs involved in humoral and cellular immune regulation (29 miRNAs and 151 

genes). Paired miRNA-gene networks are depicted in Supplementary Figure 6 (104 

downregulated genes/18 predicted upregulated miRNAs) and Figure 5 (47 upregulated 

genes/11 predicted downregulated miRNAs), with an overlay including differentially 

expressed genes between CTP1 and CTP2. miRNAs predicted to regulate expression of 

these genes were identified and compared (Figure 5B-H). Among these, counts of miR-

145a-5p and miR-181-5p were significatively lower in CTP2 (Figure 5C and 5D 

respectively). 

 

Cluster-specific effects of steroids 

To assess cluster-specific effects of steroids, we compared gene expression after 4 days 

of ICU stay in patients with and without steroids in each cluster. Although steroids 

modified the transcriptomic profile in both clusters, the overlap in differentially 

expressed genes between clusters was minimal (Figures 6A-B). When pathways with 

divergent responses were assessed (Figure 6C), we found that steroids downregulated 

T- and B- cell activation and IL production and activated JAK-STAT signaling only in 



 

patients from the CTP1 cluster. In opposite, steroid therapy was related to B-cell 

activation in patients assigned to CTP2. 

 

Clinical differences and outcome 

Clinical differences between clusters at ICU admission were studied (Table 1). There 

were no significant differences in demographic and clinical variables other than a higher 

neutrophil count in cluster CTP1, with no differences in lymphocyte counts. Patients 

assigned to CTP2 cluster showed more ventilator-free days during the first 28 days in 

ICU (Table 1). In the survival analysis, after adjusting for age, sex, and need for 

intubation during the ICU stay, assignation to CTP2 increased the probability of ICU 

discharge alive and spontaneously breathing (HR 2.00 [1.08 – 3.70], p=0.028, Figure 7). 

Other used biomarkers as neutrophil count, neutrophil-to-lymphocyte ratio or C-

reactive protein showed only a moderate performance for cluster assignment (AUROCs 

of 0.74 [0.61 – 0.88], 0.73 [0.57 – 0.89] and 0.53 [0.31 – 0.77], respectively). Replacing 

cluster assignment with neutrophil-to-lymphocyte ratio or C-reactive protein did not 

yield a statistically significant HR in the survival analyses (HR 0.958 [0.908 – 1.011], 

p=0.122 for neutrophil-to-lymphocyte ratio; HR 0.986 [0.957 – 1.016], p=0.365 for C-

reactive protein). 

 

Definition of a transcriptomic signature and external validation 

To apply our findings to an external cohort, we first developed a characteristic gene 

signature that allows assignation to one cluster using gene expression data. We focused 

on genes upregulated in CTP2, as they constitute a relatively small group, given the 

massive gene downregulation in this group. Among these 117 upregulated genes, 15 



 

(BCL2, CARD11, CD247, CD7, CD81, CLSTN1, E2F6, MCM5, PARP1, PNPO, RASGRP1, 

RCC2, RPTOR, RUNX3 and ZAP70) had an AUROC to identify CTP2 higher than 0.95. 

Expression of these genes was synthesized into a transcriptomic score. As expected, the 

score was higher in CTP2 (Supplementary figure 7A), with an AUROC of 0.99 (95% CI 

0.97 – 1) (Supplementary figure 7B). In a Cox-regression analysis including this 

transcriptomic score, age, sex and need for mechanical ventilation, the score was 

correlated to ICU discharge (HR 1.202 [1.041 – 1.387] per 100 points increase in 

transcriptomic score, p=0.012, supplemental figure 8). Based on these results, a cut-off 

point of 250 in this score, aimed to include all CTP2 cases, was chosen.  

Then, this transcriptomic score was calculated in two external cohorts. Regarding the 

first cohort (n=50), 13 patients were classified as CTP1 and 37 as CTP2. Comparisons 

between these clusters are shown in Table 2. In spite of no significant differences in 

age, sex, APACHE-II or SOFA scores, patients assigned to CTP2 showed more ventilator-

free days at day 28 of ICU stay, and the percentage of patients with zero ventilator-free 

days at day 28 was lower in CTP2. In the second validation cohort (n=60), 22 patients 

were classified as CTP1 and 38 as CTP2, after rescaling the cut-off point to account for 

differences in sequencing technology and depth. Resembling the previous results, there 

were no differences in age and sex, but mortality by day 28 was higher in patients 

assigned to CTP1 (Table 2). Deconvolution of peripheral blood transcriptomes in both 

validation cohorts recapitulated some of the differences observed in the discovery 

cohort, including higher neutrophil counts and lower proportions of CD8+ T-cells in 

CTP1 (Supplementary Figures 9 and 10). 

 

Discussion 



 

Our results show that unsupervised transcriptomic clustering of critically ill COVID-19 

patients at ICU admission, results in two groups with different immune profiles, 

response to steroids and outcome. Application of a cluster-specific score to two 

independent cohorts confirmed this result. These findings suggest there are specific 

COVID-19 endotypes with different underlying immunopathogenesis and outcomes. 

Clustering strategies have been proposed to identify different subgroups of critically ill 

patients with respiratory failure that may help to personalize treatments. In ARDS, a 

hyperinflammatory/reactive phenotype [9, 35], characterized by markers of acute 

inflammation and tissue hypoxia, has been linked to higher mortality rates and could 

specifically benefit from fluid restriction, higher PEEP levels or protective ventilation 

[36], in contraposition to the uninflamed phenotype. Of note, causes of ARDS were 

different between phenotypes, with a higher incidence of sepsis in the 

hyperinflamed/reactive group. Clustering of COVID-19 patients using respiratory data 

failed to identify phenotypes at ICU admission [11]. Addition of clinically available 

biomarkers allowed a direct translation of the inflammatory/reactive framework in two 

cohorts [12, 37]. Focusing on a single disease (COVID-19) rather than a syndrome 

(ARDS) could result in a reduced phenotypic variability, thus increasing the informative 

value of the systemic response evaluated by circulating biomarkers. Clinically available 

markers as neutrophil-to-lymphocyte ratio or C-reactive protein are usually elevated in 

severe forms of COVID-19 [38], but their role to stratify patients is yet to be determined 

and, in our study, failed to predict outcome or cluster assignment. 

In this setting, transcriptomic clustering may offer several advantages by including a 

large number of features for classification, reduced intervention times and absence of 

imputed or not available data, although the superiority of this approach remains to be 



 

demonstrated. Increasing evidence points at c-miRNA as biomarkers with pathogenetic 

implications given their role as modulators of gene expression. Point-of-care devices 

under development would allow the quantification of our 15-gene signature or 

validated cluster-specific c-miRNA at the bedside, to rapidly identify these patient 

endotypes and predict outcomes [39]. 

Bulk peripheral blood RNAseq has been used to study COVID-19 pathogenesis, by 

comparing cases with different severity or against healthy controls [40–42]. Our 

approach included only severe cases, revealing two different clusters that include 

quantitative and qualitative differences in the regulation of the immune response to 

SARS-CoV-2 infection and different responses to steroids. Of note, these biological 

disparities occur despite no differences in clinical variables, suggesting that clusters 

reflect endotypes with specific pathogenetic mechanisms and may outperform clinical 

diagnostic instruments. 

CTP1 is characterized by an interferon-driven response and CD4+ T lymphocyte 

activation, that have been linked to a worse outcome [43, 44]. miR-145a-5p and miR-

181-5p, which play key roles promoting granulopoiesis [45] and CD4+ T-cell maturation 

[16, 46] respectively, were upregulated in this cluster. Steroids downregulated genes 

involved in lymphocyte activation, but upregulated the JAK/STAT pathway in CTP1, 

which can promote further overexpression of miR-181 family members [47, 48]. 

JAK/STAT pathway can be activated by IL-6 and has been related to mortality in COVID-

19 patients [49, 50]. 

CTP2 cluster, with better outcome, is characterized by B-cell and Treg activation and 

upregulation of immune checkpoints such as BCL2 and immunoglobulin and TNF 

superfamilies. Of note, BCL2 and TNF superfamilies are targeted by miR-181, which is 



 

decreased in this cluster and has been described to induce immunoparalysis and block 

immune checkpoints [51]. Dysregulation of other immune checkpoints has been also 

linked to mortality in COVID-19 patients [52]. In this group, steroids further promoted B-

cell activation. Collectively, these results raise the hypothesis that steroids may help to 

further regulate the inflammatory response in CTP2, but activate JAK/STAT- dependent 

immune response in CTP1, which in turn could partly explain our differences in ICU 

outcome and the proposed synergic effects of steroids and IL-6 / JAK blockade in 

COVID-19 [53]. 

Our results have several limitations. First, the sample size is reduced, so we cannot 

exclude the existence of additional clusters with other underlying pathogenetic 

mechanisms, or that different clustering parameters or strategies may yield different 

results. However, unbiased p-values associated to the identified clusters were high, and 

the results confirmed in two independent validation cohorts. It must be noted that time 

of sampling differs among cohorts (first 72 hours after ICU admission in our study and in 

the COMBAT cohort [30], between days 1 and 6 in the study by Overmyer et al. [29]). 

We do not have data to define specific time windows. However, the consistency of the 

results among studies reinforces the external validity of our clustering strategy. Third, 

cell populations were estimated by deconvolution of the bulk transcriptome and should 

be confirmed using single cell RNA seq or flow cytometry. Finally, although our data 

show different effects of steroids in each cluster, it is unclear if therapeutic 

immunomodulation may impact outcomes in a cluster-specific manner.  

In summary, our results show that transcriptomic clustering using peripheral blood RNA 

at ICU admission allows the identification of two groups of critically-ill COVID-19 with 

different immune profile and outcome. These findings could be useful for risk 



 

stratification of these patients and help to identify specific profiles that could benefit 

from personalized treatments aimed to modulate the inflammatory response or its 

consequences. 
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Figure legends 

Figure 1. Patient clustering. A: Clustering strategy based on peripheral blood RNAseq, 

using the 5% genes with the highest variance among samples. B: Hierarchical clustering 

tree, showing the p-values (corresponding to the alternative hypothesis that the cluster 

does not exist) of the two main clusters. C: Uniform manifold approximation and 

projection (UMAP) showing a bidimensional representation of all the samples and 

clusters. TPM: Transcripts per million reads.  

Figure 2. Differentially expressed genes between COVID-19 transcriptomic clusters (CTP). 

A: Volcano plot showing fold-change for each gene and their significance level. Genes 

with an adjusted p-value lower than 0.01 and an absolute log2 fold change above 2 are 

colored in orange. Differentially expressed genes included in interferon-dependent 

pathway are labelled. B: Enrichment of Gene Ontology categories related to Interferon 

signaling in COVID-19 Transcriptomic Profile 2 (CTP2, n=14 compared to CTP1, n=42). C-

E: Networks combining pathways and genes with differential expression between 

clusters; involving Interferon-dependent lymphoid activation (C) upregulated in CTP1, 

and B-cell receptor signaling (D) and regulatory T-cell differentiation (E), upregulated in 

CTP2. 

Figure 3. Correlation between genes included in Interferon-dependent pathways. 

Correlograms (bottom) and gene networks (top) showing correlations with opposite 

sign between genes in each COVID-19 transcriptomic cluster (CTP, n=42 and 14 for CTP1 

and 2 respectively). Only Pearson correlation coefficients with a P-value lower than 0.05 

are shown.  

Figure 4. Estimated circulating cell populations. A-D: Proportions of blood cells were 

estimated from RNA-seq using a deconvolution algorithm. E-H: Lymphocyte 



 

subpopulations expressed as percentage of the absolute number of lymphocytes. Points 

represent individual patient data. In boxplots, bold line represents the median, lower 

and upper hinges correspond to the first and third quartiles (the 25th and 75th 

percentiles) and upper and lower whiskers extend from the hinge to the largest or 

smallest value no further than 1.5 times the interquartile range. P-values were 

calculated using a two-tailed Wilcoxon test. 

Figure 5. Regulation of gene expression by micro-RNAs. A: Micro-RNAs potentially 

regulating genes with increased differential expression were identified and a network 

built. B-H: Counts of hub micro-RNAs (defined as those regulating 3 or more 

differentially expressed genes) in serum. Points represent individual patient data. In 

boxplots, bold line represents the median, lower and upper hinges correspond to the 

first and third quartiles (the 25th and 75th percentiles) and upper and lower whiskers 

extend from the hinge to the largest or smallest value no further than 1.5 times the 

interquartile range. P-values were calculated using a two-tailed Wilcoxon test. 

Figure 6. Cluster-specific effects of steroids. Differences in peripheral blood gene 

expression after 4 days in the ICU between patients treated or not with 

dexamethasone, stratified by cluster. A-B: Euler diagrams showing the number of genes 

up- (A) and down-regulated in patients receiving steroids. C: Pathways with divergent 

activation/suppression response to steroids between clusters. 

Figure 7. Intensive Care Unit (ICU) stay. Cumulative incidence of the main outcome (ICU 

discharge alive and spontaneously breathing), modelled using a competing risk model 

(with death as a competitive risk) and adjusted by age, sex and need for mechanical 

ventilation during the ICU stay. The hazard ratio (HR) for COVID-19 transcriptomic 

profile 2 (CTP-2) with its 95% confidence interval is shown.  



 

Table 1. Clinical differences between COVID-19 transcriptomic profiles (CTP). BMI: Body 

mass index. COPD: Chronic Obstructive Pulmonary Disease. APACHE-II: Acute Physiology 

and Chronic Health disease Classification System II. PBW: Predicted body weight 

(according to height). PEEP: Positive end-expiratory pressure. IL-6: Interleukin-6. Data 

are expressed as median (interquartile range) or count (percentage). P-values were 

calculated using a Wilcoxon test (quantitative data) or Chi-square test (proportions). 

 CTP1 (n=42) CTP2 (n=14) p_value 

Sex 
 Male 
 Female 

 
36 (86%) 
6 (14%) 

 
9 (64%) 
5 (36%) 

0.174 

Age (years) 69 (63 - 75) 63.5 (59 - 69) 0.147 

BMI (Kg/m
2
) 29 (25 - 33) 29 (27 - 31) 0.781 

Race 
 Caucasian 
 Black 
 Latino 

 
38 (90%) 
2 (5%) 
2 (5%) 

 
14 (100%) 
0 
0 

0.582 

Chronic kidney disease 4 (10%) 0 0.549 

COPD 5 (12%) 1 (7%) 1 

Liver cirrhosis 1 (2%) 0 1 

Arterial hypertension 26 (62%) 6 (43%) 0.35 

Diabetes 9 (21%) 3 (21%) 1 

Dyslipemia 18 (43%) 6 (43%) 1 

Day 1 

APACHE-II score 18 (14 - 21) 16 (13 - 17) 0.120 

FiO2 0.5 (0.4 - 0.6) 0.45 (0.3 - 0.5) 0.438 

PaO2/FiO2 197 (157 - 245) 188 (151 - 278) 0.863 

PaCO2 (mmHg) 43 (39 - 47) 41 (39 - 42) 0.091 

Respiratory rate (/min) 18 (16 - 21) 18 (17 - 22) 0.859 

pH 7.37 (7.32 - 7.41) 7.42 (7.36 - 7.43) 0.099 

Lactate (mEq/L) 1.3 (1.08 - 1.8) 1.1 (0.9 - 1.2) 0.040 

Tidal volume (ml) 479 (455 - 504) 500 (475 - 514) 0.499 

Tidal volume / PBW (ml/Kg) 7.5 (6.9 - 8.3) 8 (7.5 - 8.7) 0.239 

Plateau pressure (cmH2O) 27 (24 - 29.75) 25 (22 - 29) 0.776 

PEEP (cmH2O) 14 (12 - 15) 12 (10 - 12) 0.088 

Driving pressure (cmH2O) 14 (11 - 15) 15 (12 - 15) 0.568 

Compliance (ml/cmH2O) 36 (31 - 43) 31 (29 - 44) 0.697 

Creatinin (mg/dl) 0.92 (0.68 - 1.23) 0.71 (0.59 - 0.97) 0.130 

Creatine kinase 96 (60 – 279) 87 (62 – 177) 0.446 

Lactate dehydrogenase 440 (396 – 521) 459 (390 – 493) 0.773 

Aspartate aminotransferase 47 (37 – 73) 45 (31 – 55) 0.458 

Alanine aminotransferase 35 (21 – 55) 29 (20 – 58) 0.893 

Procalcitonin (ng/ml) 0.23 (0.14 – 0.6) 0.14 (0.13 – 0.27) 0.250 

C Reactive Protein 19 (9 – 24) 16 (2 – 25) 0.699 

IL-6 (pg/ml) 113 (54 - 276) 164 (36 – 250) 0.784 

Ferritin (ng/ml) 1329 (968 - 1606) 1673 (856 - 2182) 0.576 

D-dimer (ng/ml) 1495 (842 - 3304) 1084 (750 - 2126) 0.501 

Leukocytes (/l) 9010 (6750 - 11825) 5440 (4418 - 6453) 0.002 



 

Neutrophils (/l) 7170 (4990 – 10190) 4180 (3340 – 6200) 0.007 

Monocytes (/l) 330 (180 – 470) 260 (160 – 480) 0.656 

Lymphocytes (/l) 645 (482.5 - 948) 730 (580 - 908) 0.705 

Neutrophil-to-Lymphocyte 
ratio 

10.5 (7.8 – 17.3) 7.1 (3.5 – 10.7) 0.010 

Days from hospital to ICU 
admission 

2 (0 – 3) 2 (1 – 4) 0.5 

Treatments during ICU stay 

Mechanical ventilation 38 (90%) 11 (79%) 0.484 

Prone ventilation 23 (61%) 8 (73%) 0.981 

Neuromuscular blockade 23 (61%) 6 (55%) 0.643 

Extracorporeal membrane 
oxygenation 

1 (3%) 0 1 

Vasoactive drugs 
 None 
 One 
 Two or more 

 
17 (40%) 
25 (60%) 
0 

 
6 (43%) 
7 (50%) 
1 (7%) 

0.204 

Steroid therapy 19 (45%) 5 (36%) 0.755 

ICU evolution 

IL-6 at day 7 54 (11 - 171) 42 (16 - 130) 0.713 

Ferritin at day 7 1100 (698 - 1504) 1544 (805 - 1908) 0.745 

D-dimer at day 7 2068 (1249 - 4586) 1541 (988 - 3370) 0.422 

Ventilator-free days at day 28 12 (0 - 19) 19 (9 – 23) 0.050 

 

 

  



 

Table 2. Clinical data and outcomes in the validation cohort. APACHE-II: Acute 

Physiology and Chronic Health disease Classification System II. SOFA: Sequential Organ 

Failure Assessment. VFD: Ventilator-free days. P-values were calculated using a 

Wilcoxon test (quantitative data) or Chi-square test (proportions). 

 CTP1 CTP2 p_value 

Validation cohort 1    

Sample size 13 37  

Transcriptomic score 216 (197 - 228) 365 (311 - 470)  

Age (years) 63 (55 - 73) 64 (55 - 72) 0.842 

Sex (male/female) 8 / 5 25 / 12 0.741 

APACHE-II score 23 (20 - 34) 21 (14 - 25) 0.097 

SOFA score 7 (6 - 13) 8 (6 - 10) 0.35 

VFDs at day 28 0 (0 - 20) 18 (2 - 28) 0.016 

Zero VFDs at day 28 8 (62%) 8 (22%) 0.014 

Validation cohort 2    

Sample size 22 38  

Transcriptomic score 1430 (1215 – 1506) 2194 (1782 – 2503)  

Age ≥ 50 y 18 ( 31 1 

Sex (male/female) 13 / 9 21 / 17 0.986 

Death at day 28  7 3 0.042 
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Supplementary figure 1. Hierarchical clustering tree showing the p values for each cluster, calculated using the pvclust package for R. AU (red): 
Approximately unbiased p-values. BP (blue): Bootstrap probability.  
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Supplementary figure 2. Heatmap showing differences in expression between COVID transcriptomic 
profiles (CTP) in the 1727 genes used for clustering. 
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Supplementary figure 3. Biological processes with significant differences in gene enrichment between 
COVID transcriptomic profiles (CTP). 
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Supplementary figure 3 (cont). Biological processes with significant differences in gene enrichment 
between COVID transcriptomic profiles (CTP). 
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Supplementary figure 4. Correlations between genes in each COVID transcriptomic profile (CTP).  
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Supplementary figure 5. Differences in estimated cell populations between clusters. CTP: COVID transcriptomic profile. Points represent individual patient 
data. In boxplots, bold line represents the median, lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles) and 
upper and lower whiskers extend from the hinge to the largest or smallest value no further than 1.5 times the interquartile range. P-values were calculated 
using a two-tailed Wilcoxon test. 

 
 



 8 

Supplementary figure 6. A: MicroRNA/gene network showing predicted upregulated miRNAs related to downregulated genes in patients with COVID 
transcriptomic profile (CTP) 2. B-M: Normalized counts of each miRNA. Points represent individual patient data. In boxplots, bold line represents the median, 
lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles) and upper and lower whiskers extend from the hinge to 
the largest or smallest value no further than 1.5 times the interquartile range. All p values (Wilcoxon test) were higher than 0.05.  
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Supplementary figure 7. A: Transcriptomic scores calculated in the training sets. B: ROC curve 
corresponding to the diagnostic accuracy of the transcriptomic score to identify COVID transcriptomic 
profiles.  
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Supplementary figure 8. Cumulative incidence curves of ICU discharge alive and spontaneously breathing, modelled using the developed Cox model, for 

increasing transcriptomic scores (using percentiles 0, 25, 50, 75 and 100 of the sample), keeping constant all the other factors included in the model (age, 

sex, need for intubation).  
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Supplementary figure 9. Estimated cell populations according to COVID transcriptomic profiles (CTP) in the first validation cohort. Points represent individual 

patient data. In boxplots, bold line represents the median, lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles) 

and upper and lower whiskers extend from the hinge to the largest or smallest value no further than 1.5 times the interquartile range. P-values were 

calculated using a two-tailed Wilcoxon test. 
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Supplementary figure 10. Estimated cell populations according to COVID transcriptomic profiles (CTP) in the second validation cohort. Points represent 

individual patient data. In boxplots, bold line represents the median, lower and upper hinges correspond to the first and third quartiles (the 25th and 75th 

percentiles) and upper and lower whiskers extend from the hinge to the largest or smallest value no further than 1.5 times the interquartile range. P-values 

were calculated using a two-tailed Wilcoxon test. 

 




