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Abstract

Reprogramming of cellular metabolism is an emerging hallmark of neoplastic transformation. 

However, it is not known how metabolic gene expression in tumors differs from that in normal 

tissues, or whether different tumor types exhibit similar metabolic changes. Here we compare 

expression patterns of metabolic genes across 22 diverse types of human tumors. Overall, the 

metabolic gene expression program in tumors is similar to that in the corresponding normal 

tissues. Although expression changes of some metabolic pathways (e.g., up-regulation of 

nucleotide biosynthesis and glycolysis) are frequently observed across tumors, expression changes 
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of other pathways (e.g., oxidative phosphorylation and the tricarboxylic acid (TCA) cycle) are 

very heterogeneous. Our analysis also suggests that the expression changes of major metabolic 

processes across tumors can be rationalized in terms of several principal components. On the level 

of individual biochemical reactions, many hundreds of metabolic isoenzymes show significant and 

tumor-specific expression changes. These isoenzymes are potential targets for anticancer therapy.

All tumors share a common phenotype of uncontrolled cell proliferation. To support the 

synthesis of biomass components and to generate energy required for cellular growth, cancer 

cells have to reshape the regulatory and functional properties of their metabolic networks. 

Over 80 years ago, Otto Warburg1 identified a shift from oxidative to fermentative 

metabolism as a common physiological trait of tumor cells. Following this early insight into 

cancer metabolism, the main focus of cancer research generally shifted towards the analysis 

of signaling, gene-regulatory and genetic perturbations in various tumors2, 3. Recently, 

however, there has been a resurgence of interest in cancer metabolism4-6. An important 

factor contributing to this renaissance is the observation that many signaling pathways 

altered in cancer are key regulators of the human metabolic network5. In addition, the 

therapeutic potential of metabolic targets in cancer has also been rediscovered7, 8.

Taking advantage of a large compendium of gene expression profiles that has been 

accumulated over the last decade9, 10, in this study we comprehensively analyzed tumor-

induced changes in mRNA expression of human metabolic genes across 22 diverse cancer 

types. To minimize confounding metabolic adaptations that may arise from tissue culture 

conditions, we analyzed only microarray data obtained from biopsies of primary tumors. We 

compared gene expression in tumors and corresponding normal tissues at several conceptual 

levels of biochemical organization: at the global network level, at the level of individual 

biochemical pathways and at the level of single enzymatic reactions. The focus on the 

human metabolic network and the analysis of the large collection of tumor and normal 

samples allowed us to gain statistical power and establish significance for many expression 

patterns not reported previously.

RESULTS

Global changes in metabolic gene expression

To understand metabolic gene expression in different cancers, we assembled a 

comprehensive collection of more than 2500 microarray measurements spanning 22 

different tumor types (Online Methods and Supplementary Table 1). Although we analyzed 

only expression data obtained using the most comprehensive human expression array 

platform (HG U133 Plus 2.0; Supplementary Table 2), comparisons of data for the same 

tumor types obtained from independent studies and with different microarray platforms 

(Supplementary Table 3) showed a high correlation of expression changes (average 

Spearman’s rank correlation coefficient = 0.63), confirming the generality of the observed 

expression patterns (see Supplementary Fig. 1).

Using the assembled expression compendium, we first investigated the global shifts in 

metabolic gene expression between and within different cancers and their corresponding 
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normal tissues. For this analysis we used 1421 human genes assigned to metabolic pathways 

in the KEGG database11. Using two different measures of divergence between a pair of 

expression profiles12, the Euclidean distance and the correlation distance (Online Methods), 

we compared global expression patterns between tumors and normal tissues (Supplementary 

Table 2). In order to account for batch effect arising due to variations in laboratory 

conditions and measurements, the estimated batch contribution was subtracted from 

expression distances between expression profiles measured in different studies (Online 

Methods).

Relative differences between the distributions are consistent for the two metrics of 

expression divergence (Fig. 1 and Supplementary Fig. 2). The expression distance between 

tumors and corresponding normal tissues (Tumorn-Normaln) is significantly larger than the 

distance between different samples of the same normal tissues (Normaln-Normaln; Mann-

Whitney U test P-value = 10−8; Fig. 1) or between different samples of the same tumors 

(Tumorn-Tumorn; P-value = 4*10−7). The distance Tumorn-Normaln, however, is 

significantly smaller than the distance between different tumors (Tumorn-Tumorm; P-value 

= 2*10−7), which in turn is significantly smaller than the distance between different normal 

tissues (Normaln-Normalm; P-value < 2*10−16). The average expression distance between 

two different tumors is ~82% of the average distance between two different normal tissues, 

while the distance between a tumor and a corresponding normal tissue is ~63% of the 

distance between two different normal tissues. Consequently, although the metabolic 

expression patterns in different tumors become more similar than in corresponding normal 

tissues, the general metabolic expression program of the original tissue is mostly retained in 

tumors.

Expression changes of individual biochemical pathways

We next analyzed the expression changes associated with individual biochemical pathways 

defined in the KEGG database11 (see Supplementary Table 5 for pathway information and 

numbering). To identify the patterns of up- and down-regulation for each metabolic 

pathway, we determined the significance of its expression changes in the tumor samples 

relative to the corresponding normal samples using the Wilcoxon signed-rank test, adjusted 

for multiple hypothesis testing (Online Methods). Based on this analysis we calculated the 

average fraction of tumor samples in which each metabolic pathway was significantly 

(FDR-corrected P-value < 0.05) up-regulated  and down-regulated  across 22 cancer 

types (Fig. 2). To assess the statistical significance of the observed pathway behavior, we 

computed the null distributions of ( ) and ( ) values for metabolic pathways 

highlighted in Fig. 2 and demonstrated statistical significance of the observed patterns 

(Online Methods and Supplementary Fig. 3). The general expression patterns observed with 

the KEGG pathways were similar to results obtained using the BioCyc pathway 

definitions13 (Supplementary Fig. 4a; Supplementary Table 6), suggesting the robustness of 

the results with respect to alternative pathway definitions.

As expected, pathways responsible for production of biomass components that are essential 

for cell division, such as pyrimidine (18) and purine (16) biosynthesis, are significantly up-

regulated in many tumor samples (Fig. 2). Along with these two pathways, glycolysis (86) is 
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also significantly up-regulated in many samples, consistent with an enhanced glucose uptake 

frequently observed in tumors14. Among other pathways displaying frequent and significant 

up-regulation are pathways related to protein synthesis (aminoacyl-tRNA biosynthesis (81)) 

and glycoprotein biosynthesis (N-glycan biosynthesis (40)). In tumor samples where the 

expression of the aforementioned pathways is not significantly changed, the overall 

metabolic gene expression was mostly either down-regulated or not significantly changed. 

Specifically, this is the case for 72% of tumor samples with no significant change in the 

glycolysis pathway expression, 84% of tumor samples with no change in the purine 

biosynthesis pathway expression, and 88% of tumor samples with no change in the 

pyrimidine biosynthesis pathway expression. The down-regulation of the overall metabolic 

gene expression is common for tumors originating from human tissues with significant 

metabolic functions (see principal component analysis below).

In contrast to the biosynthesis pathways, pathways responsible for degradation of essential 

amino acids (valine, leucine and isoleucine degradation (22)), cofactors (retinol metabolism 

(75)), and fatty acids (9) are frequently and significantly down-regulated. Interestingly, two 

metabolic pathways that are also consistently down-regulated across various tumors are 

xenobiotic (82) and drug (83) metabolism. These processes are responsible for 

detoxification and disposal of compounds foreign to the normal biochemistry of the cell. 

Several previous studies have shown that polymorphisms in cytochrome P450 genes 

correlate with cancer susceptibility in different types of cancer, including those of the lung, 

bladder and breast15, 16. Although the specific reasons for the decreased expression of 

xenobiotic pathways in cancer need to be further investigated, it is possible that this down-

regulation contributes to the increased sensitivity of tumor cells to chemotherapies.

The heterogeneous behavior of the oxidative phosphorylation (15) and the TCA cycle (1) 

pathways is also notable (Fig. 2). Interestingly, oxidative phosphorylation shows the most 

heterogeneous behavior of all considered metabolic pathways. In brain, colon, kidney, 

pancreatic and thyroid cancers genes involved in oxidative phosphorylation are significantly 

down-regulated, whereas in breast, leukemia, lung, lymphoma and ovarian cancers these 

genes are significantly up-regulated (Supplementary Table 7). This pattern suggests that the 

role of oxidative phosphorylation is not universal for all tumors, but possibly reflects the 

adaptation of different cancers to tissue-specific physiological conditions such as hypoxia, 

nutrient availability, or complement of genetic lesions driving a specific tumor type.

We also explored the heterogeneity of metabolic pathway expression across different 

samples of the same (or similar) tumor types. Such an analysis (Online Methods and 

Supplementary Fig. 5) showed that oxidative phosphorylation gene expression is not only 

heterogeneous between different tumor types, but also frequently varies between samples of 

the same tumor. This observation suggests that the activity of oxidative phosphorylation is 

influenced not only by the variability of environments across different tumor types, but also 

by the specific physiological conditions and/or genetic composition of individual tumors in 

each cancer patient. In contrast, other metabolic pathways showed similar expression 

patterns across different samples of the same tumor.
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Correlation between metabolic pathways and signaling genes

We next investigated correlations between the expression of metabolic pathways and 

expression of signaling and regulatory genes frequently involved in tumorigenesis. Although 

several previous studies17 demonstrated that correlated expression patterns usually cannot be 

equated with regulation causality, i.e. one gene being regulated by the other, significant 

correlations could still reveal important functional relationships. To evaluate expression 

correlations we used the context likelihood of relatedness (CLR) method18, which is based 

on mutual information between expression patterns and controls for specificity of each 

discovered relationship (Online Methods), to identify significant interactions (Z-score > 2.0, 

Supplementary Table 8) between the 214 non-metabolic genes annotated in the KEGG 

signaling/cancer pathways (Supplementary Table 9) and the 87 metabolic pathways 

considered in our analysis; significant relationships identified by CLR suggest high mutual 

information between expression patterns of the corresponding genes and pathways.

The CLR analysis revealed several interesting relationships. The oxidative phosphorylation 

pathway has high mutual information with the hypoxia-inducible factor (HIF1A) and its 

negative regulator RBX1. Notably, the oxidative phosphorylation expression is anti-

correlated with the expression of HIF1A, and is correlated with the expression of RBX1. 

The observed anti-correlation between oxidative phosphorylation and HIF1A suggests that 

the heterogeneity in the expression of oxidative phosphorylation genes (Fig. 2) is likely to be 

influenced by tumor oxygen availability. In addition, the mutual information between 

HIF1A and glycolysis is not high, likely because HIF1A is involved in the up-regulation of 

glycolysis specifically under hypoxia, although many tumors show a strong expression of 

oxidative phosphorylation and may not be hypoxic. In contrast, there is significant mutual 

information between glycolysis and CDC42, a gene essential for cell cycle progression. 

Glycolysis is also strongly correlated with expression of RAS and genes from the MAPK 

pathway which have been previously implicated in promoting aerobic glycolysis19. Apart 

from glycolysis, CDC42 expression has also high mutual information with other pathways 

essential for fast cellular growth (such as purine, pyrimidine, and amino acids biosynthesis). 

On the other hand, CDC42 expression is not correlated with the expression of oxidative 

phosphorylation, suggesting that in fast growing tumor cells glucose fermentation 

dominates. This observation agrees with the results of the principal component analysis 

described below.

Principal component analysis of pathway expression changes

Individual metabolic pathways do not function in isolation. In contrast, they display highly 

correlated and interdependent patterns of gene expression. Therefore, we used principal 

component analysis (PCA)20 to better understand the joint behavior of metabolic pathways 

in cancer (Table 1). To reduce noise associated with heterogeneous expression of individual 

pathways, we considered the expression changes in the space of nine meta-pathways 

representing major metabolic processes (Online Methods). Combined, the first three 

principal components were able to capture approximately 85% of the meta-pathway 

expression variance.
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The first principal component accounts for ~62% of the variance in the meta-pathway 

expression changes. As all pathway weights for this component have the same sign and 

similar values, it represents an approximately uniform shift in the overall expression of 

metabolic genes. The projection of cancer samples onto the plane defined by the first and 

second principal components (Supplementary Fig. 6) shows that tumors of the digestive 

system (colon, kidney and liver) have high positive shift along this component, suggesting 

an overall decrease in metabolic gene expression. In contrast, other tumors (for example, 

cervix and lymphomas) show an overall increase in metabolic gene expression. It is likely 

that the observed shifts along the first principal component reflect, at least to some extent, 

the loss of specific metabolic functions required by the corresponding normal tissues, and 

the switch to a metabolic program primarily focused on growth and proliferation. This may 

account for the overall decrease in expression of metabolic genes observed in tumors of the 

gastrointestinal system that normally have high metabolic gene expression unique to these 

differentiated tissues.

Shifts along the second component, explaining ~16% of the expression variance, involve a 

change in the expression of glycolysis and nucleotide biosynthesis with a concomitant 

opposite change in the expression of three catabolic pathways. Because an increased rate of 

nucleotide biosynthesis is especially important during ribosome biogenesis and 

chromosomal duplication, our results suggest that dividing cells appear to increasingly rely 

on glycolysis. Oxidative phosphorylation is also associated with the second component, 

although with a significantly smaller weight than glycolysis (0.21 versus 0.65). 

Consequently, along this component glycolysis occurs concurrently with oxidative 

phosphorylation. Shifts along the third principal component, explaining ~7% of the 

variance, primarily involve a strong change in the expression of oxidative phosphorylation 

with a concomitant opposite change in nucleotide biosynthesis. Consequently, a strong up-

regulation of oxidative phosphorylation along this component is likely to be associated with 

slower growth rates.

Individual biochemical reactions and isoenzymes

Next, we focused on expression changes associated with individual biochemical reactions, 

which form the most basic level in hierarchical organization of the human metabolic 

network. We used 2,307 reactions, each associated with at least one known enzyme (Online 

Methods) in a model of human metabolism21. In the human metabolic network and in the 

networks of other organisms22, a given biochemical reaction is frequently catalyzed by 

several different isoenzymes. Isoenzymes may be encoded by separate genes or arise from 

splice variants of the same gene. In the network model we used21, ~30% of metabolic 

reactions contain at least two known isoenzymes, and this percentage is even higher (~40%) 

for the reactions of central carbon metabolism. Different kinetic and regulatory properties of 

isoenzymes are often fine-tuned to meet specific metabolic requirements of various human 

tissues22. Owing to metabolic demands and constraints different from those of native tissues, 

it is likely that tumors might preferentially express isoenzymes that facilitate survival and 

uncontrolled proliferation23, 24.

Hu et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2013 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The heterogeneity of isoenzyme expression across tumors is apparent from the analysis of 

central metabolism (Fig. 3). Although genes encoding glycolytic enzymes are frequently up-

regulated in tumors, some isoenzymes are down-regulated in specific cancers. Gene 

expression is significantly increased for key enzymes of the pentose phosphate pathway 

(PPP), including both the oxidative and non-oxidative branches. Lactate dehydrogenase 

(LDH) is also strongly up-regulated, consistent with the high level of lactate production 

observed in many tumors25. Frequent down-regulation of the PDH complex likely 

contributes to a decreased flux of pyruvate into the TCA cycle observed in many tumors. 

The enzymes essential for purine and pyrimidine synthesis, as well as the glutathione 

synthetase (GSS)26, are strongly up-regulated. Although glutaminase (GLS) - an enzyme 

important for the TCA cycle anaplerosis - is generally down-regulated, it has been 

demonstrated that this enzyme is strongly up-regulated post-transcriptionally by the MYC-

mediated suppression of miR-23a/b27. Notably, a recent study28 suggested that an 

alternative route for the glutamine-to-glutamate transformation, perhaps through nucleotide 

biosynthesis amidotransferases, may play an important role in the glutamine-dependent 

anaplerosis. This hypothesis is consistent with a strong up-regulation of the corresponding 

enzymes (PPAT and CAD) across tumors.

We investigated changes in relative isoenzyme expression using the Kullback-Leibler (KL) 

divergence (Online Methods); the KL divergence is an information-theoretic measure used 

to quantify the difference between two probability distributions. For each biochemical 

reaction the KL divergence was used to measure shifts in the distribution of isoenzyme 

expression between tumors and corresponding normal tissues. This analysis demonstrated 

that, on average, the relative expression patterns of isoenzymes are about two times more 

similar for different samples of identical normal tissues than for different samples of 

identical tumors (Fig. 4a). But more importantly, both of these distances are significantly 

smaller than the average distance between isoenzyme expression patterns in tumors and 

corresponding normal tissues (Mann-Whitney U test P-value < 2*10−16). This suggests that 

for many biochemical reactions neoplastic transformation leads to a significant shift in the 

relative expression of isoenzymes.

The human aldolase is a notable example of an enzyme with perturbed expression patterns 

in tumors (Fig. 4b). The enzyme has three main isoforms A, B and C. Although aldolase A 

(ALDOA) is preferentially expressed in muscle cells, it is also strongly expressed in most 

other human tissues. Aldolase B (ALDOB) is preferentially expressed in the liver and 

aldolase C (ALDOC) in the brain. The expression analysis shows that the expression of 

ALDOA, relative to the other aldolase isoenzymes, significantly increases in tumors. 

Notably, ALDOA is also highly expressed in developing embryos29, and therefore may be 

particularly suitable for metabolic requirements during fast cell division. Indeed, kcat value 

for ALDOA is significantly higher than that of the other isoenzymes30.

Another example of an enzyme with perturbed expression patterns is aconitase. Our analysis 

suggests that the citrate efflux from the TCA cycle is likely to be enhanced in cancers by 

frequent down-regulation of the mitochondrial isoform of aconitase (ACO2) (Fig. 3a,b). 

Cytosolic citrate is used to generate acetyl-CoA, an important precursor required for many 

biosynthetic reactions involving lipogenesis31. Inhibition of the mitochondrial aconitase in 
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normal human tissues32 and yeast33 was previously shown to significantly increase the TCA 

citrate efflux. The strong up-regulation of the ATP citrate lyase (ACL) across tumors (Fig. 

3) provides additional support for the idea that these changes promote fatty acid biosynthesis 

in tumors. A recent study showed that an important route for the synthesis of lipogenic 

acetyl-CoA under hypoxia34 is through reductive metabolism of α-ketoglutarate by cytosolic 

isocitrate dehydrogenase (IDH1) and cytosolic aconitases (ACO1/ACO3). This pathway is 

also supported by the observed expression patterns because in contrast to the mitochondrial 

aconitase, the cytoplasmic aconitases are frequently up-regulated in specific cancers (Fig. 

3a), and similar patterns are observed for IDH1 (see below).

To identify specific isoenzymes with frequently perturbed expression profiles, we 

calculated, for each isoenzyme in every biochemical reaction, the number of tumors in 

which the fractional expression of the isoenzyme among all isoenzymes catalyzing the same 

reaction is significantly up-regulated (Online Methods). After correcting for multiple 

hypothesis testing (Online Methods), 919 isoenzymes were relatively up-regulated in at least 

one tumor type, and 322 were up-regulated in more than 25% of the 22 tumor types 

considered in our analysis (Supplementary Table 12).

Expression of enzymes with recurrent tumor mutations

We next investigated expression changes for metabolic genes with known tumor-associated 

mutations. Recent sequencing studies have identified recurrent mutations in several genes 

associated with the TCA cycle35, 36. Heterozygous somatic mutations in two isoenzymes of 

isocitrate dehydrogenase (cytoplasmic IDH1 and mitochondrial IDH2) are frequently 

detected in gliomas and acute myeloid leukemia (AML). These gain-of-function mutations 

affect the IDH active site, and make it possible for the mutated enzymes to catalyze the 

conversion of α-ketoglutarate to 2-hydroxyglutarate (2HG), which has been proposed to 

promote cancer development37. Our analysis reveals that IDH1 and IDH2 isoenzymes are 

frequently up-regulated in cancers (Fig. 3b), but the expression of the other isocitrate 

dehydrogenase isoenzyme IDH3 (not commonly mutated in tumors) is not significantly 

perturbed. A detailed analysis of IDH expression across cancers (Supplementary Table 13) 

demonstrated that the up-regulation P-values of IDH1 and IDH2 for the three brain cancers 

and AML are among the five most significant of all considered tumor types. Recent 

sequencing efforts38 also demonstrated the presence of similar IDH active site mutations in 

peripheral T-cell lymphoma, another tumor in our study with significant up-regulation of 

IDH expression (Supplementary Table 13).

Germline and somatic loss-of-function mutations in fumarate hydratase (FH) and three 

subunits of succinate dehydrogenase (SDHB, SDHC, SDHD) are also observed in several 

tumors including renal cell carcinoma (RCC)36, 39. These deleterious mutations lead to the 

accumulation of the metabolites fumarate and succinate that regulate hypoxia-inducible 

factor (HIF) protein levels and chromatin state to influence tumor growth40, 41. We found 

that the SDH subunits (SDHB, SDHC, SDHD) and FH are strongly down-regulated 

specifically in RCC (Supplementary Tables 14 and 15). The only cancer in our analysis with 

a more significant down-regulation is colorectal cancer, in which decreased expression of 

SDH was reported previously42. Although no somatic mutation in SDH or FH has been 
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observed in colorectal cancer43, 44, the significant decrease in their expression, similar to 

deleterious mutations in other tumors, is likely to cause mitochondrial efflux of the tumor-

promoting TCA cycle intermediates and contribute to tumorigenesis.

Analysis of TCA cycle metabolites in colon cancer

To confirm our computational prediction about the TCA cycle intermediates in colon cancer, 

we measured and analyzed concentrations of specific metabolites from 10 colon cancer 

patients. The metabolite levels were obtained using GC/MS or LC/MS (Online Methods) 

and contained matched tumor and normal samples from each patient.

Consistent with significant down-regulation of oxidative phosphorylation pathway genes 

(Wilcoxon signed-rank test P-value = 10−9, Supplementary Table 7) and down-regulation of 

the PDH complex (P-value = 0.02) that controls the majority of glucose carbon flux into the 

TCA cycle, there is a significant decrease in the citrate concentration (Wilcoxon signed-rank 

test P-value = 0.01) in tumor samples and a concomitant increase in the lactate concentration 

(P-value = 0.001). Despite a large decrease in the citrate concentration (average decrease 

~65%, median ~90%), the average concentration of a downstream metabolite succinate is 

only 33% lower than normal and the average concentration of fumarate is more than 50% 

higher than in normal samples (P-value = 0.03). This pattern of concentration changes is 

consistent with the significant down-regulation of the FH and SDH enzymes observed in 

colon cancer expression profiles. Such a down-regulation should lead to a significant 

increase, relative to the available citrate, in the concentration of their substrates fumarate and 

succinate. Notably, it was previously demonstrated40 that even a small increase in fumarate 

concentration is enough to stabilize HIF1A by inhibition of the α-ketoglutarate-

dioxygenases regulating its degradation41. The average increase in fumarate concentration 

(~50%) was about half of the amount observed previously for bi-allelic deletions of the FH 

enzyme (~90%)40. For four patients in our samples, fumarate concentration was >50% 

higher than in matched normal samples and for three it was >100% higher. Consequently, 

the expression changes we observed should mimic the effects of cancer-associated 

heterozygous FH mutations in a substantial fraction of colon cancer patients.

DISCUSSION

Reprogramming of the metabolic network is now considered to be a hallmark of neoplastic 

transformation2. An overarching conclusion of our study is that cancer-induced changes in 

the expression of metabolic genes are very heterogeneous across different tumor types, i.e. 

there is no uniform metabolic transformation associated with all tumors. We observe 

heterogeneous behavior at all levels of biochemical organization, from global expression 

patterns to metabolic pathways to individual reactions and corresponding isoenzymes. The 

heterogeneous behavior of cancer metabolism is reminiscent of the high variability observed 

between tumors in terms of genetic and expression changes in signaling and regulatory 

pathways3.

Notably, despite the heterogeneity between cancers, the metabolic expression changes 

associated with individual tumors are not random. On the contrary, many of the observed 

changes are reproducible in independent samples of the same tumors. We can discern 
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several principles unifying the observed tumor-induced expression perturbations. First, 

tumors often retain a significant imprint of the metabolic expression patterns present in the 

corresponding native tissues. This may be a consequence of similar local environments or 

indicate a relative rigidity of the metabolic expression program established in the original 

tissue. Such behavior is conceptually similar to the minimization of metabolic adjustments 

(MOMA) principle observed in microbial metabolism following genetic perturbations45. 

Second, a large fraction of the variance in the expression of major biochemical processes 

can be rationalized in terms of several principal components, representing important 

expression modes for key metabolic processes. Although, in agreement with physiological 

studies14, 46, we do not observe universal up- or down-regulation for genes associated with 

oxidative phosphorylation, the collective expression changes along the second and third 

principal components suggest that fast-growing cells increasingly rely on glucose 

fermentation. Third, we find that many hundreds of isoenzymes show significant and tumor-

specific expression changes. A substantial fraction of these changes are likely to be 

functionally important and, at least in some cases, mimic (as in the case of SDH and FH) or 

possibly enhance (as in the case of IDH) the effects of recurrent tumor-promoting genetic 

mutations.

Beyond understanding of tumor-induced expression changes, we believe that our analysis 

has important implications for the development of anticancer therapeutics. Functionally 

important isoenzymes with cancer-specific expression changes can potentially serve as drug 

targets. The possibility of targeting specific isoenzymes, such as GLS18 and PKM27, has 

already been demonstrated, but our analysis suggests that many other potential targets may 

be pursued in a similar way. Due to the tumor-specific nature of the observed expression 

patterns, such targeting will require a focused analysis and understanding of essential 

metabolic transformations in each specific cancer type.

ONLINE METHODS

Microarray expression datasets

Published gene expression datasets were assembled from the GEO9 and ArrayExpress10 

databases (Supplementary Table 1). Unless specified otherwise, we analyzed only 

expression data obtained using the most comprehensive human expression array platform 

(HG U133 Plus 2.0; Supplementary Table 2). For calculations involving global network 

properties and comparisons of expression data between different studies (Fig. 1), samples 

from all datasets were processed together. For all other calculations, tumor and normal 

samples from the same study were processed together. The affyQCReport package from 

Bioconductor (www.bioconductor.org) was used to search for poor quality chips. For 

GeneChip arrays that passed Quality Control (QC) checks, we used the GCRMA 

algorithm47 from Bioconductor to perform quantile normalization and extract gene 

expression values on the log2 scale.

Calculation of differential expression (DE) for metabolic genes

Separately for each dataset, the Bioconductor method limma48, which is based on a 

modified t-statistic, was used to analyze differences between tumor samples and 
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corresponding normal samples. Using the method we calculated the differential expression 

for each metabolic gene on the log2 scale. The differential expression P-values were 

adjusted for multiple hypothesis testing using Benjamini and Hochberg’s method49, 

controlling False Discovery Rate (FDR) at 5%.

Calculation of the global divergence between a pair of expression profiles

Two different measures of divergence between a pair of expression profiles were used in our 

study: (1) The Euclidean distance, 

, where xi and yi are the 

expression of gene i over two expression profiles with p and q samples (x1, x2 ,…, xp ), (y1, 

y2 ,…, yq ), n = 1421 is the number of genes assigned to at least one metabolic pathway in 

the KEGG database, (2) The correlation-based distance dcor = 1–r(Average log 2 x), 

Average(log2 y)), where r is the Spearman’s rank correlation coefficient between average 

log2 expression values of corresponding genes in the two expression profiles.

When comparing datasets across different studies it is important to consider batch effect 

arising due to variations in laboratory conditions and measurements. To explore and address 

batch effect, we collected a set of microarray expression data for the same tissues/tumor 

types from multiple independent studies (Supplementary Table 4). All samples in 

Supplementary Table 4 were processed and normalized together. To estimate the influence 

of the batch effect, we calculated d1, the average expression distance between tumors 

(Tumorn) and corresponding normal tissues (Normaln) measured in different studies, and d2, 

the average expression distance between tumors (Tumorn) and corresponding normal tissues 

(Normaln) measured in the same studies. The difference ( d1 – d2 ) represents the average 

batch effect due to comparisons across different studies. To account for the batch effect the 

difference ( d1 – d2 ) was subtracted from all expression distances calculated between 

different studies.

Identification of metabolic pathways with significant expression changes

We used two different approaches to identify metabolic pathways with significant 

expression changes. The two approaches resulted in very similar results. In the first 

approach, which was used for all calculations presented in the paper, for each gene a, we 

calculated its expression change in tumor sample i relative to the corresponding normal 

samples, , where  is the expression in tumor sample i, 

and ya is the expression in the s corresponding normal samples (y1 ,y2 ,…, ys ). Wilcoxon 

signed-rank test of ΔE for all genes within a metabolic pathway was then used to determine 

the significance of up- or down- regulation of the pathway in that tumor sample. In the 

second approach, for each gene a, we calculated the z-score of its expression in tumor 

sample i relative to the distribution of its expression values in the s corresponding normal 

samples, , where  is the standard 

deviation. Wilcoxon signed-rank test of z was then used to determine the significance of up- 
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or down- regulation of each pathway in that tumor sample. The pathway expression 

heterogeneity based on the second approach is shown in Supplementary Fig. 4c.

Statistical significance of the observed metabolic pathway expression patterns

We used randomized expression data to assess the statistical significance of the reported 

pathway expression patterns (Fig. 2). To generate the null distributions for the ( ) and 

( ) values we used the real expression data and randomly permuted metabolic gene 

labels while preserving the pathway sizes. We then calculated the null distributions using the 

same procedure as the one applied to the real data. Supplementary Fig. 3 shows the null 

distributions for the 10 top-regulated pathways (pathways with highest ( ) values in Fig. 

2) based on 1000 random permutations of the expression data.

Pathway expression heterogeneity across tumor samples of the same tumor type

To investigate the pathway expression heterogeneity across tumor samples of the same 

tumor type, we introduced a pathway-specific heterogeneity metric , 

where n is the fraction of tumor samples of a certain tumor type in which the pathway is 

significantly up-regulated, and m is the fraction of samples in which the pathway is 

significantly down-regulated. According to this definition, for high H values the pathway 

shows consistent expression changes across different samples of the same tumor type, i.e. 

the pathway is mostly up-regulated or mostly down-regulated. On the other hand, for small 

H values the pathway expression is variable, i.e. in some tumor samples the pathway is 

significantly up-regulated, while in other samples of the same tumor type the pathway is 

significantly down-regulated. The distribution of H values across 22 tumor types or 16 

tumor types of different tissue-of-origin for 10 top-regulated pathways (pathways with 

highest (n+m) values), is shown in Supplementary Fig. 5. The 16 tumors types of different 

tissue-of-origin were obtained from 22 tumor types by considering samples of the three 

types of brain cancers, the two types of breast cancers and the four types of lymphomas 

together, respectively.

Calculation of significant relationships between metabolic pathway expression and 
expression of non-metabolic cancer/signaling genes

The context likelihood of relatedness (CLR) method18 is based on mutual information 

between expression profiles. CLR was used to identify significant relationships between 214 

non-metabolic cancer/signaling genes annotated in the KEGG database and the 87 KEGG 

metabolic pathways (Supplementary Table 5). The set of 214 non-metabolic cancer/

signaling genes was assembled using the following two criteria: (1) genes either from the 14 

KEGG cancer or 25 KEGG signaling pathways (see Supplementary Table 9), and (2) not 

within any of the 87 KEGG metabolic pathways. For each gene a in each tumor sample i, 

the expression change  was calculated. And the mutual information (MI) between each 

non-metabolic cancer/signaling gene i and each metabolic pathway j was calculated across 

all tumor samples in our study: , where nj is the number of 

genes within the a pathway j. All mutual information values were computed using 10 bins of 

ΔE ; the calculated values were not sensitive to the exact number of bins used. The CLR 
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interaction Z-score for each gene i and pathway j pair  was calculated 

using (I) the z-score (zi ) of MIij relative to the distribution of {MIi,1, MIi,2,…,MIi,87 }, and 

(II) the z-score ( zj ) of MIij relative to the distribution of {MI1,j,MI2,j,…,MI214,j }. In 

Supplementary Table 8 we show the identified significant relationships (with Z-score > 2.0) 

for each metabolic pathway.

Principal component analysis

The nine meta-pathways used for the principal component analysis were compiled by 

combining genes from corresponding metabolic pathways in the KEGG and BioCyc 

databases. To perform the principal component analysis (PCA), we calculated the p-by-q 

matrix D for tumor-to-normal expression changes of the meta-pathways, where p = 466 (the 

total number of tumor samples in our study) and q = 9 (the number of meta-pathways). We 

used two different approaches to calculate D. The two approaches resulted in very similar 

principal components. In the first approach, the (i, j)-element of the matrix Dij is the average 

gene-specific expression changes in tumor sample i across nj genes within meta-pathway j: 

. In the second approach, Dij is the average gene-specific z-scores: 

. Principal components were then obtained using the covariance method, 

i.e. we first centered the columns of D by subtracting the column means, and then calculated 

a covariance matrix based on D. The covariance matrix was then diagonalized and the 

eigenvectors and eigenvalues were calculated.

The results of the PCA analysis based on the first approach are shown in Table 1 and the 

results based on the second approach in Supplementary Table 10. We also explored the 

influence of genes shared between meta-pathways on the PCA results. The results obtained 

when all overlapping genes were excluded (Supplementary Table 11) were very similar to 

the results with all meta-pathway genes.

Human metabolic annotations used for isoenzyme expression analysis

The human metabolic network compiled by Duarte et al.21 was used for isoenzyme 

expression analysis. The network contains 1496 genes, 2712 compartment-specific 

metabolites, and 3743 internal and exchange reactions. In the analysis we used 2307 

network reactions that are associated with at least one known metabolic gene. Proteins that 

are responsible for catalysis of identical reactions and are not members of the same complex 

were considered as isoenzymes. In total, the network by Duarte et al. contains 667 metabolic 

reactions with at least two isoenzymes.

Calculation of distances between isoenzyme expression patterns

The Kullback-Leibler (KL) divergence was used to quantify the changes in the relative 

expression of isoenzymes for pairs of expression profiles. For each sample, the fractional 

expression of a particular isoenzyme i was first calculated  (n is the number of 

isoenzymes catalyzing the reaction and xi is the expression value of the isoenzyme i). The 

flexmix package in R was then used to estimate the Kullback-Leibler divergence between 
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the discrete distributions {m(f1),m(f2),…,m(fn)} and {g(f1),g(f2),…,g(fn)}, where m(f) and 

g(f) are the averages of the two expression profiles over p and q samples (x1 ,x2 ,…, xp ), 

(x1 ,x2 ,…, xq ).

Identification of isoenzymes preferentially expressed in specific tumors

For each considered isoenzyme we used the non-parametric Mann-Whitney U test to 

determine the significance of its fractional expression changes in the tumor samples relative 

to the normal samples. Specifically, for an isoenzyme i we calculated its fractional 

expression among all isoenzymes associated with the same reaction: , where n 

is the number of isoenzymes catalyzing the same reaction, and xi is the expression value of 

the isoenzyme i. We then used the Mann-Whitney U statistic to test the hypothesis that the 

distribution of fi values for tumor samples associated with a particular cancer type has 

significantly larger mean than the distribution of fi values for the corresponding normal 

samples. All the P-values were FDR-adjusted at 5% considering the total number of tested 

hypothesis, 22704 (1032 isoenzymes times 22 cancer types). The isoenzymes passing the 

significance threshold (P-value < 0.05) are reported in Supplementary Table 12. We 

confirmed the isoenzyme results using an independently collected expression data from the 

TCGA consortium50; for the confirmation we used four tumor types from TCGA 

(glioblastoma multiforme, breast invasive carcinoma, colon adenocarcinoma, ovarian serous 

cystadenocarcinoma). Using the same tumor type 70% of the isoenzymes in Supplementary 

Table 12 showed the same up-regulation behavior in TCGA as in the dataset analyzed in the 

paper.

Statistical significance and multiple hypothesis testing

For pathway and isoenzyme calculations involving multiple hypothesis testing, all the 

corresponding P-values were adjusted with the BH procedure49 (using the multtest package 

in R) to control the false discovery rate (FDR) at 0.05. The FDR-corrected P-values were 

used to analyze statistical significances, and unless specified otherwise, significance was 

reported for the adjusted P-value < 0.05.

Quantitative metabolite profiling of TCA cycle intermediates in colon cancer. Sample 
collection and metabolite extraction

Tumors and surrounding grossly normal-appearing tissues were obtained from 10 colon 

cancer patients after surgical treatment. The excised tissues were immediately stored at 

−80°C. Samples were extracted and prepared for analysis using Metabolon’s standard 

solvent extraction method. The extracted samples were split into equal parts for analysis on 

the GC/MS and LC/MS platforms.

GC/MS

The samples destined for GC/MS analysis were re-dried under vacuum desiccation for a 

minimum of 24 hours prior to being derivatized under dried nitrogen using bistrimethyl-

silyltriflouroacetamide (BSTFA). The GC column was 5% phenyl and the temperature ramp 

is from 40° to 300° C in a 16 minute period. Samples were analyzed on a Thermo-Finnigan 
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Trace DSQ fast-scanning single-quadrupole mass spectrometer using electron impact 

ionization.

LC/MS

The LC/MS portion of the platform was based on a Waters ACQUITY UPLC and a 

Thermo-Finnigan LTQ mass spectrometer, which consisted of an electrospray ionization 

(ESI) source and linear ion-trap (LIT) mass analyzer. The sample extract was split into two 

aliquots, dried, then reconstituted in acidic or basic LC-compatible solvents, each of which 

contained 11 or more injection standards at fixed concentrations. One aliquot was analyzed 

using acidic positive ion optimized conditions and the other using basic negative ion 

optimized conditions in two independent injections using separate dedicated columns. 

Extracts reconstituted in acidic conditions were gradient eluted using water and methanol 

both containing 0.1% Formic acid, while the basic extracts, which also used water/methanol, 

contained 6.5 mM Ammonium Bicarbonate. The MS analysis alternated between MS and 

data-dependent MS2 scans using dynamic exclusion.

Data extraction and compound identification

The data extraction of the raw mass spec data files yielded information that could be loaded 

into a relational database and manipulated without resorting to BLOB manipulation. Once in 

the database the information was examined and appropriate QC limits were imposed. Peaks 

were identified using Metabolon’s proprietary peak integration software, and component 

parts were stored in a separate and specifically designed complex data structure. TCA cycle 

intermediates were identified by comparison to library entries of purified standards. The 

combination of chromatographic properties and mass spectra gave an indication of a match 

to the specific compound or an isobaric entity. The collected metabolite data is presented in 

Supplementary Table 16.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Global differences in metabolic gene expression between tumors and normal tissues. Colors 

represent distributions of the Euclidean (RMSD) expression distance between different 

samples of identical normal tissues (Normaln-Normaln, magenta), different samples of 

identical tumors (Tumorn-Tumorn, cyan), tumors and corresponding normal tissues 

(Tumorn-Normaln, blue), different tumors (Tumorn-Tumorm, green), and different normal 

tissues (Normaln-Normalm, red). The distributions shown in the figure were binned for 

display purposes only. Inset summarizes the average distances between pairs of tissues as a 

percentage of the average distance between two different normal tissues.
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Figure 2. 
Expression of individual metabolic pathways in tumors. The biochemical pathways defined 

in the KEGG database (see Supplementary Table 5 for pathway numbering) are shown in 

the coordinates of ( , horizontal axis) and ( , vertical axis), where  is the average 

fraction of tumor samples in which a pathway is significantly up-regulated, and  is the 

average fraction in which a pathway is significantly down-regulated. The averages  and 

were calculated across all 22 tumors. The up- (down-) regulation significance was 

determined using Wilcoxon signed-rank test (FDR-corrected P-value < 0.05, see 

Supplementary Fig. 4b for the same analysis with FDR = 0.2). Several pathways are 

highlighted using different colors. The dashed lines demarcate the region where  is 

less than 20% of  and are shown for visualization purposes only. Metabolic pathways 

without significant expression changes are primarily clustered on the left of the figure. 

Pathways that are often significantly up-regulated (high  values) occupy positions in the 

upper right corner, while pathways that are primarily down-regulated (high  values) 

occupy positions in the lower right corner. Highly heterogeneous pathways that show, in 

different tumors, both significant up- and down-regulation are clustered on the right near 

zero on the vertical axis.
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Figure 3. 
Tumor-induced mRNA expression changes for individual biochemical reactions in central 

metabolism. (a) Each metabolic reaction is marked with the number of tumors (out of 22 

considered in our analysis) in which at least one isoenzyme catalyzing the corresponding 

reaction is significantly (FDR-corrected P-value < 0.05) up-regulated (red) and down-

regulated (blue). (b) Reactions that are significantly up-regulated (red triangles) or down-

regulated (blue triangles) when all isoenzymes and members of the corresponding protein 

complexes are considered together across all tumors (deep red or deep blue, FDR-corrected 

P-value < 0.05; light red or light blue, FDR-corrected P-value < 0.1). If unmarked, no 

statistically significant change in mRNA expression was detected.
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Figure 4. 
Cancer-induced changes in relative isoenzyme expression. (a) The Kullback-Leibler (KL) 

divergence was used to characterize differences in the relative expression of isoenzymes for 

all biochemical reactions with multiple isoenzymes. Colors represent distributions of the KL 

divergence in isoenzyme expression between different samples of identical normal tissues 

(Normaln-Normaln, blue), different samples of identical tumors (Tumorn-Tumorn, red), and 

tumors and corresponding normal tissues (Tumorn-Normaln, green). Inset summarizes the 

average KL divergences between pairs of tissues as a percentage of the average KL 

divergence between different samples of identical normal tissues. (b) Relative expression of 

the aldolase isoenzymes for kidney, liver, stomach, brain (GBM) tumors and the 

corresponding normal tissues.
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Figure 5. 
Concentration changes for measured metabolites of the TCA cycle. The metabolite data, 

obtained from 10 colon cancer patients, contained matched normal and tumor samples. 

Every point in the figure represents the log2 ratio of tumor-to-normal concentration change 

for a single patient. The P-values above double arrows (in black) indicate the Wilcoxon 

signed-rank test significance of changes between consecutive metabolites. The P-values 

below metabolite names (in colors) indicate the Wilcoxon signed-rank test significance of 

changes between matched normal and tumor samples. The inset shows the measured 

metabolites in the context of the TCA cycle.
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Table 1

Principal component analysis (PCA) of gene expression in major metabolic processes. The PCA was 

performed using the average expression changes of genes forming nine metapathways representing major 

biochemical processes. The pathway weights indicate the relative contribution of each meta-pathway to the 

principal components; weights with identical signs indicate correlated contributions of pathways to a 

component, while weights with opposite signs indicate anti-correlated contributions. The table show the PCA 

weights of each meta-pathway for the first three principal components. The first three principal components 

explain ~62%, ~16% and ~7% of variance in expression data, respectively

Variables Number of genes involved
in each pathway

Weights in the 1st
component

Weights in the 2nd
component

Weights in the 3rd
component

Oxidative phosphorylation 135 −0.40 0.21 0.67

Glycolysis 24 −0.33 0.65 −0.01

Citric acid cycle 21 −0.50 −0.10 0.02

Amino acids biosynthesis 70 −0.27 −0.11 −0.17

Fatty acids and lipids biosynthesis 66 −0.28 0.05 0.09

Nucleotides and nucleosides biosynthesis 54 −0.35 0.34 −0.67

Amino acids degradation 123 −0.31 −0.40 −0.15

Fatty acids and lipids degradation 80 −0.22 −0.35 0.17

Nucleotides and nucleosides degradation 9 −0.26 −0.34 −0.04

Proportion of variance explained by each
component − 0.62 0.16 0.07
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