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Abstract
The Arabidopsis (Arabidopsis thaliana) BTB-TAZ DOMAIN PROTEIN 2 (BT2) contains an N-terminal BTB domain, a central
TAZ zinc-finger protein–protein interaction domain, and a C-terminal calmodulin-binding domain. We previously demon-
strated that BT2 regulates telomerase activity and mediates multiple responses to nutrients, hormones, and abiotic stresses
in Arabidopsis. Here, we describe the essential role of BT2 in activation of genes by multimerized Cauliflower mosaic virus
35S (35S) enhancers. Loss of BT2 function in several well-characterized 35S enhancer activation-tagged lines resulted in sup-
pression of the activation phenotypes. Suppression of the phenotypes was associated with decreased transcript abundance
of the tagged genes. Nuclear run-on assays, mRNA decay studies, and bisulfite sequencing revealed that BT2 is required to
maintain the transcriptionally active state of the multimerized 35S enhancers, and lack of BT2 leads to hypermethylation
of the 35S enhancers. The TAZ domain and the Ca + + /calmodulin-binding domain of BT2 are critical for its function and
35S enhancer activity. We further demonstrate that BT2 requires CULLIN3 and two bromodomain-containing Global
Transcription factor group E proteins (GTE9 and GTE11), to regulate 35S enhancer activity. We propose that the BT2-
CULLIN3 ubiquitin ligase, through interactions with GTE9 and GTE11, regulates 35S enhancer activity in Arabidopsis.

Introduction
Activating endogenous genes using DNA enhancers, i.e. acti-
vation tagging, has led to the discovery of numerous genes
and their functions (Marsch-Martı́nez and Pereira, 2010).
Activation tagging has advantages over traditional loss-of-
function screens. For instance, it can be used to study func-
tions of essential genes, redundant genes, and for positive
selection or gain-of-function screens for resistance to

chemical, physical, or biological stresses. This approach is
popular in plant biology, both in model and nonmodel
plant species such as Arabidopsis (Arabidopsis thaliana;
Weigel et al., 2000), rice (Oryza sativa; Jeong et al., 2002), to-
bacco (Nicotiana tabacum; Ahad et al., 2003), tomato
(Solanum lycopersicum; Mathews et al., 2003), barley
(Hordeum vulgare; Ayliffe et al., 2007), petunia (Petunia �
atkinsiana; Zubko et al., 2002), poplar (Populus trichocarpa;
Busov et al., 2011), resurrection plant (Selaginella
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lepidophylla; Furini et al., 1997), Catharanthus roseus (van
der Fits and Memelink, 2000), and Lotus japonicus (Imaizumi
et al., 2005). Multimerized Cauliflower mosaic virus (CaMV)
35S enhancers are often the choice for activation tagging be-
cause of their versatility (Hayashi et al., 1992; Weigel et al.,
2000), and several variants of the 35S enhancer-based activa-
tion tagging systems exist (Pogorelko et al., 2008; Qu et al.,
2008).

CaMV is a double-stranded DNA virus that belongs to the
Caulimovirus genus (supergroup: pararetrovirus; Ow et al.,
1987). Seminal work performed more than three decades
ago discovered that CaMV 35S is a very strong promoter
that confers constitutive expression to heterologous genes
without any requirement for CaMV proteins (Odell et al.,
1985). The promoter consists of two domains, A and B
(Benfey and Chua, 1990; Supplemental Figure S1). Domain A
contains nt –90 to + 8 relative to the transcription start site
(TSS; from here on referred to as the 35S core promoter).
The 35S core promoter contains a tandem repeat of
TGACG nucleotides separated by 7 bp known as activating
sequence 1 (as-1; Lam et al., 1990). Members of the TGA
family of plant bZIP transcription factors, also implicated in
pathogenesis-related gene expression, bind to as-1 elements
and contribute to the promoter activity in host cells
(Katagiri et al., 1989; Lam and Lam, 1995).

The less studied domain B consists of nt –343 to –90
from the TSS and constitutes the 35S enhancer. The en-
hancer includes a binding element, as-2, which contains two
GT motifs. A so-called ACTIVATION SEQUENCE FACTOR 2
(ASF2) from tobacco (N. tabacum) nuclear extracts interacts
with as-2 elements (Lam and Chua, 1989). Although the
specific identity of ASF2 is not yet known, it is presumed to
be a member of the GATA-binding family of transcription
factors (Teakle et al., 2002). A third upstream, CA-rich re-
gion and a putative binding factor, CA-RICH REGION
FACTOR (CAF), has been suggested (Benfey and Chua,
1990), but was not fully characterized.

35S enhancers can function independently of the core
promoter, and they confer different developmental stage-
and tissue-specific expression patterns to reporter genes be-
cause of intrinsic differences in cis- and trans-regulatory ele-
ments (Benfey et al., 1989). Moreover, 35S enhancers
activate endogenous expression of genes, causing constitu-
tive expression (Weigel et al., 2000). The presumed mecha-
nism of 35S enhancers is that when randomly inserted near
a gene, they direct recruitment of transcriptional machinery,
including general transcription factors, mediators, histone
acetyltransferases, chromatin remodelers, etc., which activate
transcription. This model is based on studies with model
enhancers such as those from Drosophila wing margins (Jack
et al., 1991), Simian virus 40 (Weiher et al., 1983), and
Human immunodeficiency virus-1 (Jakobovits et al., 1988).

Despite their extensive use in plant biology and functional
genetics, the identity of the cellular factors that regulate 35S

enhancer function have remained unknown. In this study, we
show that the Arabidopsis BTB-TAZ DOMAIN PROTEIN 2
(BT2) is essential for activation of gene expression by the mul-
timerized 35S enhancers. We propose that BT2 assembles
into a CULLIN3-based ubiquitin ligase that, together with the
bromodomain containing GLOBAL TRANSCRIPTION
FACTOR GROUP E PROTEINS (GTE9 and GTE11), is required
for 35S enhancer-mediated transcription.

Results

BT2 is essential for gene activation by multimerized
35S enhancers
Overexpression of BT2 in yucca1d, a 35S enhancer
activation-tagged line that possesses enhanced transcript
levels of YUCCA1 (involved in auxin biosynthesis; Zhao et al.,
2001), exacerbates its high-auxin phenotypes (Ren et al.,
2007; Figure 1B). In contrast, loss of BT2 (bt2-1, a SALK T-
DNA knockout line) in the yucca1d line suppresses its char-
acteristic high-auxin phenotypes such as epinastic cotyle-
dons and leaves, shorter primary roots, excessive root hairs,
and delayed flowering (Mandadi et al., 2009; Figure 1B).
Further analysis of BT2 revealed that it did not affect auxin
responses per se in the yucca1d line (Supplemental Figure
S2) and suggested that BT2 affected yucca1d phenotypes in
a different manner.

In addition to the yucca1d line, we studied BT2 in sev-
eral unrelated but well-characterized 35S enhancer
activation-tagged lines, including pap1d (Borevitz et al.,
2000) and jaw1d (Palatnik et al., 2003). Each activation
line has a characteristic phenotype associated with acti-
vation of a single gene by the 35S multimerized
enhancers inserted nearby. pap1d plants have purple
pigmentation in their organs due to accumulation of
anthocyanins caused by overexpression of a MYB family
transcription factor, PRODUCTION OF ANTHOCYANIN
PIGMENT 1 (PAP1; Borevitz et al., 2000; Figure 1C).
jaw1d plants have uneven leaf shape and curvature
caused by overexpression of a microRNA (miR-JAW) pre-
cursor (Figure 1D). The jaw mutants also have reduced
expression of genes in the TCP family of transcription
factors, which are targets of miR-JAW (Palatnik et al.,
2003). We crossed the yucca1d, pap1d, and jaw1d activa-
tion lines with bt2-1 plants to generate the yucca1d bt2-
1, pap1d bt2-1, and jaw1d bt2-1 lines. Loss of BT2 re-
versed the 35S enhancer activation phenotypes in the
offspring (Figure 1, A–D).

Reverse transcription quantitative PCR (RT-qPCR) analysis
revealed that BT2 is required to maintain expression of the
activated genes in the activation lines. Expression of
YUCCA1, PAP1, and the miR-JAW precursor in the yucca1d
bt2-1, pap1d bt2-1, and jaw1d bt2-1 lines was suppressed
when compared to the respective activation-tagged lines
(Figure 1, E–G). Furthermore, the level of TCP3 mRNA, the
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Figure 1 Loss of BT2 suppresses 35S enhancer activation-tagged phenotypes and gene expression. A, WT and bt2-1 phenotypes. B–D, Reversal of
activation-tagged phenotypes such as: (B) epinastic leaves of the yucca1d line in yucca1d bt2-1 plants, (C) purple leaves of the pap1d line in pap1d
bt2-1 plants, and (D) uneven/jagged leaf shape of the jaw1d line in jaw1d bt2-1 plants. E–H, Expression of (E) YUCCA1, (F) PAP1, (G) precursor of
miR-JAW and its target, and (H) TCP3 was determined in the indicated activation-tagged lines and yucca1d bt2-1, pap1d bt2-1, and jaw1d bt2-1
lines. Total RNA was extracted and subjected to RT-qPCR. EIF-4A2 was used to normalize the expression data. Expression values are plotted rela-
tive to the WT (set to �1). Error bars represent standard error (SE) among biological replicates (n = 3). The asterisks represent statistically signifi-
cant differences between the indicated samples and the respective activation-tagged lines as determined by two-sample t test (P4 0.01).
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miR-JAW target, was restored in jaw1d bt2-1 plants
(Figure 1H). To further investigate the cellular factors that
regulate 35S enhancer function, we chose the yucca1d acti-
vation line as our main model because of its conspicuous
phenotype, which is amenable to easy screening.

The introduction of another BT2 T-DNA loss-of-function
allele (bt2-2; Ren et al., 2007) in the yucca1d activation line
also suppressed its characteristic high-auxin phenotypes
(Supplemental Figure S3A). We obtained similar phenotypes
in progeny from reciprocal crosses between the yucca1d line
and the bt2-1 or bt2-2 mutants, which ruled out any paren-
tal effects (Supplemental Figure S3B). Our results with multi-
ple, unrelated activation-tagged lines eliminated the
possibility of any locus-specific suppression occurring in the
35S enhancer lines independent of BT2 function.

Next, to eliminate the possibility of any potential cross
hybridization-induced silencing phenomena that could be
occurring in the yucca1d bt2 line, we directly edited BT2 in
the yucca1d background (yucca1d Cas9-sgBT2) using the
clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing
approach (Figure 2A). Amplicon sequencing of a homozy-
gous yucca1d Cas9-sgBT2 edited line revealed a single-
nucleotide (C) frameshift insertion in the target site (BT2
fourth exon; Figure 2B). This insertion would potentially re-
sult in a truncated BT2 protein (282 aa) with only a portion
of the central TAZ domain and devoid of the C-terminus
calmodulin-binding domain (CaMBD; Du and Poovaiah,
2004). We observed significant suppression of YUCCA1 ex-
pression and general reversal of the activation-tagged phe-
notypes in the yucca1d Cas9-sgBT2 edited line, but not in
the yucca1d Cas9-alone control, when compared to yucca1d
plants (Figure 2, C and D).

Because vectors used to generate activation-tagged lines
(Weigel et al., 2000), T-DNA knockout lines from SALK
(Alonso et al., 2003), and/or the CRISPR–Cas9 vectors share
�300-bp identity at the 35S enhancers, we tested for
homology-dependent trans-silencing (Mette et al., 1999,
2000; Sijen et al., 2001). We crossed yucca1d plants to two
other SALK T-DNA loss-of-function lines, pht4;2-1 and tpt-2,
in unrelated genes PHOSPHATE TRANSPORTER4;2 (PHT4;2)
and TRIOSE PHOSPHATE TRANSLOCATOR (TPT; Irigoyen et
al., 2011). We found no suppression of yucca1d activation
phenotypes in the yucca1d pht4;2-1 or yucca1d tpt-2 lines
(Supplemental Figure S3, C and D). Finally, direct introduc-
tion of the full-length 35S promoter driving GFP expression
in the bt2-1 mutant had no effect on GFP expression
(Supplemental Figure S4). Taken together, these results ex-
clude potential silencing triggered by 35S promoter/en-
hancer homology in the background genotype.

Further indication that BT2 affects multimerized 35S en-
hancer activity comes from the observation that overexpres-
sion of BT2 using the full-length 35S promoter (BT2OE) in
the yucca1d line exacerbated its high-auxin phenotypes (Ren
et al., 2007). The yucca1d BT2OE line also exhibited poor

seed set, partial sterility (Supplemental Figure S3, E and F), a
phenotype reminiscent of constitutive activation of YUCCA1
(Zhao et al., 2001). Taken together, these results support
our hypothesis that BT2 is a bona fide regulator of 35S en-
hancer activity.

Loss of BT2 results in hypermethylation of the 35S
enhancers in the activation-tagged lines
BT2 might modulate transcript levels in the activation-
tagged lines by activating transcription via the 35S enhancer
or by stabilizing mRNA turnover post-transcriptionally.
Using a robust transcription inhibitor, cordycepin (Gutierrez
et al., 2002), we determined the rate of YUCCA1 mRNA
turnover. The YUCCA1 mRNA turnover half-life was �30
min in the wild-type (WT; Supplemental Figure S5A). The
turnover kinetics largely remained unaffected by BT2 loss of
function in the bt2-1 and yucca1d bt2-1 plants
(Supplemental Figure S5A). If anything, there appeared to
be a slight increase in YUCCA1 mRNA turnover in the yuc-
ca1d line, which perhaps could be due to the very high
(more than 10,000-fold) levels of YUCCA1 mRNA that is be-
ing transcribed relative to the WT (Figure 2C). These results
suggest that BT2 does not function in stabilizing YUCCA1
mRNA. Next, to determine whether BT2 affected transcrip-
tion, we performed nuclear run-on assays. The results
showed that YUCCA1 transcription was high in the yucca1d
line when compared to the WT, as expected, due to the ex-
pression activation by the 35S enhancers (Figure 3A). In con-
trast, YUCCA1 transcription in the yucca1d bt2-1 line was
suppressed to a similar level as that in the WT, suggesting
that BT2 is required to maintain high levels of YUCCA1 tran-
scription in the yucca1d line (Figure 3A). We also performed
nuclear run-on analysis in the pap1d and pap1d bt2-1 lines
and obtained similar results (Figure 3B). The two indepen-
dent experiments with yucca1d and pap1d support BT2’s in-
volvement in transcriptional activation in the multimerized
35S enhancer-tagged lines.

Because epigenetic modifications to DNA and/or chroma-
tin can affect transcription, we examined the DNA methyla-
tion status of the yucca1d locus (Figure 4A). We first used
the methylation-sensitive endonuclease McrBC-based PCR
analysis (Martin et al., 2009). McrBC specifically cleaves DNA
that contains methylated cytosines (mC) on either single or
double strands. The recognition region consists of two half-
sites of the form (G/A)mC separated by �50–3,000 nt
(Sutherland et al., 1992). McrBC does not cleave unmethy-
lated DNA. Subsequent PCR amplification of the digest will
enrich only unmethylated, un-cleaved DNA (Martin et al.,
2009). Using this approach, we found methylation at –600
to –2,000-nt upstream from the ATG site of YUCCA1 in the
WT (Figure 4B). Coincidentally, while analyzing the genomic
sequences, we found a transposable element, HELITRONY1D,
in this region. Since transposable elements, which are fre-
quently methylated and silenced, can affect expression of
nearby genes (Martin et al., 2009), it is possible that
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HELITRONY1D in the YUCCA1 promoter could contribute to
the low and restricted expression of endogenous YUCCA1 in
shoot apical meristems and flower primordia (Cheng et al.,
2006). However, loss of BT2 in the yucca1d bt2-1 line had
no effect on the methylation status of this region
(Figure 4B). We did not find any methylation in either the
promoter proximal regions (–400 nt) or the YUCCA1 gene
body in this line (Figure 4B). In contrast, we observed in-
creased methylation of the region spanning the multimer-
ized 35S enhancer insertion in the yucca1d bt2-1 line,
visualized by lack of enrichment of the corresponding PCR
amplicons (Figure 4B). The observed 35S enhancer amplifica-
tion differences in the McrBC-treated yucca1d and yucca1d
bt2-1 samples were further quantified by quantitative (q)
PCR (Figure 4E). Next, we performed bisulfite sequencing of

yucca1d and yucca1d bt2-1, and the results confirmed the
hypermethylation patterns observed in McrBC analysis
(Figure 4C; Supplemental Figure S6). Bisulfite sequencing
revealed hypermethylation of the 35S enhancers not only at
CpGs, but also at several non-CpG dinucleotides in the yuc-
ca1d bt2-1 line (Figure 4C), which is not uncommon for
plant DNA methylation patterns (Lister et al., 2008). Lastly,
the 35S enhancers were also hypermethylated in a second
line, pap1d bt2-1, based on McrBC-analysis, compared to the
pap1d line (Figure 4, D and F).

The Ca + + /CaMBD and TAZ domain of BT2 are
critical for its effect on 35S enhancer activity
BT2 has a CaMBD at its C-terminus, which interacts with re-
combinant calmodulin in a calcium-dependent manner
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in vitro and in yeast two-hybrid (Y2H) assays (Du and
Poovaiah, 2004). Uno et al. (2009) found that BT2 interacts
with two constitutively active forms of CALCIUM-
DEPENDENT PROTEIN KINASE (CPK), CPK3, and CPK11, in
Y2H assays. BT2 also has a central zinc-finger (TAZ) domain,
presumably involved in protein–protein interactions (Du
and Poovaiah, 2004). CRISPR–Cas9 editing of BT2 in the yuc-
ca1d line, resulting in a putative truncated BT2 protein with
a disrupted TAZ domain and no CaMBD, attenuated the
35S enhancer-mediated activation of YUCCA1 expression
(Figure 2). To further analyze the role of these BT2 subdo-
mains in regulating 35S enhancer-mediated transcription, we
generated the following: (1) a mutant form of BT2 (BT2mut)

with three point mutations (K333E, W334K, and K335E) in
the conserved CaMBD (Du and Poovaiah, 2004; Du et al.,
2009), presumably affecting its ability to bind to calmodulin
and (2) a truncated form of BT2 with only the TAZ domain
(TAZBT2). Overexpression of either TAZBT2 or BT2mut forms
in the yucca1d line suppressed the YUCCA1 activation phe-
notypes likely by competing with native BT2 in a dominant-
negative manner (Figure 5, A and B; Supplemental Figure
S7A), and resulted in lower YUCCA1 expression (Figure 5C),
suggesting the importance of the CaMBD and the TAZ
domains in BT2 function. Similar results were obtained with
multiple independent transformants (Figure 5, A and B;
Supplemental Figure S7B). Verification of endogenous BT2
levels in the transgenic lines excluded potential BT2 silencing
occurring due to overexpression of TAZBT2 or BT2mut in the
yucca1d line (Supplemental Figure S7D).

BT2-interacting proteins GTE9, GTE11, and
CULLIN3 are required for BT2 function
BT2 interacted with the GTE11 bromodomain protein in a
Y2H assay (Du and Poovaiah, 2004), and with CULLIN3 in
an in vitro pull-down assay (Figueroa et al., 2005) through
its N-terminal BTB domain. Recently, we demonstrated that
GTE11 and its homolog GTE9 genetically interact with BT2
in mediating nutrient and hormone responses (Misra et al.,
2018).

We next tested whether these protein partners of BT2
also affected 35S enhancer activity. Similar to loss of BT2,
loss of either GTE9 or GTE11 in the yucca1d line suppressed
its high-auxin phenotypes (Figure 6A). Moreover, expression
of YUCCA1 mRNA was suppressed in yucca1d gte9 and yuc-
ca1d gte11 plants, in a manner similar to that in the yucca1d
bt2-1 line (Figure 6C). Arabidopsis has two redundant iso-
forms for CULLIN3 (CUL3A and CUL3B), and cul3a cul3b
double mutants are not viable (Figueroa et al., 2005). CUL3A
is the predominantly expressed form, and a loss-of-function
mutant, cul3a-1, has dramatic reduction of CULLIN3 accu-
mulation (Figueroa et al., 2005). We crossed the cul3a-1 mu-
tant to yucca1d plants. Similar to the yucca1d bt2-1 line,
reduction of CULLIN3 expression in the yucca1d cul3a-1 line
suppressed its high-auxin phenotypes (Figure 6B) and re-
duced the expression of YUCCA1 (Figure 6C). Similar results
were obtained with the yucca1d cul3b line (Supplemental
Figure S8). Finally, we generated and analyzed triple combi-
nation lines of yucca1d BT2OE gte9, yucca1d BT2OE gte11,
and yucca1d BT2OE cul3a-1. The exacerbated phenotypes of
the yucca1d BT2OE line (Ren et al., 2007) were completely
reversed upon loss of CULLIN3 (Figure 6D), GTE9 or GTE11
(Figure 6E) in the respective triple lines. Taken together, our
results implicate a role for the BT2-interacting proteins
CULLIN3, GTE9, and GTE11 in controlling 35S enhancer
activity.

Discussion
A large proportion (�20%–40%) of proteins in eukaryotic
genomes are annotated as unknown or partially known
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Figure 3 BT2 regulates transcription in the 35S enhancer lines. A,
Active nuclei from the WT, bt2-1, yucca1d, and yucca1d bt2-1 lines or
(B) pap1d and pap1d bt2-1 lines were extracted and subjected to
in vitro run-on transcription reactions with 32P-UTP. Nascent labeled
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(set to �1).
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(Horan et al., 2008; Lamesch et al., 2011; Dhanyalakshmi et
al., 2016). Activation tagging of genes with multimerized 35S
enhancers was a breakthrough when it was introduced in
the year 2000 (Weigel et al., 2000; Jeong et al., 2002; Zubko
et al., 2002; Ahad et al., 2003; Mathews et al., 2003; Imaizumi
et al., 2005; Ayliffe et al., 2007; Pogorelko et al., 2008; Qu et

al., 2008; Busov et al., 2011; Marsch-Martı́nez and Pereira,
2010; Sato et al., 2017). Despite its widespread use, very little
is known about the mechanism of 35S enhancer action. Our
study demonstrates that BT2 and its associated proteins are
required for 35S enhancer function in Arabidopsis. Loss of
BT2 function suppressed the phenotypes of multiple
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Figure 4 Loss of BT2 results in hypermethylation of 35S enhancers in the activation-tagged lines. A, The YUCCA1 locus in the yucca1d line. 35S
enhancers are indicated as red arrows. Dotted lines represent regions of DNA subjected to McrBC-PCR analysis. B, McrBC-sensitive PCR analysis of
the YUCCA1 locus in WT, yucca1d, and yucca1d bt2-1 plants. (–) and ( + ) represent mock and McrBC digestion, respectively. With this assay,
unmethylated DNA regions are amplified by PCR and can be visualized as a single fragment, while methylated DNA regions are sensitive to diges-
tion by the McrBC endonuclease; hence, their amplification is greatly reduced or eliminated. Note: The lack of amplification of the 35S enhancer
(4� )-spanning region in WT samples is because they do not have any 35S enhancers, and as such are not linked to the methylation status. A ret-
rotransposon and ACTIN genomic regions were amplified to serve as positive and negative controls for methylated and unmethylated DNA loci,
respectively. C, 35S enhancer methylation status as determined by bisulfite sequencing in the yucca1d bt2-1 line. Methylated CpGs and non-CpGs
are highlighted in red and blue font, respectively. The asterisk represents mC also observed in the yucca1d line. D, McrBC-sensitive PCR analysis of
35S enhancers in the pap1d and pap1d bt2-1 lines. ImageJ was used to quantify the intensity of the PCR products in B and D, and the values
shown are relative to the WT (set to 1). E and F, Quantitative (q) PCR estimation of McrBC-treated 35S enhancers. In an independent experiment,
genomic DNA of WT, yucca1d, yucca1d bt2-1, pap1d, pap1d bt2-1 lines were subjected to McrBC digestion, followed by qPCR-based amplification
of 35S enhancers. Unmethylated ACTIN was used to normalize the qPCR data and 35S enhancer amplicon levels were plotted relative to the WT
(set to �1). The asterisks represent statistically significant differences between the indicated samples and the yucca1d line as determined by two-
sample t test (P4 0.01).
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independent 35S enhancer activation-tagged lines (Figures 1,
A–D and 2). The reversal of phenotypes was due to loss of
expression of the activation-tagged genes (Figures 1, E–H
and 2). Mimicking the characteristics of a true regulator
(Blackwood and Kadonaga, 1998), BT2 regulated 35S en-
hancer activity independent of the position or location of
the enhancer in the different activation lines. Using nuclear
run-on assays and mRNA turnover experiments, we showed
that BT2 likely mediates transcription of the activation-
tagged genes (Figure 3, A and B and Supplemental Figure
S5A).

Although 35S enhancers are derived from the full-length
35S promoter, loss of BT2 did not affect full-length 35S pro-
moter activity (Supplemental Figure S4). There are two

plausible explanations for this result. First, the CaMV 35S
promoter functions as a combinatorial module (Benfey and
Chua, 1990). The strong 35S core promoter can itself recruit
multiple transcription factors/activators (Lam and Chua,
1989; Supplemental Figure S1), and BT2 may not be one of
them. Second, due to their relatively weak activity alone, 35S
enhancers were multimerized for effective utilization in acti-
vation tagging (Benfey et al., 1989; Fang et al., 1989; Lam
and Chua, 1989; Hayashi et al., 1992). Consequently, multi-
merization may be a prerequisite for BT2 to regulate 35S
enhancers. Further research is needed to address this possi-
bility. Furthermore, the fact that loss of BT2 did not affect
full-length 35S promoter activity, and the failure of the unre-
lated 35S promoter-containing SALK T-DNA lines pht4;2-1
and tpt2-1, and the pROK2 vector, to suppress yucca1d phe-
notypes (Supplemental Figure S3C) argues against any 35S
promoter homology-dependent trans-silencing (Mette et al.,
1999; Sijen et al., 2001) triggered in the activation lines be-
cause of multiple 35S promoter sequences.

Enhancers activate transcription by recruiting or enhanc-
ing the interaction among transcription factors and regula-
tors (Blackwood and Kadonaga, 1998). However, high A/T
nucleotide content, a general feature of nuclear matrix-
interacting regions (MARs), can act as enhancers and acti-
vate transcription (Sandhu et al., 1998). A pea (Pisum sati-
vum) plastocyanin gene PetE enhancer/MAR, rich in A/T
nucleotides (80%), interacts with nuclear matrices, and
mediates acetylation of histones at the linked promoters
(Sandhu et al., 1998; Chua et al., 2003). Our analysis of 35S
enhancer sequences did not reveal any substantial A/T-rich
nucleotide regions (overall 53% AT), and hence may not
support their ability to function as MARs. Alternatively, mul-
tiple 35S enhancers could be substrates for DNA/chromatin
modifications and may recruit transcriptional machinery,
such as BT2, which could be required to maintain the tran-
scriptionally active state of the multimerized enhancers and
the tagged genes. Indeed, loss of BT2 in the activation-
tagged lines resulted in hypermethylation of the 35S
enhancers at multiple CpG and non-CpG dinucleotides
(Figure 4, B–D). The pattern of methylation is consistent
with the activity of an RNA-directed DNA methylation
pathway, which induces silencing of repetitive DNA ele-
ments and genes in plants (Matzke and Mosher, 2014).

Based on its protein structure, BT2 does not seem to di-
rectly function as an enhancer-binding transcription factor
or an activator. BT2 has three distinct subdomains: an N-ter-
minal BTB/POZ domain, a central TAZ domain, and a C-ter-
minal CaMBD (Du and Poovaiah, 2004). The TAZ domain of
BT2 is similar to the TAZ domain of transcriptional scaffold
and activator proteins such as CREB-binding protein (CBP)
and p300 (De Guzman et al., 2000). CBP and p300 are also
involved in transcriptional regulation of genes in a variety of
biological functions by interacting with numerous cellular
factors via TAZ domains (Goodman and Smolik, 2000).
CRISPR–Cas9-mediated editing of the BT2 coding sequence
to disrupt its TAZ domain in the yucca1d line (Figure 2), or
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Figure 5 The TAZ domain and the CaMBD are required for BT2 func-
tion and 35S enhancer activity. Suppression of activation-tagged phe-
notypes by (A) overexpression of TAZBT2, and (B) overexpression of
BT2mut in the yucca1d line. C, YUCCA1 expression in yucca1d, yucca1d
35S:TAZBT2, and yucca1d 35S:BT2mut lines. Total RNA was extracted
and subjected to RT-qPCR. EIF-4A2 was used to normalize the expres-
sion data. Expression values are plotted relative to the WT line (set to
�1). Error bars represent SE among biological replicates (n = 3). The
asterisks represent statistically significant differences between the indi-
cated samples and the yucca1d line as determined by two-sample t
test (P4 0.01).
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overexpression of truncated BT2 containing only the TAZ
domain (TAZBT2) in the yucca1d line suppressed the activa-
tion phenotypes and decreased the expression of YUCCA1
(Figure 5, A and C). The dominant-negative effect of TAZBT2

overexpression could be due to sequestering of cellular fac-
tors required for 35S enhancer activity by the TAZ domain.
It is possible that those factors include chromatin remodel-
ers, transcription factors, or activators. Similarly, CRISPR–
Cas9-mediated editing of the BT2 coding sequence, resulting
in deletion of the CaMBD, in the yucca1d line (Figure 2) or
overexpression of mutated BT2 (BT2mut) with altered cal-
modulin-binding sites in the conserved CaMBD region (Du
and Poovaiah, 2004; Du et al., 2009) in the yucca1d line sup-
pressed the yucca1d phenotypes and YUCCA1 expression
(Figure 5, B and C). As hypothesized by Du and Poovaiah
(2004), our results provide evidence for a critical role of the
CaMBD in BT2 function, possibly to perceive and transduce
Ca + + signals via calmodulin, which remains to be tested.
Given the pervasive role of Ca + + signaling in plant growth
and development, it is also tempting to speculate that the
control of 35S enhancers by Ca + + may also explain the

apparent differential developmental and spatial expression
patterns rendered to reporter genes by 35S enhancers
(Benfey et al., 1989; Benfey and Chua, 1990).

BTB domain-containing proteins in yeast (Saccharomyces
cerevisiae), Caenorhabditis elegans, Arabidopsis, and other
organisms generally associate with CULLIN3 and function as
substrate-specific adapters in a ubiquitin ligase to target spe-
cific proteins for degradation. Previous studies using Y2H
and pull-down assays found that BT2 interacted with the
bromodomain protein GTE11 (Du and Poovaiah, 2004;
Misra et al., 2018), as well as CULLIN3 (Figueroa et al., 2005),
via its N-terminal BTB domain. In contrast, multiple studies
failed to detect the interaction of BT2 and CULLIN3 in both
library and directed Y2H screens (Gingerich et al., 2005;
Monika et al., 2005; Weber et al., 2005). In the current study,
we demonstrate that GTE9, GTE11, and CULLIN3 are all es-
sential in vivo for BT2 function to regulate 35S enhancer ac-
tivity (Figure 6). It is rather surprising that multiple GTE
proteins and CULLIN3 interact with BT2 via the same BTB
domain. It is possible that BT2 could homodimerize or het-
erodimerize with other BT family proteins and either

WT           cul3a-1         yucca 1d    yucca1d cul3a-1

B

BT2OE           yucca1d         yucca1d yucca1d
BT2OE       BT2OE cul3a-1

D

yucca1d         yucca1d
BT2OE  gte9   BT2OE gte11

E

A

WT       bt2-1   yucca1d yucca1d gte9   yucca1d gte11 yucca1d
bt2-1             gte9               gte11

C
YUCCA1

R
e
la

ti
v
e

e
xp

re
s
s
io

n

* * ***

Figure 6 GTE9, GTE11, and CULLIN3 are required for BT2 function and 35S enhancer activation. Suppression of the yucca1d phenotypes (A, B)
and YUCCA1 expression (C) in yucca1d gte9, yucca1d gte11, and yucca1d cul3a-1 lines. Total RNA was extracted and subjected to RT-qPCR. EIF-
4A2 was used to normalize the expression data. Expression values are plotted relative to the WT line (set to �1). Error bars represent SE among bi-
ological replicates (n = 3). The asterisks represent statistically significant differences between the indicated samples and the yucca1d line as deter-
mined by two-sample t test (P4 0.01). Reversal of the exacerbated phenotypes of the yucca1d BT2OE line in (D) the yucca1d BT2OE cul3a-1 lines,
and (E) the yucca1d BT2OE gte9 and yucca1d BT2OE gte11 lines.
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simultaneously or sequentially interact with GTE proteins
and CULLIN3 to form distinct complexes (Gingerich et al.,
2005; Robert et al., 2009). Nevertheless, our results provide
strong genetic evidence for a BT2, CULLIN3, and GTE pro-
tein interaction in vivo.

We propose that BT2 assembles into a functional complex
comprising at least GTE9, GTE11, and CULLIN3, and is re-
quired for multimerized 35S enhancer activity (Figure 7).
BT2 and CULLIN3 could function as a ubiquitin ligase and
target certain proteins for destruction by poly-ubiquitination
or stabilize them by mono-ubiquitination. Alternatively, the
complex may serve as a scaffold and promote interactions
among transcriptional regulators such as the GTE proteins.
Regardless of the exact mechanism, the BT2 complex may
directly or indirectly suppress de novo and/or maintenance
methylation of 35S enhancers, and thus preserve their tran-
scriptionally competent state. Notably, since GTE11 activates
transcription via its C-terminus extraterminal domain in
yeast (Du and Poovaiah, 2004), its requirement in the BT2
complex points toward a potential role in activation of tran-
scription from the multimerized 35S enhancers in plants.

Given that BT2 also functions in diverse developmental, en-
vironmental, and stress-related responses (Ren et al., 2007;
Mandadi et al., 2009; Robert et al., 2009; Araus et al., 2016;
Sato et al., 2017), it will be interesting to identify the tran-
scriptional targets of the BT2 complex in the respective sig-
naling pathways.

Materials and methods

Plant growth conditions
Plants were grown in soil in a 14-h light/10-h dark photope-
riod at 21�C and a light intensity of �120–130 mmol m–2s
with 70% relative humidity, unless otherwise stated. For
growth in nutrient media, seeds were surface sterilized with
50% (v/v) bleach and 0.1% (v/v) Triton X-100 for 7 min,
cold treated at 4�C for 3–4 d and grown on Murashige and
Skoog (MS) medium (Sigma) with 0.8% (w/v) phytagar un-
der continuous low light (�30 mmol m–2s–1). All media con-
tained 1% w/v sucrose.

Transgenic lines, plasmids, and constructs
The BT2OE, bt2-1, yucca1d, gte9, and gte11 lines were previ-
ously described (Zhao et al., 2001; Ren et al., 2007). The
cul3a-1, pap1d, and jaw1d lines were obtained from the
Arabidopsis Biological Resource Center at the Ohio State
University. yucca1d seeds and the 35S:YUC1 plasmid were a
generous gift from Dr Yunde Zhao, University of California
at San Diego. The pht4;2-1 and tpt-2 lines were previously
described (Irigoyen et al., 2011). The 35Spro:GFP construct
was constructed in the binary vector pCBK05 with phosphi-
notricine (BASTA) herbicide resistance as the selectable
marker and was used to generate the 35S:GFP transgenic
lines. The sequence corresponding to the TAZ domain of
BT2 (Du and Poovaiah, 2004) was cloned under the control
of the 35S promoter in the binary vector pCBK05. The
BT2mut construct containing mutations in the BT2 coding
sequence (K333E, W334K, and K335E) corresponding to the
CaMBD (Du and Poovaiah, 2004; Du et al., 2009) was gener-
ated by QuickChange II mutagenesis system following the
manufacturer’s instructions (Stratagene). All clones were ver-
ified by Sanger DNA sequencing.

For CRISPR experiments, single-guide RNA (sgRNA) targets
were designed to disrupt the BT2 fourth exon using the
CRISPR-P design toolset (Lei et al., 2014). The sequences of
the sgRNA are shown in Figure 2A. The sgRNA was synthe-
sized as complementary oligos (Integrated DNA
Technologies, Inc., IA, USA) with the appropriate overhang
sequences and were self-annealed followed by phosphoryla-
tion. The sgRNA was then ligated into the pChimera vector
containing the Arabidopsis U6-26 promoter (Fauser et al.,
2014) at the BbsI site. The customized RNA chimera cassette
was subcloned into the pDe-Cas9 (Fauser et al., 2014) vector
to obtain a functional Cas9 binary vector (Figure 2A). The
Cas9 vector carrying sgBT2 or the empty Cas9 vector was in-
dependently transformed into Arabidopsis using the floral
dip approach. Seeds from primary transformants were se-
lected on hygromycin to recover the transformed T1 plants.

Figure 7 Hypothetical model for regulation of multimerized 35S
enhancers by the BT2 complex. BT2 assembles into a functional com-
plex that contains GTE9, GTE11, and CULLIN3. The other components
of the ubiquitin ligase complex include UBIQUITIN (U), a UBIQUITIN
conjugating enzyme (E2), a RING-box protein (RBX) that interact with
CULLIN3, and CALMODULIN (CAM) protein that interacts with BT2
at the C-terminus. As a putative ubiquitin ligase, BT2 may interact
with and mark transcriptional regulators (target) for destruction by
polyubiquitination or activation by monoubiquitination, leading to re-
duced methylation of multimerized 35S enhancers, and consequently
potentiating their transcriptional activity. 35S enhancers are indicated
by red arrowheads. Blue flags indicate DNA methylation marks.
Chromatin and gene sequences are colored gray. Figures are not scaled
to molecular weights of proteins and were created with
BioRender.com.
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We conducted insertion/deletion analysis of the T1 trans-
formants and the selected lines with mutations (as deter-
mined by amplicon sequencing of the target site) were
propagated further to the T2 generation to recover a homo-
zygous BT2-edited line with a single-nucleotide insertion. For
amplicon sequencing, a 500-bp target region encompassing
the BT2 fourth exon was amplified using PCR with gene-
specific primers and Phusion Polymerase (New England
Biolabs). The PCR amplicons were cleaned using DNA PCR
clean up kits (Zymo Research, Irvine, CA, USA) and se-
quenced using Sanger sequencing (Eton Bioscience, Inc., San
Diego, CA, USA), followed by sequence analysis by the
Inference of CRISPR Edits tool (Hsiau et al., 2018).

RNA isolation and gene expression analysis
For treatments with exogenous indole acetic acid (IAA;
Supplemental Figure S2), 7- to 8-d-old seedlings grown on
MS agar medium were transferred to MS liquid medium
containing either IAA (10 mM) or DMSO (0.1%) and were
treated for 3 h. Expression of auxin-responsive genes was de-
termined by RT-qPCR analysis. Total RNA was isolated using
TRI reagent following the manufacturer’s protocol
(Ambion). We used 1 mg of RNA to make cDNA using
SuperScript first-strand cDNA synthesis kit (Invitrogen).
Amplification was performed using Power SYBR Green
Master Mix (Applied Biosystems) and the ABI Prism 7500
sequence detection system (Applied Biosystems). EIF-4A2
(At1g54270) was used to normalize the expression and fold
changes were calculated following the DDCT method (Livak
and Schmittgen, 2001). Expression values are plotted relative
to the WT (set to 1). Statistically significant differences were
determined by two-sample Student’s t test (P4 0.01 as
indicated).

Nuclear run-on analysis
Run-on analysis was performed as described previously
(Folta and Kaufman, 2006), with minor modifications. First,
3–4 g of one-week-old Arabidopsis seedlings were harvested
and briefly rinsed in three tissue volumes of ice-cold anhy-
drous ethyl-ether (Sigma). Tissues were washed three times
with three volumes of extraction buffer (2.0 M hexylene gly-
col, 20 mM PIPES-KOH [pH 7.0], 10 mM MgCl2, and 5 mM
b-mercaptoethanol). Tissues were re-suspended in three vol-
umes of extraction buffer and homogenized. The homoge-
nate was filtered through three layers of Miracloth, and
Triton X-100 (1%) solution was added to the final volume
and mixed gently. The extract was overlayed on a gradient
of 80% and 30% Percoll solutions (Sigma) prepared in gradi-
ent buffer (0.5 M hexylene glycol, 5 mM PIPES-KOH [pH
7.0], 10 mM MgCl2, 5 mM b-mercaptoethanol, and 1%
Triton X-100) and centrifuged at 2,000g for 30 min at 4�C.
After centrifugation, the nuclei accumulated at the interface
were collected and re-suspended in 10 mL of gradient buffer.
The nuclei were overlayed again on a 30% percoll solution
in gradient buffer and centrifuged at 2,000g for 15 min at
4�C. The final nuclei pellet was re-suspended in nuclei stor-
age buffer (50 mM Tris–HCl [pH 7.8], 10 mM b-

mercaptoethanol, 20% glycerol, 5 mM MgCl2, and 0.44 M
sucrose) and stored at –80�C in aliquots of 50 mL.

Batches of nuclei obtained similarly at the same time
from different genotypes were used directly for the nuclear
run-on reactions. Twenty units of RNAsin (Promega) was
added to 50 mL of nuclei and incubated at 30�C for 10 min.
Then, 100 mM of ATP, GTP, and CTP (Epicenter), and 100
mCi of 32P-UTP (Amersham) were added to the nuclei along
with 10� transcription assay buffer (250 mM Tris–HCl [pH
7.8], 375 mM NH4Cl, 50 mM MgCl2, and 50% (v/v) glycerol)
to a final reaction volume of 100 mL. The reaction was incu-
bated at 30�C for 30 min. Then, 10 U of DNaseI was added
and incubated at 30�C for another 10 min. The reaction
was completely terminated by adding two reaction volumes
of termination buffer (7.5 M urea, 0.5% SDS, 20 mM EDTA
[pH 7.5], and 100 mM LiCl). Total radiolabeled RNA was iso-
lated using TRI reagent following the manufacturer’s proto-
col (Ambion). Target gene coding sequences (CDS) were
PCR amplified and 1 mg of each CDS was dot-blotted to
Hybond N + membrane (Amersham). Blots were then
probed with 32P-labeled in vitro-synthesized nascent tran-
scripts. Following hybridization and washing, the radioactive
signals were quantified using a phosphorimager. Expression
of 18S rRNA and CAB2 mRNA were used as internal hybridi-
zation and loading controls. GFP was used as a negative con-
trol for non-specific binding of RNA to DNA. Changes in
CAB2 and BT2 transcription during the light and dark phase
were used as positive controls for quantifying differences in
transcription using this protocol (Supplemental Figure S5, B
and C). Primers used are listed in Supplemental Table S1.
ImageJ (Schneider et al., 2012) was used to quantify the in-
tensity of the blot signals or RT-PCR products and the val-
ues shown are relative to the WT (set to 1), as described in
the figure legends.

mRNA turnover determination
YUCCA1 mRNA turnover was analyzed as described previ-
ously (Gutierrez et al., 2002), with minor modifications.
One-week-old Arabidopsis seedlings grown on MS agar
plates were transferred to MS liquid media for a pre-
incubation period of 30 min. For inhibiting transcription, 0.6
mM of cordecypin (Sigma) was added to the MS solution.
Tissue samples were harvested at 0, 30, 60, and 120 min af-
ter cordecypin addition and frozen in liquid nitrogen. Total
RNA was isolated using TRI reagent following the manufac-
turer’s protocol (Ambion). Expression of YUCCA1 was ana-
lyzed by RT-qPCR (Supplemental Figure S5A). EIF-4A2
expression was used to normalize the YUCCA1 expression.

McrBC-based methylation assay
McrBC-based methylation analysis was performed according
to the manufacturer’s instructions (New England BioLabs).
Approximately 1 mg of genomic DNA isolated from the re-
spective genotypes was digested using 50 U of McrBC along
with a mock digestion for 8 h. Subsequent amplification of
the genomic regions was performed via PCR using specific
primers (25–35 cycles). ACTIN7 and a retrotransposon locus
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(At4g03770) were amplified to serve as negative and positive
controls for methylation, respectively. Primers used for PCR
are listed in Supplemental Table S1. ImageJ (Schneider et al.,
2012) was used to quantify the intensity of the PCR prod-
ucts and the values shown are relative to the WT (set to 1),
as described in the figure legends. Additionally, quantitative
(q) PCR was performed to quantify the observed changes in
35S enhancer levels in the McrBC-treated WT, yucca1d, yuc-
ca1d bt2-1, pap1d, and pap1d bt2-1 lines (Figure 4, E and F).
ACTIN7 amplification was used to normalize the qPCR data
and 35S enhancer amplicon levels were plotted relative to
the WT (set to 1). Statistically significant differences were
determined by two-sample Student’s t test (P4 0.01 as indi-
cated). Primers used for qPCR are listed in Supplemental
Table S1.

Bisulfite sequencing
Two microgram of genomic DNA from the respective lines
was digested to completion using Bgl II restriction endonu-
clease (New England BioLabs). Bisulfite treatment and con-
version of digested genomic DNA was performed using
EpiTect bisulfite sequencing kit (Qiagen) according to the
manufacturer’s instructions. Bisulfite primers for sense ( + )
strand PCR amplification were designed using the
MethPrimer tool (Li and Dahiya, 2002). Subsequently, direct
sequencing of PCR products was performed. Analysis of bi-
sulfite sequences was performed using a quantification tool
for methylation analysis (Kumaki et al., 2008). Primers used
for the bisulfite sequencing analysis are listed in
Supplemental Table S1.

Accession numbers
AGI locus numbers for genes used in this article are: BT2,
At3g48360; GTE9, At5g14270; GTE11, At3g01770; CULLIN3A,
At1g26830; CULLIN3B, At1g69670; YUCCA1, At4g32540;
PAP1, At1g56650; JAW, At4g23713; PHT4;2, At2g38060; TPT,
At5g46110; EIF-4A2, At1g54270; ACTIN7, At5g09810; 18S,
At2g01010; CAB2, At1g29920.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Schematic of the CaMV 35S
promoter.

Supplemental Figure S2. BT2 does not affect auxin-
responsive gene expression.

Supplemental Figure S3. Analysis of activation-tagged
phenotypes in multiple genotypes.

Supplemental Figure S4. BT2 is not required for full-
length CaMV 35S promoter activity.

Supplemental Figure S5. BT2 does not stabilize YUCCA1
mRNA.

Supplemental Figure S6. Bisulfite sequencing analysis of
yucca1d and yucca1d bt2-1.

Supplemental Figure S7. Analysis of yucca1d 35S:BT2mut

(#1, #2, and #3) and yucca1d 35S:TAZBT2 (#1 and #2) trans-
genic lines.

Supplemental Figure S8. Suppression of yucca1d pheno-
types in yucca1d cul3b line.

Supplemental Table S1. List of primers used in the study.
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