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To effectively defend against microbial pathogens, the host cells mount antiviral innate
immune responses by producing interferons (IFNs), and hundreds of IFN-stimulated
genes (ISGs). Upon recognition of cytoplasmic viral or bacterial DNAs and abnormal
endogenous DNAs, the DNA sensor cGAS synthesizes 2’,3’-cGAMP that induces
STING (stimulator of interferon genes) undergoing conformational changes, cellular
trafficking, and the activation of downstream factors. Therefore, STING plays a pivotal
role in preventing microbial pathogen infection by sensing DNAs during pathogen
invasion. This review is dedicated to the recent advances in the dynamic regulations
of STING activation, intracellular trafficking, and post-translational modifications (PTMs)
by the host and microbial proteins.

Keywords: STING, DNA viruses, cellular trafficking, post translational modifications, immune responses

INTRODUCTION

The immune response is a complicated process in which the body defends against pathogen
infections and confines the disease progression, leading to the eventual recovery, and conferring
protective immunity. Innate immunity is the first line to resist viral invasion. A myriad of host
factors, such as interferons (IFNs), cytokines, and chemokines, respond quickly to viral invading,
and trigger adaptive immunity (1). Due to the special biological features of viruses and their unique
relationships with host cells, antiviral immunity not only shares commonalities with antibacterial
immunity but also has unique characteristics. Invading viruses trigger innate immunity during and
after entry into host cells via germline-encoded molecules termed pattern recognition receptors
(PRRs), which detect pathogens by recognition of their conserved molecular structures, called
pathogen-associated molecular patterns (PAMPs) (2). In this process, different PRRs jointly
participate in the complicated and delicate immune responses by collaboration between multiple
PRRs and their downstream factors. Until now, stimulator of interferon genes (STING) is the most
important adaptor protein in immune responses against DNA viruses, in cooperation with other
well-identified molecules, including cGAS, TBK1, IRF3, and NF-κB (3–5).

DNA VIRUS INFECTION, IMMUNE RESPONSE, AND DISEASES

To date, more than 6,000 types of viruses have been identified according to the International
Committee on Taxonomy of Viruses (ICTV). There are approximately 400 kinds of viruses of
human health concerns and many are double-stranded DNA (dsDNA) viruses or retroviruses.
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For instance, the retrovirus human immunodeficient virus
(HIV) is considered as a DNA virus here because of the
viral dsDNA produced by reverse transcription process,
leading to Acquired Immune Deficiency Syndrome (AIDS).
Similarly, chronic infection with human hepatitis B virus
(HBV), which is harboring a partial double-stranded
genomic DNA and belongs to Hepadnaviridae, leads to
liver fibrosis and cancers (6). Other pathogenic human
DNA viruses mostly belong to the Poxviridae, Herpesviridae,
Adenoviridae, Papillomaviridae, and Polyomaviridae families.
In the Herpesviridae family, human cytomegalovirus (HCMV)
causes immunocompromised symptoms of the brain, liver,
spleen, and lung (7). Infection by the herpes simplex virus
1 (HSV-1) results in painful blisters or ulcers (8). What’s
more, it might lead to more serious symptoms including
encephalitis. HSV-2 infection is a typical sexually transmitted
disease (STD) with the symptom of different genital warts
(9). Epstein-Barr virus (EBV) is involved in numerous types
of lymphomas and gastric cancers (10). Kaposi’s sarcoma–
associated herpesvirus (KSHV) is found in Kaposi’s sarcoma,
primary effusion lymphoma, and multicentric Castleman’s
disease. The incidence of Kaposi’s sarcoma is much higher
in immunosuppressed individuals, because of the deficiency
of host immunity (10, 11). Especially, Kaposi’s sarcoma
has a high fatality rate among AIDS patients (12). Virulent
adenoviruses lead to the common cold, fever, sore throat,
acute bronchitis, pneumonia, and neurologic disease (in
rare cases) (13–15, 187). In the Papillomaviridae and
Polyomaviridae families, high-risk human papillomaviruses
(HPVs) are admittedly oncogenic and significantly related
to cervical cancer and head and neck cancers (16), while
low-risk HPVs are responsible for anogenital condyloma,
genital warts, and other skin diseases (17). Merkle cell
polyomavirus (MCPyV) integration is found in Merkle cell
carcinoma. JC polyomavirus and BK polyomavirus are found
in organ transplant patients (18, 19). Therefore, a thorough
understanding of the arms race between DNA viruses and
host immunity is required to develop therapeutic strategies for
viral infections.

Innate immunity is vital to restrict viral infections at the
early stages of host antiviral immunity (20). After the invasion,
viral PAMPs stimulate IFN production in a variety of cells,
which possess a broad-spectrum antiviral effect (21). Thus,
they would induce antiviral albumin to block viral propagation
(22). For innate immune responses to viral invasion, although
PRRs and IFN signaling are constituently components in nearly
all somatic cells to control early infections in our body, it
is believed that leukocytes are the protagonists in the stage
to clear propagating viruses, by either secreted IFNs, and
cytokines or cell killing. In innate immune cells, macrophages
are tissue-residents, and clear virions and infected cells by
phagocytosis. Natural killer cells (NK cells) account for 5–10% of
the total number of lymphocytes and are constantly undertaking
“patrol” tasks in the body. Infected host cells that lack MHC-
I molecules are within the scope of NK cell attacking (23, 24).
Additionally, dendritic cells (DCs) are the main bridge between
innate and adaptive immunity by antigen presentation. DCs

are also the major producers of IFNs in the peripheral blood
(25, 26).

CELLULAR SENSORS OF ABNORMAL
DNA

Several DNA sensing PRRs have been characterized so far,
including Toll-like receptors (TLRs), NOD-like receptors
(NLRs), C-type lectin receptors (CLRs), and cytosolic DNA
sensors including cyclic GMP–AMP synthase (cGAS), IFN-γ
(IFN-γ)-inducible protein 16 (IFI16), heterogeneous nuclear
ribonucleoprotein A2/B1 (hnRNPA2B1), absent in melanoma
2 (AIM2), DNA-dependent activator of IRFs (DAI), RNA
polymerase III, DEAD box helicase 41 (DDX41), DEAH box
protein 9 (DHX9)/DEAH box protein 36 (DHX36), leucine-rich
repeat flightless-interacting protein 1 (LRRFIP1), Ku70, and Sox2
(3, 27, 28). As the first discovered DNA recognition molecule,
DAI binds to dsDNA and induces type I IFN (IFN-I) (29, 30).
However, the knockdown of DAI does not affect the innate
immune response of mice to B-DNA stimulation in later studies,
raising controversy (31). AIM2 is an IFN induced cytosolic
protein containing a pyrin domain (PYD) and a HIN200
domain. The HIN domain promotes its binding to DNA. The
PYD binds to ASC, the apoptosis-associated speck-like protein
containing a caspase recruitment domain (CARD), forming
an activated caspase-1 inflammasome to promote releases of
IL-1β, and IL-18 (32). RNA polymerase III converts dsDNA poly
(dA:dT) into 5′- triphosphate double-stranded RNA, delivering
signals to the RIG-I pathway (33, 34). DDX41 (DEAD box
polypeptide 41) promotes IFN and IFN-stimulated genes (ISGs)
expression in a STING-dependent way. It recognizes intracellular
DNA or bacterial c-di-GMP and c-di-AMP and then activates
IRF3 by TBK1 (35, 36). IFI16 is predominantly a nuclear protein
sensing abnormal DNA in the nucleus (37). HnRNPA2B1 is
another recently reported nuclear initiation factor that detects
and limits DNA virus infection (38).

Potentiating signals from many other DNA sensors and
cyclic dinucleotides (CDNs) binding, places STING a nodal
position to restrict DNA viruses. The first promised DNA
sensor IFI16 implicating in IFN induction by DNA stimulation
localizes both in the nucleus and the cytoplasm but may sense
abnormal DNA in the nucleus (39), because HSV-1 ICP0 re-
localizes IFI16 from the nucleus to the cytoplasm, hampering
IFN responses to viruses (40). Active IFI16 recruits STING
to facilitate a TBK1-dependent gene induction. Knockdown
of IFI16 or its mouse ortholog p204 impairs IFN-I induction
in response to dsDNA or HSV-1 genomic DNA (39). As
the PYHIN protein AIM2, IFI16 can activate inflammasome-
mediated immune responses (41, 42). DDX41 scaffolds DNA and
STING in the cytosol for ISG induction. Knockdown of DDX41
blocks TBK1 phosphorylation, and IRF3- or NF-κB- dependent
gene expression in mouse DCs (35). Nuclear protein Ku70 and
hnRNPA2B1 also induce IFN expression by STING (43, 44).
Ku70 is an important component in the DNA damage repair
(DDR) machinery (45), collaborating with STING to maintain
the host genomic integrity and clear damaged cells. However,
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DNA viruses utilize host DDR components during viral DNA
replication (46, 47), and the crosstalk between Ku70-STING
might also contribute to antiviral immune responses. The newly-
identified DNA sensor hnRNPA2B1 senses viral genomic DNA in
the nucleus. Undergoing homodimerization and demethylation
at the Arg226 site by JMJD6, hnRNPA2B1 translocate into the
cytoplasm, where STING and TBK1 are recruiting. HnRNPA2B1
simultaneously promotes cGAS, IFI16, and STING expression,
which in turn amplifies cGAS-STING signaling (38). It is noting
that STING signals may crosstalk with the RIG-I-MAVS pathway
during viral infections (48, 49).

The discovery of cGAS in DNA sensing process greatly
expanded the understanding of intracellular exogenous or
abnormal DNA sensing (3). Unlike other DNA sensors, cGAS
catalyzes and releases the second messenger cGAMP from
ATP and GTP after DNA recognitions, instead of directly
binding to the adaptor protein STING (50, 51). Cytosolic
cGAMP inserts into STING dimer and induces a conformation
change, leading to the exposure of C-terminal tail (CTT) of
STING for TBK1 recruitment (52, 53). Moreover, cGAS-deficient
mice show a complete loss of IFN production in response
to DNA stimulation or DNA virus infection (HSV-1, vaccinia
virus, and murine γ herpesvirus). It indicates the importance
of cGAS in DNA-induced immune responses. cGAMP can
be transferred from infected cells to uninfected neighboring
cells through gap junctions or exosomes, where it amplifies
immune responses to DNA stimulation independent on IFN
signaling (54). Leucine-rich repeat containing 8 VRAC subunit A
(LRRC8) volume-regulated anion channel facilitates this process
(55). These findings uncover a novel host strategy that rapidly
conveys antiviral immunity to bystander cells independent of the
paracrine signaling of IFNs.

RNA viruses, such as dengue virus, induce mitochondria DNA
(mtDNA) leakage into the cytosol and trigger STING signaling
(56, 57). This interesting observation partially explained the
reduction of IFN expression response to RNA virus infection in
STING-deficient cells. Adaptor protein TRIF facilitates STING
signaling by the interaction with STING on its carboxyl-terminal
domains to promote its dimerization and translocation (58).
The crosstalk between adaptor protein STING, MAVS, and TRIF
become interesting and elucidated now. Noticeably, these adaptor
proteins share some common behaviors, such as phosphorylation
patterns and oligomerization (59–61). Although these adaptor
proteins seem to all play roles in detecting cytosolic DNA, their
contributions to DNA-mediated gene induction are either partial
or cell type specific.

THE STRUCTURE AND SUBCELLULAR
LOCALIZATION OF STING

Abnormal cytosolic DNA molecules trigger a dsDNA sensing
process, which consequently induces IFNs and ISGs expression
(62). As mentioned above, nuclear DNA sensors also potentiate
the signaling in the cytoplasm after intracellular translocation.
STING locates in the ER and consists of four transmembrane
regions, which is expressing in a variety of endothelial

cells, epithelial cells, and hematopoietic hepatocytes (61, 63).
Human STING encodes a protein of 379 amino acids (aa),
containing a predicted transmembrane portion (1-173aa) in the
N-terminus and an intracellular soluble portion (174-379aa)
in the C-terminus (64). The N-terminus regulates its cellular
localization and homodimerization, since the transmembrane
domains cross the ER membrane (61, 65). The C-terminal
domain (CTD) functionally docks downstream molecules,
including TBK1/IKKε, and IRF3/IRF7 (66–68). To potentiate
the signaling, the native ligand cGAMP binds to the V-shaped
hydrophilic pocket in STING dimer (50). Undergoing a
conformational change, the hidden CTT of STING is exposed
to TBK1 and IRF3 (69–73). During this process, STING
is transported from the ER to the ER-Golgi intermediate
compartment (ERGIC), Golgi, and then perinuclear regions
(74). Although the cGAMP induced STING activation via a
closed conformation, the artificial agonist diABZI activates
STING with an open conformation (75). It is still unclear
that if STING conformation changes are required for the
following intracellular translocation. Studies should be pursued
to elucidate the details.

The classical STING signaling starts on the appearance of
DNA in the cytoplasm, which is considered as an abnormal
signal. Once triggered by free DNA in cytoplasm, cytoplasmic
cGAS catalyzes the synthesis of cGAMP to activate STING
(50, 76). Alternatively, other PRRs directly bind to STING,
such as hnRNPA2B1 and IFI16 (38, 77). After activation,
STING travels to the endosome through the ER and the
Golgi apparatus via intracellular trafficking or autophagy
process (78). STING dimers are closely arranged side by side
in the lipid membrane under the active state. Dimerized
STING can be connected to adjacent dimers, and these
connections are stabilized by connecting the dimer’s ring at
its interface (79). Without cGAMP bound, the connecting
element may stabilize the inhibitory direction of the interface
loop. It is hypothesized that the rearrangement of the
connecting element on cGAMP binding is related to the STING
activation. Although it is still hard to understand how to
form chemical bonds between adjacent STING dimers for the
side by side oligomer maintenance, there is no other better
explanation at this moment.

TBK1 dimer associates with STING at the perinuclear region
after cellular trafficking. It docks on top of the cGAMP binding
domain of STING. This interaction is mediated by the conserved
eight amino acid residues in the CTT domain of STING,
which is highly flexible, and hard to be crystalized (72). The
peptide linker between cGAMP binding pocket and C-terminus
of STING, allows TBK1, and STING to adopt different
orientations with each other (50). The ligand cGAMP might be
an initiator in the pathway and not needed in the following
intracellular trafficking and TBK1 binding. Thus, cGAMP binds
to dimerized STING in ER, triggers its conformation change
and oligomerization to initiate signaling (50, 80). In the process,
STING is transported to the ERGIC, Golgi, and perinuclear
regions, where it meets downstream factors, including protein
kinase TBK1/IKKε, transcription factors IRF3 and NF-κB, and
other cellular factors. Ultimately, IRF3 is phosphorylated by
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TBK1 and enters into the nucleus to induce IFN and cytokine
production (4, 81–84).

STING-RELATED SIGNALING PATHWAY

As shown in Figure 1, in the presence of cytosolic DNA,
STING translocates sequentially from the ER to ERGIC, Golgi
apparatus, and eventually relocates to perinuclear regions where
activated STING recruits TBK1 (63, 74). TBK1 phosphorylates
and activates IFN regulatory factors (IRFs) and NF-κB, which
induces IFN-I, IFN-III, and other pro-inflammatory genes (85,
86). IRF3 and TBK1 dock on polymerized STING complex,
thus phosphorylated IRF3 dissociates from the complex and
translocate into the nucleus to potentiate gene transcription (51,
84, 87). The regulation of STING signaling mainly focuses on the
activation, trafficking, post-translational modifications (PTMs),
and downstream pathway. Notably, TOLLIP exerts an important
role in STING-mediated immune response and maintain the
immune homeostasis. As a stabilizer of STING, TOLLIP interacts
with STING directly and maintain the stabilization of STING
protein by inhibiting the ER stress sensor IRE1α which suppresses

resting-state of STING turnover. Knockdown of TOLLIP reduced
the phosphorylation of IRF3 (88). In addition to the activation
of STING signaling pathway, STING-mediated immune response
also needs to maintain the stabilization of STING protein to
ensure an effective response.

As activation, silencing is also critical in signal transduction.
The negative feedback loop of STING signals is not clearly
understood. To prevent chronic signaling, the active STING
together with TBK1 are eventually degraded in a lyso-endosome
dependent way (53, 84). STING colocalizes with Rab7 containing
vesicles, which are late endosomes or lysosomes, but not early
endosomes (Rab5-containing vesicles), or recycling endosomes
(Res; Rab11-containing vesicles). Inhibiting acidification of the
endo-lysosome pathway prevents activation-induced STING
degradation (89, 90). Moreover, cytosolic dsDNA would be
cleared in STING induced autophagosomes to prevent chronic
cGAS activation. Cells deficient in either cGAS or STING
fail to induce autophagy in response to dsDNA (91, 92).
In macrophages, the autophagosomal marker LC3 colocalizes
with dsDNA as well as cGAS, STING, and TBK1, suggesting
the direct role of autophagy in dsDNA clearance and STING
degradation (93–95). Cyclic GMP-AMP would be degraded

FIGURE 1 | Diagram of STING-mediated immune response to viruses. The cytosolic dsDNA derived from DNA viruses, bacteria CDNs and mitochondria are sensed
by cGAS, which catalyzes ATP and GTP to generate cGAMP. Cyclic GAMP directly binds to the pocket of STING dimer and initiates the translocation of STING.
STING translocates from the ER to ERGIC, Golgi apparatus and endosome, where it is degraded in the lysosome. The phosphorylation, ubiquitination, and
palmitoylation are essential for the activation of STING. The activated STING dimer recruits TBK1 to form the translocation complex. By recruiting and
phosphorylating IRF3, the complex promoted IRF3 to entry into nucleus. STING induces the expression of type I IFN genes and other pro-inflammatory cytokines
through the TBK1–IRF3 axis and NF-κB signal pathway.
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by the extracellular phosphodiesterase ENPP1 to terminate
STING signals (96). Besides, it is reported that the cytosolic
nuclease poxins (poxvirus immune nucleases) from the vaccinia
virus and its homologs from moths, butterflies, and their
pathogenic baculovirus, also act as cGAMP-degrading enzymes
to prevent cGAS-STING activation (97). More detailed regulation
by ubiquitination-mediated degradation would be discussed
later. The STING signaling is negatively regulated by protein
degradation as well as clearance of the stimulus. Besides
ubiquitination, many other posttranslational modifications
regulate STING signal transduction and the crosstalk of the
STING pathway with other cellular processes. Understanding
these mechanistic details may be important for uncovering
STING intracellular trafficking and signal transduction.

STING TRAFFICKING AND ISG
INDUCTION

STING trafficking is critical in IRF3 and NF-κB induced ISG
expression in response to cytosolic DNA (98). As shown in
Figure 2, it is regulated by multiple factors and has not
been fully elucidated yet. STING mostly locates in the ER
and partially in the mitochondria and mitochondria-associated
membranes in resting cells (48, 63, 99). Immediately after
ligand binding, dimeric STING translocates between intracellular
membranes, from the ER to ERGIC, Golgi apparatus, and
perinuclear microsomes or punctate structures (74, 100, 101).
Constitutively active STING mutants aggregate in the ERGIC
in the absence of ligands, suggesting the ligand-binding itself is
not required during the intracellular trafficking process (100). To
date, many proteins are known to involved in the regulation of
STING trafficking, including the translocon-associated protein
β (TRAPβ), the translocon adapter Sec61β, exocyst complex
component Sec5, iRhom2, SCAP, SNX8, and YIF5 (63, 102–
106). Because STING mutant induced disordered STING
translocation and ligand-independent activation contributes to
autoinflammatory and autoimmune diseases in patients (107,
108), detailed investigations of STING trafficking become both
biological and clinical meaningful (100).

Several pathogen-encoded antagonists of STING have been
characterized. The ERGIC localizes between the ER exit sites
and the Golgi apparatus as a bridge. The ERGIC sorts ER-
derived COPII vesicles for anterograde transport to the Golgi or
retrograde transport to the ER (109). The Shigella effector protein
IpaJ efficiently inhibits gene induction by blocking STING
trafficking from the ER to the ERGIC via de-myristoylating the
ARF1 GTPase. After exiting from the ERGIC or Golgi, STING
translocates to perinuclear punctate structures where it meets
TBK1. The VirA protein from Shigella blocks STING trafficking
from the ERGIC to Golgi by hydrolyzing the Rab1-GTP to Rab1-
GDP (74). Even in the presence of STING ligands, inhibition of
the translocation either from the ER to ERGIC by IpaJ, or from
the ERGIC to Golgi by VirA, hampers STING induced IFN-I
expression (99, 100).

Studies on iRhom2 furtherly elucidate the intracellular
trafficking in STING signal transduction. iRhom2 is originally

FIGURE 2 | The process and regulation of STING trafficking. After stimulated
by cytosolic dsDNA, STING dimer exist from the ER to ERGIC, Golgi, and
endosomes. The process of trafficking is mediated by diverse proteins. The
thick black arrows indicate the pathway that lead to activation and trafficking
of STING. The thin black arrows indicate the regulators which positively
regulates the trafficking of STING. The white arrows indicate the regulators
which negatively regulates the trafficking of STING. Full name of the
abbreviations: VPS34 (Vacuolar protein sorting-associated protein 34); SNX8
(Sorting nexin-8); YIPF5 (Yip1 Domain Family Member 5); MTMR3/4
(Myotubularin Related Protein 3); TRAPβ (Translocon-associated protein β);
Sec61β (SEC61 Translocon Subunit Beta); iRhom2 (inactive rhomboid 2);
ATG9A (Autophagy-related protein 9A); and Cop II (Coat protein II).

reported to promote the trafficking of TACE (TNFα convertase)
from the ER to the cell surface and facilitates LPS induced
TNFα expression (110). Recent studies are showing that iRhom2
is essential to the immune responses to DNA viruses (106),
which is transported from the ER to ERGIC/Golgi apparatus
and perinuclear punctate structures together with STING after
HSV-1 infection. STING fails to leave ER in iRhom2 deficiency
cells, suggesting that viral DNA induced STING translocation is
dependent on iRhom2. iRhom2 might adapt STING to interact
with TRAPβ, an important translocon-associated protein because
knockdown of TRAPβ inhibits STING trafficking and gene
induction (106).

In addition to proteins, STING trafficking is also regulated
by small molecules, such as phospholipids. Cellular levels of
PtdIns (phosphatidylinositol) and PtdIns5P are regulated by
myotubularin related protein MTMR3 and MTMR4, which
dephosphorylate 3′ position in phosphatidylinositol (PtdIns).
MTMR3 and MTMR4 generate PtdIns5P and PtdIns from PtdIns
(3, 5) and PtdIns3P, respectively, (111). Increased PtdIns3P
is accumulated in enlarged cytosolic puncta in MTMR3 and
MTMR4 double knockout (DKO) cells, and STING is aberrantly
accumulated in PtdIns3P positive puncta after DNA stimulation.
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In DKO cells, STING rapidly translocates from the ER to Golgi
and produces an enhanced IFN expression in response to IFN-
stimulatory DNA (ISD) and HSV-1 infection (111). As shown
in Figure 2, MTMR3 and MTMR4 are suppressing STING
trafficking in response to DNA stimulation by regulating cellular
phospholipid metabolism.

STING is tracking the native vesicular transporters in response
to the stimulus, which might inherit from its ancestral functions
in autophagy machinery (112). YIPF5 maintains the integrity
of Golgi and ER (113, 114), and low levels of YIPF5 are still
able to preserve a relatively normal ER network (115). It is
essential for viral or intracellular DNA triggered production of
IFN and ISGs, by interacting with both STING and components
of COPII to facilitate STING recruitment into COPII-coated
vesicles and the cellular trafficking from the ER to the Golgi
apparatus (105). SNX8, a protein involving in endocytosis and
endosomal sorting, belongs to the sorting nexin protein family,
which is previously found as a component of IFNγ-triggered
non-canonical signaling pathway (116, 117). SNX8 boosts DNA-
triggered innate immune responses by recruitment of class III
phosphatylinositol 3-kinase VPS34 to STING (118). VPS34 is the
key component in STING trafficking from the ER to perinuclear
microsomes. SNX8−/− mice fail to respond to HSV-1 infection
and exhibiting a lower level of serum cytokines and higher
viral titers in mouse brains (118). NLRC3 (nucleotide-binding,
leucine-rich-repeat containing protein) negatively regulates
STING translocation in response to DNA viral infection. In
the presence of NLRC3, STING trafficking to the perinuclear
region is prevented (119). NLRC3 is originally reported as an
inhibitor in the PI3K-mTOR pathway (120). It is suggesting
that STING trafficking may share some common factors
in mTOR signals.

In addition to STING, TBK1 and IRF3 also translocate
to perinuclear regions in dsDNA stimulated cells. Since
the integration of TBK1, IKKs, IRF3, and NF-κB is a later
event in the evolutional history of the STING pathway, it
is hypothesized that the translocation of TBK1 and IRF3 is
dependent on STING trafficking (112). In perinuclear puncta,
STING recruits TBK1 to activate transcription factor IRF3
by phosphorylation. STING deficiency leads to the retention
of TBK1 to perinuclear regions after dsDNA stimulation.
The ATPase inhibitor Brefeldin A (BFA) prevents STING-
mediated IRF3 phosphorylation and ISG expression by
restriction of STING trafficking (121). Sec5, the exocyst
complex component, is essential for the antiviral responses
to recruit and activate TBK1 (122). DNA stimulation leads to
translocation of STING to Sec5-containing endosome from
the ER or ERGIC (63, 102). During this process, TRAPβ, and
Sec61β are needed. TMED2 that belongs to the transmembrane
emp24 domain/p24 (TMED) family promotes STING-TRAPβ

interaction and enhances STING trafficking and gene induction
(123). Knockdown of TRAPβ, Sec61β, and Sec5 inhibits
STING dependent gene expression. These studies suggest that
STING links cytosol DNA stimulation to TBK1 activation
through the intracellular trafficking between the ER and
perinuclear punctate structures. Similarly, SCAP recruits
IRF3 into STING complex and translocates from the ER to

perinuclear microsomes after viral infection (124). It could be
interesting to disrupt scaffold proteins between STING-IRF3
and STING-TBK1 to figure out the driver factor in the
orchestrated process.

Notably, endocytosed cyclic di-nucleotides (eCDNs)
released from damaged or dying infected cells could activate
bystander cells. Upon binding to eCDNs, cGAS undergoes
a conformational change and promotes its interaction with
STING. It facilitates the formation of eCDNs/cGAS/STING
perinuclear signalosomes to enable STING activation
(125). This finding provides an insight into the differences
between eCDNs and cGAMP in STING activation and
trafficking. Detailed molecular mechanisms are still remaining
to be elucidated.

VIRAL INFECTION AND STING
TRAFFICKING

Viral DNA and virus-induced leakage of mtDNA trigger STING
activation and trafficking (98, 126). Viruses have to evolve certain
strategies to defeat host immunity for efficient infection. For
example, HSV-1 encodes series of proteins to antagonize STING
signals, including viral ubiquitin ligase ICP0, deubiquitylase
(DUB) UL36USP, protein kinases (US3, VP24), and protein-
protein interaction inhibitors (PPis) (127). Since ubiquitination
regulates protein trafficking, it is natural to wonder if viral
ICP0 and UL36USP would change intracellular trafficking of
STING and components in STING signaling. Adenovirus E1A
and human papillomavirus E7 inhibit cGAS-STING signals
by direct interaction between the LXCXE motifs of viral
oncoproteins and STING (128). NS4B of hepatitis C virus and
NS2B3 protein of dengue virus directly cleave STING (129,
130). VP24 of HSV-1 and vIRF1 of KSHV impair STING-
TBK1 interaction (128, 131). HSV-1 VP1-2 and HTLV-1 Tax
protein deubiquitinate STING and inhibit its downstream signals
(132, 133). Interestingly, the conserved hemagglutinin fusion
peptide of RNA virus influenza virus A (IVA) interacts STING
and abolishes STING dependent IFN induction by membrane
fusion (134). It reflects a cGAS- and CDNs- independent
STING activation.

Increased studies are showing that viruses inhibit the
intracellular trafficking of STING. HSV-1 γ134.5 protein perturbs
STING trafficking from the ER to Golgi by interaction
with STING on its N-terminus. STING is colocalizing with
ER marker calreticulin in cells infected by wild type virus,
while it forms puncta with GM130 (Golgi apparatus) in
cells infected by γ134.5 deletion viruses (135). It is still
unknown how viral γ134.5 protein inhibits STING trafficking.
HCMV tegument protein UL82 is a negative regulator of
the STING pathway by direct interaction with STING. It
inhibits STING trafficking from the ER to perinuclear punctate
structures by breaking the iRhom2-mediated assembly of the
STING-TRAPβ translocation complex. STING fails to recruit
TBK1 and IRF3 (101). Moreover, virulent African swine
fever virus (ASFV) strain Armenia/07 attenuated STING-
dependent IFN induction by re-localizing STING. ASFV is
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a complex, cytoplasmic dsDNA virus. STING colocalizes
with clathrin adaptor protein AP1 outside from perinuclear
structures in attenuated strain ASFV/NH/P68 but not in virulent
strain Armenia/07 infected cells (136). With the increasing
understanding of STING signaling transduction, more and more
viral proteins would be found to manipulate the intracellular
trafficking of the STING pathway.

STING TRAFFICKING, AUTOPHAGY AND
RECYCLING

Autophagy possesses important functions, including innate
immune responses, and inflammation. Of note, dsDNA-
induced STING trafficking involves autophagy (78). The
autophagy-related gene ATG9A negatively regulates dsDNA-
induced IFN expression by inhibiting the trafficking of STING.
In ATG9A-deficient cells, translocation of STING to the
perinuclear puncta and the assembly of STING-TBK1-IRF3
complexes are raised upon dsDNA stimulation (103). Moreover,
knockdown of VPS34 (PI3KC3) inhibits STING trafficking and
IFN induction by dsDNA stimulation. The Beclin-1-PI3KC3
(VPS34) core complex manipulates autophagy by generating
PtdIns 3-phosphate-rich membranes, which are regarded as
the platform for the recruitment of autophagy-related proteins
and autophagosome maturation (137, 138). Beclin-1 interacts
with cGAS and decreases STING induced IFN expression
by repressing the enzymatic activity of cGAS (94). cGAS is
required for dsDNA-induced Beclin-1 dependent autophagy
(94). The cGAS–STING axis orchestrates ISGs and autophagy
pathways to boost host immune responses to DNA viruses (93,
139–141). However, STING triggers autophagy independent of
TBK1 activation and IFN induction. Above all, upon binding
cGAMP, STING translocation to the Golgi is dependent
on the COP-II complex and ARF GTPases. STING-coated
ERGIC is the membrane source for LC3 lipidation, which
initiates autophagosome maturation. cGAMP triggers LC3
lipidation by WIPI2 and ATG5 but independent of the ULK
and VPS34-beclin-1 (78). LC3-positive membranes enfold
dsDNA, bacteria, and viruses to form autophagosomes (142).
Prabakaran and colleagues have found the interaction between
STING and the selective autophagy receptor p62/SQSTM1,
which attenuates cGAS-STING signaling. P62 is activated
by TBK1-mediated phosphorylation. Phosphorylated p62
ubiquitinates STING and facilitates STING degradation by
autophagy (143).

The translocation of STING plays a crucial role in the
activation of downstream pathways. At the same time, dsDNA-
induced autophagy is important for the removal of DNA and
viruses in the cytoplasm. Upon cGAMP stimulation, STING
induces autophagy but not IFN expression, indicating that
autophagy induction is the original function of the cGAS-
STING pathway (78, 144). Although the relationship between
STING re-localization and autophagy has been established, the
precision mechanism by which STING translocation is initiated
remains unclear. Regarding the question of whether STING
preferentially recruits IRF3 to perinuclear microsomes or via

autophagosomes to activate the related immune response needs
further exploration.

Moreover, STING translocates to the REs, and then to the p62-
positive compartments/lysosomes after exiting from the Golgi
apparatus (143). Chloroquine or BFA prevents the lysosomal
degradation of STING and enhances STING-induced antiviral
gene expression. The palmitoylation of STING is not required
for its degradation because the palmitoylation-deficiency mutant
(C88/91S) cannot prevent STING degradation. There are still
controversies about the effect of the autophagic process in STING
degradation (98).

POST TRANSLATIONAL MODIFICATIONS
AND STING REGULATION

Post-translational modification is important in the initiation,
dynamic regulation, and silence of signal transduction
pathways. It affects the pathway by regulation of protein
localization, stabilization, and conformational changes (145).
Examples of these regulations include ligand-dependent
EGFR activation, Janus kinase (JAKs) regulated STAT
signals, and ISG15-dependent regulation in TLR signals
(146–148). The common types of PTMs are ubiquitination,
phosphorylation (including serine/threonine phosphorylation
and tyrosine phosphorylation), palmitoylation, glycation,
lipidation, acetylation, methylation, and so on (149–151). It
has been reported that ubiquitination, phosphorylation, and
palmitoylation regulate the innate immune responses to dsDNA
by STING. These modifications occur on all components in the
pathway, including cGAS, STING, TBK1, and IRF3 (148).

Monoubiquitination and polyubiquitination regulate protein
trafficking and degradation. K48-linked polyubiquitination
is related to proteasomal degradation, while K63-linked
polyubiquitination is related to signal transduction. Mostly,
ubiquitin covalently binds to the lysine residue in substrate
proteins through a multi-enzyme cascade, and the de-
ubiquitination of proteins involves deubiquitinating enzymes
(DUBs) (151, 152). However, it is clear now that polyubiquitin
chains can also bind to substrates non-covalently. The E3-ligases
TRIM32 and TRIM56 promote the recruitment of TBK1 by
STING in response to the stimulus, by targeting STING for
K63-linked ubiquitination at K150. Overexpression of these
E3 ligases enhances IFNβ expression while knockout of either
could abrogate STING-dependent responses. In a later study,
researchers could not observe polyubiquitinations of STING in
the presence of TRIM32 and TRIM56. The question about the
precise coordination of TRIM32 and TRIM56 to STING in the
process still remains to be elucidated (153–155).

Together with insulin-induced gene 1 (INSIG1), the autocrine
motility factor receptor (AMFR) boost STING signaling by
catalyzing a K27-linked polyubiquitination. Wang et al. reported
that K27-linked di-ubiquitin chains bind the ubiquitin-like
domain (ULD) of TBK1 directly (156). Four lysine residues
of STING, K137, K150, K224, and K236, may involve in this
process. However, it becomes controversial if the K27-linked
polyubiquitination of STING is essential for TBK1 recruitment,
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since earlier studies are showing that TBK1 binds Escherichia
coli derived recombinant STING fragments (84). RNF5 impairs
STING signaling by modification of STING at K150 with K48-
linked polyubiquitination, which promotes STING degradation.
RNF26 catalyzes a K11-linked polyubiquitination at the same
residue to antagonize RNF5-mediated STING degradation (157–
159). The detailed regulations of TRIM32-, TRIM56-, RNF5-, and
RNF26- dependent STING K150 polyubiquitination are worth
exploring. Meanwhile, TRIM30α negatively regulates the STING
pathway by the K48-linked ubiquitination of STING on K275.
Knockdown and deficiency of TRIM30α enhance the production
IFN-I and IL-6 upon dsDNA stimulation, and TRIM30α−/−

mice are more resistant to HSV-1 infection than wild type
mice. Detailed studies show that TRIM30 interacts with STING
through its SPRY domain (160, 161). Since TRIM30 could be
induced by STING-NF-κB in response to dsDNA, it suggests
that TRIM30 is a self-negative regulation component in STING
signaling (161). It is worth noting that TRIM30α is absent in
human (162). The E3-ligases TRIM29 inhibits the expression of
STING and catalyzes the K48-linked ubiquitination of STING
on K370. In the presence of cytoplasmic DNA, TRIM29 is
highly expressed and impairs the expression of IFN-I. It is
suggested that TRIM29−/− mice are less susceptible to HSV-
1 or adenovirus infection than wild type mice. TRIM29 plays
a similar role as TRIM30 to inhibit innate immune responses
(163). In addition, CD40 is reported to regulate the K48-
linked ubiquitination of STING. The ubiquitin-ligase TRAFs are
involved in the ubiquitination and stability of STING. Increased
level of CD40 competes with STING to interact with TRAFs,
reduces the degradation of STING, and promotes STING-
mediated IFN-I responses (164). The mitochondrial E3 ubiquitin
protein ligase 1 (MUL1) catalyzes K63-linked polyubiquitination
of STING at K224, and deliver TBK1 to IRF3. It is found
that the ubiquitination-deficient mutant STING K224R fails to
translocate to perinuclear puncta in response to the stimulus,
suggesting K63-linked polyubiquitination of STING at K224 is
essential for STING trafficking (165). Interestingly, the MUL1-
mediated STING ubiquitination is required in STING-IRF3
activation but not STING-NF-κB signals. It is noting that the
dominant ubiquitination of STING on K236 and K338 are found
in the same study (165).

As mentioned above, iRhom2 boosts gene induction by
STING in responses to DNA viruses. It recruits the eukaryotic
translation initiation factor 3, subunit 5 (EIF3S5) to STING,
which removes K48-linked polyubiquitin of STING and inhibits
STING degradation by the proteasome (106). USP13, a
deubiquitinating enzyme, interacts with STING and catalyzed
removal of K27 O- or K33 O-linked but not K27 R-linked
polyubiquitin chains from STING. It impairs the recruitment
of TBK1 by STING (166). USP13m/m mice are more resistant
to HSV-1 infection with a higher survival rate and a robuster
IFN and cytokines in sera (166). Many viral proteins have
already been found to de-ubiquitinate STING, which is discussed
earlier in this review.

Palmitoylation is an important form of protein
posttranslational lipid modification for regulating protein
transport, stability, and cellular localization (167, 168).

Palmitoylation of STING is found after trafficking to the
Golgi apparatus, which is essential for the activation of STING
(169, 170). The palmitoylation inhibitor 2-bromopalmitate
(2-BP) impairs IFN induction via STING. The STING C88/91S
mutant, which is deficient in palmitoylation, cannot induce ISGs
expression in the presence of STING stimulus. It is demonstrated
that STING is palmitoylated at the Golgi, and this PTM is
essential for STING signaling (98, 169). Small molecules C-178
and its derivatives inhibit STING- mediated gene expression
by antagonizing palmitoylation of STING with a covalent bond
between C88/91 residue of STING and compound (171). This
unique lipidation of protein may be maintaining the active
STING oligomer on ERGIC or Golgi apparatus.

Protein phosphorylation is involved in almost all biological
processes and is regulated by both kinases and phosphatases.
Phosphorylation of STING at residue S366 by TBK1 promoted
the recruitment and activation of IRF3. However, it is reported
that phosphorylation of activated STING at S366 by ULK1
inhibits the activation of IRF3 at an earlier time (121). In
both studies, S366A mutant that mimics unphosphorylated
STING has a greatly reduced IFNβ expression in response to the
stimulus, it is more convinced to conclude that phosphorylation
of STING at S366 residue is a positive regulation. Besides,
the residue S358 of STING is reported to carry through
the phosphorylation process (172). Protein phosphatase
Mg2+/Mn2+ dependent 1A (PPM1A) dephosphorylates STING
at S358 and suppresses the formation of perinuclear puncta,
which leads to reduced responses. The relationships between
S358 and S366 phosphorylation are still unclear. Collectively,
these studies reveal the positive effect of phosphorylation
on STING activation (173). Currently, it is reported that
the ribosomal protein S6 kinase 1 (S6K1) interacts with
phosphorylated STING and TBK1 to form the transduction
complex (174). It is a piece of the missed parts in the regulation
of STING pathways, and partially explains the function of
phosphorylation of STING in this signal.

Although tyrosine phosphorylation accounts for a small
percentage of all protein phosphorylation modifications, it is
critical in many processes. Tyrosine phosphorylation of STING
has been identified in a preliminary experiment, in which STING
(MPYS in this work) has been detected in immunoprecipitated
samples by anti-pTyr antibodies (175). In the following years,
less has been known for tyrosine phosphorylation of STING.
In 2015, researchers found that Bruton’s tyrosine kinase (BTK)
positively regulates STING-dependent signaling. BTK belongs to
the Tec family of cytoplasmic tyrosine kinases. It is vital for B
cell receptor signaling and lymphopoiesis (176). BTK interacts
with STING and DDX41 and then phosphorylates DDX41. Y364
and Y414 of DDX41 are critical for DNA recognition and
binding to STING. Y414 phosphorylation increases its affinity
to STING by increasing the number of hydrogen bonds and
salt bridges with STING. The finding indicates the interaction
between DDX41 and the transmembrane region of STING by
the tyrosine phosphorylation of DDX41 (177). Later, it is found
that phosphorylation of Y245 in STING is important for STING
activation. PTPN1 and PTPN2 dephosphorylated STING at Y245
and then facilitated STING degradation by 20S proteasome (178).
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THERAPEUTIC AGENTS TARGETING
STING

Considering the nodal role of STING in the innate immune
responses against abnormal DNA and viral invasion, it is
tempting to harness this activity for therapy. The STING agonists
and antagonists are immunotherapy drugs suitable for a variety of
diseases. STING antagonists are supposed to cure autoimmune
diseases, while STING agonists would be used in anti-tumor
and antiviral therapies. We summarize the recent advances of
STING agonists here.

STING agonists could activate innate and following adaptive
immune responses for the treatment of many diseases, especially
for cancers, and infectious diseases. Vascular disrupting agents
DMXAA (also known as Vadimezan or ASA404) is the first
STING agonist utilized in clinical trials, which directly interacts
with mouse STING to activate TBK1-IRF3 and induces IFNs and
cytokines. DMXAA reduces HBV DNA replication intermediates
in the livers of HBV-injected mice. Unfortunately, DMXAA
can only bind to mouse STING (179). It has extremely good
efficacy in the mouse model, but the clinical trials failed in
phase III (73). Meanwhile, immunotherapy based on STING
agonists has always been considered to sweep the field of
tumor immunotherapy (180–182). Researchers have discovered
and designed a series of molecules to develop an effective
activator of STING. To mimic the native agonist, nucleotidic
agonist ADU-S100 (also called ML-RR-S2-CDA or MIW815)
was designed and tested in clinical trials (180). Following this
strategy, Merck, GlaxoSmithKline, and Bristol-Myers Squibb
have patented different nucleotidic agonists of STING. Non-
nucleotidic agonist diABZI was optimized from a small molecule
lead compound amidobenzimidazole (ABZI). It binds to STING
with an IC50 of 20 ± 0.8 nM and inhibits STING induced IFN-
I expression in cells with an EC50 of 130 ± 40 nM (75). Until
now, many other STING agonists or activators were reported,
including IACS-8803, IACS-8779, and CL656 (183–185). Except
for DMXAA, other STING agonists are developed for tumor
immunotherapy. It is also believed that STING agonists might
be used in antiviral therapies. One of the potential advantages
of these new molecules is that they can be transported through
blood (186). This new immunotherapy drug greatly enhanced

the adaptive immune function. On one hand, the immune
mechanism targeting STING provides new ideas for the entire
anti-tumor and antiviral immunotherapy researches. On the
other hand, the new STING agonists have also promoted the
emergence and clinical application of new immune drugs.

CONCLUDING REMARKS

A series of studies in the recent years demonstrated a critical
role of STING signaling in the recognition of pathogenic DNA as
well as endogenous DNA, and therefore in autoimmune diseases
and tumor immunity. However, there remains a number of key
questions unaddressed. For instance, the precise mechanism of
regulation of the STING trafficking from the ER to the Golgi
complex remains to be determined. In addition, STING has
TBK1-independent and cGAS-independent functions. How these
processes are regulated is not yet completely clear.

There is also substantial interest in identifying STING agonists
and antagonists. DMXAA activates murine STING in vitro and
in vivo, and CDNs activate human STING, potentially inhibiting
metastatic tumors. It has shown that STING agonists may
become another dark horse for immunotherapy. Given that direct
IFN administration causes flu-like symptoms and other adverse
effects, using CDNs or other small-molecules may reduce these
side effects and lead to a more plausible therapy strategy.
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