
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3349  | https://doi.org/10.1038/s41598-021-82796-y

www.nature.com/scientificreports

A machine learning method 
based on the genetic and world 
competitive contests algorithms 
for selecting genes or features 
in biological applications
Yosef Masoudi‑Sobhanzadeh1, Habib Motieghader2,3, Yadollah Omidi4 & 
Ali Masoudi‑Nejad5*

Gene/feature selection is an essential preprocessing step for creating models using machine learning 
techniques. It also plays a critical role in different biological applications such as the identification of 
biomarkers. Although many feature/gene selection algorithms and methods have been introduced, 
they may suffer from problems such as parameter tuning or low level of performance. To tackle 
such limitations, in this study, a universal wrapper approach is introduced based on our introduced 
optimization algorithm and the genetic algorithm (GA). In the proposed approach, candidate solutions 
have variable lengths, and a support vector machine scores them. To show the usefulness of the 
method, thirteen classification and regression‑based datasets with different properties were chosen 
from various biological scopes, including drug discovery, cancer diagnostics, clinical applications, 
etc. Our findings confirmed that the proposed method outperforms most of the other currently used 
approaches and can also free the users from difficulties related to the tuning of various parameters. As 
a result, users may optimize their biological applications such as obtaining a biomarker diagnostic kit 
with the minimum number of genes and maximum separability power.

In computational biology, researchers may be involved with the handling of large omics datasets with many fea-
tures (e.g., genomics, proteomics, metabolomics, etc.)1. For instance, the total number of profiled genes is usually 
more than 20,000 in human samples, which have been exploited for different purposes such as the detection of 
 biomarkers2. Given that the number of features from proteomics and metabolomics data is potentially much 
 larger3, it is almost impossible to extract a set of biomarkers kit of a manageable size from such large data  sets4. 
For instance, in the field of genomic data, researchers aim to (i) select genes having higher separability power 
between different states, such as cancerous and noncancerous samples, and (ii), confine them to a reasonable 
number to be  handled5. From the machine learning perspective, features or genes can be categorized into three 
classes as follows:

 (i) Negative  features6, which can mislead a learner and reduce its performance. Thus, they must not be 
selected in the application.

 (ii) Neutral  features7, which do not play any role in the performance of a learner and can only increase the 
time of predicting. Like the first group, these features should be avoided.

 (iii) Positive  features8, which play a determinant role in distinguishing between samples and enhance the 
performance of a learner. For such features, the feature selection (FS) methods need to be applied since 
some of the features may have redundant roles as others. Further, a large set of them may be represented 
by a small set.
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Due to the combinatorial nature of FS, it is a nondeterministic polynomial (NP-hard) problem that cannot be 
solved in a polynomial-time order, in large part because of being accepted by nondeterministic Turing  machines9. 
To overcome the time complexity, heuristic and metaheuristic algorithms, which find acceptable answers to these 
problems, have been  developed10.

In different studies, it has been shown that the metaheuristic algorithms, which do not confine themselves to a 
specific range of the search space, are generally more suitable than heuristic  algorithms11–13. In addition, two-step 
methods may obtain better results than single  methods14,15. Therefore, in this study, we capitalized on a two-step 
method, which is based on a genetic algorithm (GA)16 and our previously developed world competitive contests 
(WCC) optimization  algorithm17, the so-called “GA_WCC method”. In the first step of the GA_WCC method, 
the GA reduces the total number of features to a minimum upper bound. Next, the WCC selects an optimal 
subset of features for the desired application. Overall, the GA_WCC method is based on a two-step process for 
FS, which (i) does not require limiting the number of features to a predefined value, and (ii) outperforms other 
currently used methods.

Related works
In this section, we discuss the limitation of related approaches works that can be divided into six classes as follows:

(i) Filter methods: These techniques look for the relationships among features and investigate how much infor-
mation exists in a feature. For this purpose, various mathematical formulas have been proposed, including 
 Entropy18, mutual  information19, Fisher  score20,  correlation21,  Laplacian22, etc. Although these approaches 
are simple and have a low time-complexity, their performance is lower than the other  categories23. To tackle 
such a limitation, wrapper-based method has been developed and are built-upon in this paper.

(ii) Wrapper methods: Unlike the first class, these approaches score the selected features by a learner such as a 
support vector machine (SVM)24, artificial neural networks (ANN)25, decision tree (DT)26, or  others27–29. 
Usually, optimization algorithms are applied to select an optimal subset of  features30,31. In different studies, 
it has been shown that these approaches can achieve remarkable  outcomes32, but most of the FS studies do 
not employ state-of-the-art algorithms for the FS. Here, we used the WCC algorithm for the FS problem.

(iii) Ensemble methods: For the FS, ensemble methods create a learner such as a decision  tree33 and selects 
features in such a way that the learner chooses them for generating a  model34,35. Due to their greedy nature, 
ensemble methods may fall into local optima solutions and do not reach the optimal result. To deal with this 
limitation, we introduce the WCC algorithm, which features a low probability of falling into local optima.

(iv) Hybrid methods: A combination of the three mentioned methods is applied to the FS  problem36. For 
example, the total number of features is reduced by filter methods, and then an optimal subset of features 
is chosen by wrapper or ensemble  methods37,38. In this class of related works, it is essential to combine the 
algorithms properly. Therefore, we assumed that a combination of wrapper-wrapper approaches, which 
merge two wrapper-based algorithms, might be a suitable option for FS.

(v) Hypothesis-based studies: A concept is hypothesized based on prior knowledge and the correctness of 
which is tested via various experiments on gold-standard  datasets39. Although these techniques can help 
in making a proper decision, they do not prevent the mentioned limitations.

vi) Review works: These works survey different methods such as  filter40,  wrapper41,  ensemble42,  hybrid43, and 
discuss their advantages and disadvantages. Further, they study the role of FS in diverse areas and often 
constitute the future  directions44.

Materials and methods
The datasets. Several datasets with diverse properties have been selected from various sources such as the 
machine learning repository developed at the University of California Irvine (UCI)45 and published seminar lit-
erature sources. For every dataset, the total number of samples is almost the same in its different classes. Table 1 
shows the properties of the datasets and describes them.

The proposed method. Our proposed GA_WCC method (Fig. 1) selects the features using a two-step 
wrapper approach. To this end, as the first step, the Genetic Algorithm (GA) limits the total number of genes or, 
generally, features, and then the World Competitive Contests (WCC) selects an optimal subset of them from the 
reduced set of features. Overall, this study has been established based on the following rationale:

 (i) The GA starts with a first population of candidate solutions, which each consists of several variables 
(a subset of features). Unlike other optimization algorithms such as the particle swarm optimization 
(PSO)53, for the GA, the probability of falling into local optima is minimal, because it produces a high 
number of candidate sets. However, the convergence speed of GA is usually less than other optimization 
algorithms (e.g.,  TLBO54 and  FOA55). Hence, this limitation may be addressed when the GA algorithm 
is combined with other state-of-the-art optimization algorithms. This issue is considered in the present 
study, by merging the GA and WCC algorithm.

 (ii) The WCC begins with a first population of potential answers and applies its all the operators to all the 
existing candidate solutions (CSs), so it spends more times than other optimization algorithms. Hence, 
when applying the WCC algorithm to an optimization problem, the total number of CSs is limited. This 
algorithm has an acceptable convergence speed, but the main limitation of WCC relates to its complex 
stages, which increase the execution time. Further, for a CS, WCC calls the cost function more than other 
algorithms due to the nature of its operators. At the last steps of the algorithm, the applied operators 
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make CSs similar to each other, so the convergence speed of the algorithm is reduced (due to the limited 
number of CSs).

Optimization algorithms differ from each other from a way that they change CSs (the operators of the algo-
rithms). In this study, the WCC algorithm is developed to the FS problem, and its operators are modified to 

Table 1.  The properties of the datasets.

Dataset’s name Description Number of samples Number of features Type Number of classes Missing value References

Arrhythmia Cardiac arrhythmia 452 279 Classification 16 Yes 45

Cancer Adeno carcinoma 499 17,995 Classification 2 Yes 46

CHD Cardiovascular heart 
diseases 303 45 Classification 5 No 47

Diabetes Diabetes hospital between 
1999 and 2008 100 000 55 Classification and clustering 2 No 47

Drug
QSAR information between 
molecular properties and 
 IC50

56 223 Regression –- No 36

PID Pima Indian diabetes 768 9 Classification 2 No 48

SHD Statlog heart data 270 13 Classification 2 No 48

WDBC Wisconsin Diagnostic Breast 
Cancer 198 34 Regression – Yes 48

Lung Lung cancer 32 56 Classification 2 Yes 48

QSAR Molecular fingerprints corre-
spond to androgen receptor 1 687 1025 Classification 2 No 49

Arcene
Mass-spectrometric data 
correspond to cancer and 
normal patients

900 10,000 Classification 2 No 50

MicroMass
Microorganism identifica-
tion from mass-spectrom-
etry data

931 1300 Classification 2 No 51

RNA-Seq Gene expression of patients 801 20,531 Classification 5 No 52

Figure 1.  The framework of the proposed method based on the wrapper-wrapper feature selection technique, 
consisting of two phases. First, the GA confines the total number of features and then passes them towards the 
WCC. All the CSs are scored by the SVM. At the end of the method, the best CS is introduced as an answer 
to the problem. CS, candidate solution; GA, genetic algorithm; SVM, support vector machines; WCC, world 
competitive contests algorithms.
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select an optimal subset of features. Given the advantages and disadvantages of the GA and WCC algorithm (the 
modified version of the WCC algorithm), it is expected that their limitations will be diminished when combined 
with each other. Inspired by this idea, this study has been designed, and an efficient two step feature selection 
method based on a wrapper approach has been introduced. As shown in Fig. 1, the GA_WCC method includes 
several steps as follows:

(i) Applying the genetic algorithm: In the first step of the proposed method, a version of GA is used for the 
 FS56. In different FS studies, CSs are binary, while their length is constant and equal to the total number of 
features. In this study, for both GA and WCC algorithms, CSs have variable sizes and contain the indices 
of the selected features. In the optimization scope, the GA is the basis for other optimization algorithms. 
However, GA generally exhibits a low level of performance in comparison with other algorithms. This 
notwithstanding, GA produces different CSs, which may help other optimization algorithms to obtain 
better  results57. In Fig. 2, the flowchart of the employed GA is shown, which includes the following main 
steps:

(a) Creating a first population of CSs: potential answers or CSs are called ‘chromosomes’ in the GA 
algorithm, and their values of genes are randomly quantified. Every CS incorporates some features, 
which are chosen from a given feature set (the total number of variables in a CS depends on the size 
of a dataset). In the proposed method, initially, the CSs have an identical length, but their length may 
vary from each other because of some repeated values. For instance, in generating initial CSs, it is 
possible that a CS contains some repeated features. In such a case, only one of the repeated values is 
remained and the remaining ones are ignored.

(b) Applying GA operators: The GA consists of three main operators named mutation, crossover, and 
selection. In the employed mutation operator, a variable of a chromosome is randomly selected, and 
its value is replaced by another randomly selected variable. In the crossover operator, two ranges of 
the CSs with the same length are randomly chosen, and their contents are exchanged. Finally, in the 
selection operator, elitism technique has been used, which forms the new population based on the 
most deserve chromosomes of the current population. In Figs. 3 and 4, the instances of the mutation 
and crossover operators are depicted, which describes, how the mentioned operators are applied to 
generating new CSs.

(c) Scoring the selected features: The proposed method is a wrapper method in which a learner evaluates 
the selected features. Due to the nature of the datasets, which are approximately class-balanced, we 
basically use the accuracy score (Eq. 1). Other criteria are also inspected in the experimental section.

(1)Score = Accuracy =
TP + TN

TP + TN + FP + FN

Figure 2.  Flowchart of the employed GA. This algorithm begins with several randomly generated potential 
answers (a subset of the existing features) and applies its operators to produce new CSs, which contain the 
selected features. To calculate fitness of the CSs, a model is created using SVM, and its accuracy (based on 
fivefold cross-validation) is reported. Also, to generate new population, elitism method (which generates new 
population based on the CSs having the higher value of fitness) has been used. CS, candidate solution; GA, 
genetic algorithm; SVM, support vector machines.
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 where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives, 
respectively. Because of their performance and reasonable time in generating a model, Support Vector 
Machines (SVMs) have been used for assessing the CSs. Considering the popularity and performance 
of SVMs, many libraries and packages have been developed accordingly. In this study, the LibSVM 
library, which is one of the most popular libraries with different options, was  employed58.

(d) Investigating the termination condition: when the value of the best CS is remained constant for 10 
consequent iterations (generations), the GA is terminated, and all its CSs are passes to the WCC 
algorithm.

(ii) Applying the proposed algorithm (the WCC): As mentioned before, at the end of the first step, GA passes 
the created CSs to the proposed algorithm (the flowchart of the WCC algorithm is shown in Fig. 5) and 
constitutes its first population of CSs. Next, WCC changes the CSs using its operators, which are explained 
and formulated as follows:

Figure 3.  An example of the utilized mutation operator, which choses a variable randomly and changes its 
value. (a) The status of a CS has been shown before applying the operator. (b) The status of a CS has been shown 
after applying the operator. CS, candidate solution.

Figure 4.  An instance of the utilized crossover operator. (a) A range from two CSs are randomly chosen, which 
their length is the same. (b) The values of the specified ranges are transferred. (c) After changing the values, the 
repeated values are removed, and the others are sorted. CS, candidate solution.
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(a) Attacking operator: For a given CS, this operator selects some variables randomly and assigns them 
new values by chance from [1, n], where n is the total number of the existing features/genes. Equa-
tion 2 formulates the attacking operator:

 where CS, n, and k are a given candidate solution, the total number of features, and an integer random 
value between 1 and n, respectively. In other words, the k parameter determines how many variables 
of a CS must be changed. Further, the sigma sign denotes a loop, and r is an integer value between 1 
and n as is k. Here, is an example of the attacking operator in Fig. 6.

(b) Transferring operator: Based on the scores (classification accuracy using a given CS), this operator 
selects several CSs with the highest score (Selected_CS), and then, chooses randomly some values 
(features) from them. Next, for a given CS, this operator imports the selected values. Equation 3 
formulates the mentioned steps. Figure 7 describes the transferring operator in detail.

(2)
k∑

i=1

[CS(r) = rand(n)]

(3)
R∑

j=1

k∑

i=1

[CS(r) = selectedCSm(rand(l))]

Figure 5.  Flowchart of the WCC algorithm (the algorithm developed here). The WCC algorithm receives its 
first population of CSs from the GA and applies its operators on them. If the changes induced by the operators 
improve the accuracy, they are accepted. Otherwise, the changes are ignored. CS, candidate solution; GA, 
genetic algorithm; SVM, support vector machines.

Figure 6.  An example of the attacking operator. The array presents a CS which includes a set of the features. 
(a) Some indices of a CS are randomly chosen. The values of the selected indices have been highlighted by the 
pink colors. (b) The values of the determined indices are replaced by other randomly generated values. The blue 
colors show the replaced values. If repeated values appear, one of them remains and others are eliminated. The 
size of a CS may be reduced after applying the attacking operator. CS, candidate solution.
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where l  , R, and m are the length of the selected_CS, a random integer value between 1 and the total 
number of selected CSs, and an index which shows the randomly selected_CS, respectively. Further, 
other parameters have been described in Eq. 2.

(c) Passing operator: While the transferring and attacking operators may result in large changes in a CS, 
this operator guarantees low modifications. For this purpose, the operator only selects a variable by 
chance and changes its value. Equation 4, whose parameters are explained in Eq. 2, formulates the 
passing operator.

  Figure 8 illustrates an example of the passing operator and explains how the operator can be applied 
to the FS problem.

  Each of the changes induced by the operators will be accepted if they increase the accuracy score. 
Further, repeated features may appear by applying the operators. In these situations, only one of the 
repeated features is kept and all others are removed. Hence, the length of CSs may vary.

(d) Investigating the termination conditions: For terminating the algorithms, several options (e.g., predefined 
number of iterations, time, accuracy, etc.) can be used. In the present study, two different strategies are 
chosen for terminating the algorithm. As mentioned before, when the value of accuracy remains about 

(4)CS(r) = rand(n)

Figure 7.  An instance of the transferring operator. The arrays present CSs which include a set of different 
features. (a) Five CSs with the highest scores are selected. The colored indices are the variables (features), which 
are imported to the given CS. The blue colors are the variables that are randomly selected and are removed from 
the given CS. (b) The status of the given CS is shown after deleting the blue highlighted features and inserting 
the pink highlighted features. (c) The finalized status of the given CS is presented. In this step, the selected 
features are sorted, and the repeated ones are removed. CS, candidate solution.

Figure 8.  An example of the passing operator. The array presents a CS which includes a set of the features (a) 
The status of a CS before applying the passing operator is presented. One of the features has been randomly 
selected. (b) The status of the CS after applying the passing operator. The determined feature has been replaced 
by another feature. CS, candidate solution.
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constant in the last ten iterations, the GA is finished. For the WCC algorithm, a predetermined number of 
iterations has been considered as the termination condition.

Results
To obtain results, a computer system with a dual-core 2.2 GH processor and 12 GB of RAM was employed. Fur-
ther, our designed FeatureSelect software application and MATLAB programming language were used for the 
implementations. In this section, all the obtained outcomes refer to results from the five-fold cross-validation 
technique. For comparing the algorithms and methods, the same conditions were considered. For example, GA, 
WCC algorithm, and GA_WCC method allowed to run for an identical time for getting the results. The size of 
populations for the GA, WCC algorithm, and GA_WCC method was determined using a “trial and error” method 
and their time-consuming parameter, in which the best performance of the algorithms is observed. Based on the 
outcomes, the population sizes were considered 100, 20, and 100 for the GA, WCC algorithm, and GA_WCC 
method, respectively. The mutation and crossover rates were set to 30%, because the GA shows a suitable behavior 
based on them. In addition to the population size parameters, the WCC algorithm consists of the match time 
(the total number of attempts to change a CS) parameter, which has been set to 2. This parameter was initiated 1 
to the GA_WCC method. The outcomes (which encompassed the results of five popular filter FS methods, GA, 
WCC, a two-step filter-wrapper method (EN_WCC), and the proposed wrapper-wrapper method (GA_WCC)), 
were divided into the following three categories:

 (i) The first category of the results: This class consists of the results obtained from applying the mentioned 
algorithms and methods to the datasets having more than 50 features and relating to the classification 
type. Tables 2 and 3 represent the attained outcomes. Also, Fig. 9 depicts the results of the SVM without 
applying the FS algorithms on the investigated datasets.

   Wrapper-based FS methods improve the performance of SVM, whereas Filter-based FS approaches 
may reduce its performance. Overall, among the filter methods, the entropy-based (EN) FS method has 
led to more appropriate results than others. Moreover, between GA and WCC algorithms, WCC yields 
better outcomes. Hence, a combination of EN and WCC (the so-called EN_WCC) is also investigated 
and compared against the others. For the Cancer dataset, GA_WCC, GA, and WCC have yielded the best 
solutions. However, GA_WCC and GA classify the data with six features, whereas WCC classifies them 
with ten attributes. For the Arrhythmia dataset, the proposed approach outperforms others in terms of 
the total number of features (NOF) and other classification criteria. For the Diabetes dataset, EN_WCC 
yielded a minimum number of features and have yielded better outcomes than the filter methods, as 
observed for the cancer dataset. Nevertheless, the data of GA_WCC, WCC, and GA surpass EN_WCC. 
Similar outcomes are observed for the other datasets. Tables 2 and 3 show that wrapper and two-step 
methods are more efficient than the filter ones, and their performance can be sorted as GA_WCC, WCC, 
GA, and EN_WCC, respectively.

   For further evaluating the methods, receiving operating characteristic (ROC) curves of the methods 
are shown in Figs. 10 and 11. The area under the curve (AUC) values of the approaches on the datasets of 
the first class of the outcomes are shown in Table 4. The two-step and wrapper approaches have remark-
able functionality compared to the others, and the proposed method outperforms all of them (Figs. 10, 
11, Tables 2, 3, and 4). In another evaluation of the algorithm’s performance, the p-value (PV) measure-
ment was considered (Table 5). To this end, every algorithm was performed in 50 individual executions, 
and the results of the proposed method (GA_WCC) were considered as a test base. Next, the outcomes 
of the other algorithms were compared with them. Except for the Cancer dataset, in which the effective-
ness of the algorithms is the same, the proposed method has outperformed the others for the remaining 
datasets. Figure 12 also presents boxplots of the algorithms’ outputs obtained using One-Way ANOVA 
test. Every execution consists of 100 iterations of the algorithms step. At the end of an iteration, the best 
acquired accuracy was stored, and the convergence behavior of the algorithms were investigated for the 
datasets including more than 1000 features (Fig. 13). It was observed that the convergence speed of the 
proposed method is higher than the GA and WCC algorithms (without merging them). As mentioned 
before, the combined method can efficiently address the limitations of the GA and WCC algorithm (the 
low convergence of the GA algorithm and the restricted number of CSs in the WCC) and yield better 
outcomes when combined than when run individually.

   In filter FS methods, determining the total number of features is a challenging problem and plays an 
essential role in the performance of a model. The results of the five filter approaches are shown in Figs. 14, 
15, 16, and 17. These outcomes show the performance of the filter FS methods with a different number 
of features.

 (ii) The second category of results: This section includes the results of the algorithms on the datasets having 
less than 50 features/attributes. The main goal of this section is to check the effect of FS methods on 
datasets, which consist of fewer numbers of features. For the small datasets, single wrapper methods do 
not face special challenges in the FS. Indeed, the mentioned FS methods may obtain the best solution 
by improving the run time. Hence, in this section, the functionality of the GA and WCC algorithms are 
inspected. Like for the first part, criteria such as sensitivity, specificity, accuracy, precision, and AUC 
were investigated. The acquired data are listed in Table 6.

   Without applying the GA and WCC algorithms, SVM alone yields 0.5263, 0.6645, and 0.5812 value of 
accuracy using the fivefold cross-validation technique on the CHD, SHD, and PID datasets, respectively. 
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By applying the algorithms, the value of accuracy improved for the CHD and SHD datasets and remains 
unchanged for the PID dataset. Further, the total number of features is remarkably reduced. Thus, the 
obtained models obtained by applying the algorithms operate faster than the model, which uses all the 
existing features. Having compared GA and WCC algorithms, WCC was seen to lead to a model with 
lower number of features and higher values of criteria. Therefore, it might be concluded that the state-
of-the-art optimization algorithm can get more acceptable data than others.

 (iii) The third category of the results: In this section, the outcomes of the methods and algorithms are evalu-
ated on the regression-based dataset (WDBC and drug datasets). To this end, the criteria such as root 
mean squared error (RMSE) and the correlation between predicted and real labels were calculated and 
gathered (Table 7). For the filter FS methods, different numbers of features have been tested, and then, 
their best results were reported. For the wrapper FS approaches, it is not necessary to limit the total 
number of features and they can regulate it. Even so, they produce variable results in their different 
executions, so they must be executed at least 30 times and their best-obtained outcomes among from 
the executions (different accuracy values of the executions) are reported as a solution to the problem. 
Thus, several criteria were reported for them, based on the acquired results in 50 individual executions, 
including confidence interval (CI), p-value, standard deviation (STD), etc.

Table 2.  Acquired outcomes based on fivefold cross-validation in the first class of results on the Cancer, 
Arrythmia, Diabetes, and Lung datasets. The best outcomes have been highlighted. NOF, number of features; 
SEN, sensitivity; SPC, specificity; PRE, precision; FPR, false positive rate; ACC, accuracy; C-Kappa, Cohen’s 
kappa coefficient; WCC, world competitive contests algorithm; GA, genetic algorithm; PC, Pearson correlation; 
LA, Laplacian score; EN, entropy; MI, mutual information; FI, Fisher score.

Algorithm NOF SEN SPC PRE FPR ACC F-measure C-Kappa dataset

GA 6 1.000 1.000 1.000 0.000 1.000 1.00 0.00

Cancer

WCC 10 1.000 1.000 1.000 0.000 1.000 1.00 0.00

GA_WCC 6 1.000 1.000 1.000 0.000 1.000 1.00 0.00

PC 20 0.958 0.968 0.968 0.032 0.958 0.96 0.06

LA 20 0.958 0.968 0.968 0.032 0.958 0.96 0.06

EN 20 0.964 0.968 0.968 0.032 0.964 0.97 0.05

MI 20 0.961 0.968 0.968 0.032 0.961 0.96 0.05

FI 20 0.961 0.968 0.968 0.032 0.961 0.96 0.05

EN_WCC 6 0.979 0.980 0.986 0.020 0.979 0.98 0.03

GA 42 0.721 0.730 0.732 0.270 0.721 0.73 0.37

Arrhythmia

WCC 46 0.786 0.797 0.801 0.203 0.786 0.79 0.29

GA_WCC 22 0.899 0.902 0.912 0.098 0.899 0.91 0.13

PC 40 0.504 0.511 0.530 0.489 0.504 0.52 0.66

LA 40 0.504 0.511 0.530 0.489 0.504 0.52 0.66

EN 40 0.509 0.511 0.530 0.489 0.509 0.52 0.65

MI 40 0.488 0.497 0.427 0.503 0.488 0.46 0.68

FI 40 0.506 0.511 0.530 0.489 0.506 0.52 0.66

EN_WCC 67 0.512 0.478 0.511 0.522 0.512 0.51 0.65

GA 27 0.922 0.815 0.926 0.185 0.922 0.92 0.10

Diabetes

WCC 27 0.949 0.918 0.955 0.082 0.949 0.95 0.07

GA_WCC 17 0.993 0.998 0.995 0.002 0.993 0.99 0.01

PC 50 0.266 0.726 0.438 0.274 0.266 0.33 0.98

LA 50 0.271 0.726 0.438 0.274 0.271 0.33 0.97

EN 50 0.269 0.726 0.438 0.274 0.269 0.33 0.97

MI 50 0.729 0.300 0.807 0.700 0.729 0.77 0.36

FI 50 0.727 0.300 0.807 0.700 0.727 0.76 0.36

EN_WCC 9 0.826 0.651 0.828 0.349 0.826 0.83 0.23

GA 33 0.745 0.929 0.854 0.071 0.745 0.80 0.34

Lung

WCC 38 0.749 0.929 0.854 0.071 0.749 0.80 0.33

GA_WCC 13 0.749 0.917 0.875 0.083 0.749 0.81 0.33

PC 15 0.372 0.625 0.453 0.375 0.372 0.41 0.84

LA 15 0.492 0.700 0.723 0.300 0.492 0.59 0.68

EN 15 0.623 0.775 0.813 0.225 0.623 0.71 0.50

MI 15 0.367 0.625 0.453 0.375 0.367 0.41 0.84

FI 15 0.373 0.625 0.453 0.375 0.373 0.41 0.84

EN_WCC 12 0.741 0.750 0.830 0.250 0.741 0.78 0.35
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From the run-time perspective, filter FS methods require less time than wrapper approaches, but do not result 
in improved outcomes. For instance, for the WDBC dataset, the entropy FS approach yields the minimum value 
of error and the maximum value of correlation between the predicted and real labels, when the total number 
of features is limited to 13. The value of correlation can be calculated not only for the entropy method but also 
for others. As the first class of results, the second one also shows the remarkable performance of the proposed 
approach (GA_WCC) in terms of error, correlation, the total number of selected features, run-time, etc. Besides, 
WCC and GA present that wrapper FS method may acquire better results than the filter FS approaches. In Fig. 18, 
the scatter plots of the proposed method on the regression-based datasets are shown.

Discussion
Many methods and algorithms have been proposed for selecting an optimal subset of features, which is indeed 
an NP-hard problem, particularly in machine learning with a biological context. Besides enhancing the separa-
bility power of a model, optimal features improve the speed of a model and may lead to valuable results such as 
acquiring an optimal kit of biomarkers to be used in applications. In this area, it has been shown that two-step FS 
approaches lead to better outcomes than single  methods59, and wrapper-based FS methods usually outperform 

Table 3.  Acquired outcomes based on fivefold cross-validation in the first class of results on the QSAR, 
Arcene, MicroMass, and RNA-Seq datasets. The best outcomes have been highlighted. NOF, number of 
features; SEN, sensitivity; SPC, specificity; PRE, precision; FPR, false positive rate; ACC, accuracy; C-Kappa, 
Cohen’s kappa coefficient; WCC, world competitive contests algorithm; GA, genetic algorithm; PC, Pearson 
correlation; LA, Laplacian score; EN, entropy; MI, mutual information; FI, Fisher score.

Algorithm NOF SEN SPC PRE FPR ACC F-measure C-Kappa dataset

GA 29 0.778 0.788 0.790 0.212 0.778 0.784 0.296

QSAR

WCC 25 0.848 0.860 0.865 0.140 0.848 0.856 0.202

GA_WCC 25 0.970 0.974 0.984 0.026 0.970 0.977 0.040

PC 80 0.544 0.552 0.572 0.448 0.544 0.558 0.608

LA 80 0.544 0.552 0.572 0.448 0.544 0.558 0.608

EN 80 0.549 0.552 0.572 0.448 0.549 0.560 0.601

MI 80 0.527 0.536 0.461 0.464 0.527 0.492 0.631

FI 80 0.546 0.552 0.572 0.448 0.546 0.559 0.605

EN_WCC 25 0.573 0.536 0.572 0.464 0.573 0.572 0.570

GA 27 0.711 0.720 0.721 0.280 0.661 0.716 0.452

Arcene

WCC 27 0.771 0.781 0.785 0.219 0.721 0.778 0.372

GA_WCC 22 0.875 0.877 0.886 0.123 0.825 0.880 0.234

PC 150 0.512 0.519 0.536 0.481 0.462 0.524 0.717

LA 150 0.512 0.519 0.536 0.481 0.462 0.524 0.717

EN 150 0.517 0.519 0.536 0.481 0.467 0.526 0.711

MI 150 0.498 0.506 0.442 0.494 0.448 0.468 0.737

FI 150 0.514 0.519 0.536 0.481 0.464 0.525 0.715

EN_WCC 43 0.540 0.508 0.539 0.492 0.490 0.539 0.681

GA 16 0.709 0.717 0.719 0.283 0.609 0.714 0.521

MicroMass

WCC 31 0.764 0.774 0.777 0.226 0.664 0.771 0.448

GA_WCC 26 0.860 0.862 0.871 0.138 0.760 0.865 0.320

PC 50 0.526 0.532 0.548 0.468 0.426 0.537 0.765

LA 50 0.526 0.532 0.548 0.468 0.426 0.537 0.765

EN 50 0.530 0.532 0.548 0.468 0.430 0.539 0.760

MI 50 0.512 0.520 0.461 0.480 0.412 0.485 0.783

FI 50 0.528 0.532 0.548 0.468 0.428 0.538 0.763

EN_WCC 16 0.553 0.524 0.552 0.476 0.453 0.552 0.730

GA 48 0.745 0.754 0.755 0.246 0.695 0.750 0.407

RNA-Seq

WCC 51 0.807 0.818 0.822 0.182 0.757 0.815 0.323

GA_WCC 18 0.916 0.919 0.929 0.081 0.866 0.923 0.178

PC 30 0.536 0.542 0.561 0.458 0.486 0.548 0.686

LA 30 0.536 0.542 0.561 0.458 0.486 0.548 0.686

EN 30 0.541 0.542 0.561 0.458 0.491 0.550 0.679

MI 30 0.520 0.529 0.462 0.471 0.470 0.489 0.706

FI 30 0.538 0.542 0.561 0.458 0.488 0.549 0.683

EN_WCC 17 0.563 0.531 0.562 0.469 0.513 0.563 0.649
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filter and embedded FS  techniques60. The results of this study also confirm the mentioned observations and allow 
for the following important key conclusions:

First, wrapper FS methods may obtain an optimal subset of features, which do not require confining the total 
number of features to a predefined number. Nevertheless, there are some restrictions in determining the total 
number of selected features. For example, wrapper methods may obtain a subset of attributes with the highest 
score, while the total number of the selected features may be greater than the required number of features (prob-
lem limitations). In this line, we believe that wrapper FS methods are still better than the filter and embedded FS 
approaches, in large part because they can be formulated in a way to resolve the problem constraints.

Second, limiting the filter methods to a predefined number is a challenging problem and affects the per-
formance of filter FS approaches. The results of this work show that the performance of filter FS approaches 
vary with the different number of selected features. Thus, this parameter remains a challenge for researchers. 

Figure 9.  The performance of the SVM without applying FS algorithms on the datasets.

Figure 10.  ROC curves of the methods on the first category of datasets. (a) The ROC curve of the manners 
on the Cancer dataset (Adeno dataset). Although all the methods have acceptable performance, the proposed 
method (GA_WCC) has higher separating power relative to the others. (b) The ROC curve of the methods on 
the Arrhythmia dataset. Like the first section, GA_WCC show better performance in term of classifying power. 
(c) The ROC curve of the manners on the Diabetes dataset. These results also validate that two-step and wrapper 
methods obtain better results than filter FS methods. (d) The ROC curve of the manners on the Lung dataset. 
In addition to accrediting the results of the three mentioned section, these diagrams state that EN reaches to 
a better solution than other filter approaches, and its combination with WCC improves the performance of 
a model. ROC, receiving operating characteristic; WCC, world competitive contests algorithm; GA, genetic 
algorithm; PC, Pearson correlation; LA, Laplacian score; EN, entropy; MI, mutual information; FI, Fisher score.
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However, wrapper methods, which consider a set of features instead of examining each of them separately, do 
not face this restriction.

Third, the FS is also essential for datasets having a low number of features. In the second part of the results, 
the performance of wrapper FS methods was investigated on some gold-standard datasets, for which their total 
number of features is less than 50. Based on other conducted  studies61, it seems that the FS has been ignored in 
these works even though it may improve the performance. For this class of datasets, considering the total number 
of features, single wrapper methods might be a proper method.

Forth, wrapper-wrapper FS methods may be the best option for selecting an optimal subset of features. In 
the last decade, different types of hybrid methods have been introduced for the FS problem due to their amazing 
results. However, most of them combine filter-filter or filter-wrapper approaches and a suitable configuration of 

Figure 11.  ROC curves of the methods on the second category of datasets (high dimensional). (a) The ROC 
curve of the manners on the QSAR dataset. (b) The ROC curve of the methods on the Arcene dataset. (c) The 
ROC curve of the methods on the MicroMass dataset. (d) The ROC curve of the manners on the RNA-Seq 
dataset. Like Fig. 10, these diagrams state that optimization algorithm can acquire better results than other 
algorithms, and two-step feature selection method may be a suitable technique for choosing the most effective 
features or genes in the biology field. ROC, receiving operating characteristic; WCC, world competitive contests 
algorithm; GA, genetic algorithm; PC, Pearson correlation; LA, Laplacian score; EN, entropy; MI, mutual 
information; FI, Fisher score.

Table 4.  The AUC values of the methods in the first category of the results. The best outcomes have been 
highlighted. WCC, world competitive contests algorithm; GA, genetic algorithm; PC, Pearson correlation; LA, 
Laplacian score; EN, entropy; MI, mutual information; FI, Fisher score.

dataset WCC GA GA_WCC PC LA EN MI FI EN_WCC 

Cancer 1.000 1.000 1.000 0.962 0.962 0.965 0.964 0.964 0.979

Arrhythmia 0.726 0.791 0.900 0.507 0.507 0.510 0.507 0.508 0.504

Diabetes 0.868 0.933 0.995 0.503 0.501 0.502 0.514 0.513 0.738

Lung 0.837 0.838 0.838 0.501 0.595 0.698 0.504 0.501 0.745

QSAR 0.783 0.854 0.972 0.548 0.548 0.550 0.532 0.549 0.554

Arcene 0.715 0.776 0.876 0.515 0.515 0.518 0.502 0.516 0.524

MicroMass 0.713 0.769 0.861 0.529 0.529 0.531 0.516 0.530 0.538

RNA-Seq 0.749 0.813 0.918 0.539 0.539 0.541 0.525 0.540 0.547

Table 5.  A comparison of the obtained results based on the p-value criterion.

Cancer Arrythmia Diabetes Lung QSAR Arcene MicroMass RNA-Seq

GA 1 7.06e−18 1.38e−15 0.001 7.06e−18 7.06e−18 7.06e−18 7.06e−18

WCC 1 7.06e−18 5.41e−13 5.42e−05 7.06e−18 3.31e−20 7.06e−18 7.06e−18
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Figure 12.  Boxplot of the GA, WCC, GA_WCC algorithms on the (a) Cancer, (b) Arrythmia, (c) Diabetes, 
(d) Lung, (e) QSAR, (f) Arcene, (g) MicroMass, and (h) RNA-Seq datasets. For the Cancer dataset, all the 
algorithms have shown an identical performance. For the remaining ones, although the error value of the GA 
and WCC algorithms is lower than the GA_WCC method, the proposed method has outperformed the GA 
and WCC algorithms in terms of accuracy and other classification criteria. WCC, world competitive contests 
algorithm; GA, genetic algorithm;

Figure 13.  Convergence of the GA, WCC, and GA-WCC algorithms on the (a) QSAR, (b) Arcene, (c) 
MicroMass, and (d) RNA-Seq datasets. In the early stages of the iterations, the algorithms present a similar 
behavior. However, after elapsing more times, the WCC algorithm shows better performance than the GA, and 
the proposed method exhibits proper convergence behavior than the WCC algorithm.
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Figure 14.  Outcomes of the filter FS methods on the Cancer dataset with selecting (a) 20, (b) 40, (c) 60, and 
(d) 80 features. When the number of features (NOF) is confined to 80, all the ways acquire the best possible 
solution. PC, Pearson correlation; LA, Laplacian score; EN, entropy; MI, mutual information; FI, Fisher score.

Figure 15.  Outcomes of the filter FS methods on the Arrhythmia dataset with selecting (a) 400, (b) 800, (c) 
120, and (d) 160 features. The results of the methods differ from each other with a various number of features. 
PC, Pearson correlation; LA, Laplacian score; EN, entropy; MI, mutual information; FI, Fisher score.
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Figure 16.  Outcomes of the filter FS methods on the Diabetes dataset with selecting (a) 20, (b) 30, (c) 40, and 
(d) 50 features. The confining total number of features may lead to different results. PC, Pearson correlation; LA, 
Laplacian score; EN, entropy; MI, mutual information; FI, Fisher score.

Figure 17.  Outcomes of the filter FS methods on the Lung dataset with selecting (a) 15, (b) 20, (c) 25, and 
(d) 30 features. The EN method with an average of 81% accuracy is better than other approaches. PC, Pearson 
correlation; LA, Laplacian score; EN, entropy; MI, mutual information; FI, Fisher score.
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Table 6.  Results based on fivefold cross-validation in the second class of obtained data. The best outcomes 
have been highlighted. NOF, number of features; SEN, sensitivity; SPC, specificity; PRE, precision; FPR, false 
positive rate; ACC, accuracy; AUC, area under the curve.

AL_NAME NOF SEN SPC PRE FPR ACC AUC Dataset

GA 5 0.676 0.459 0.684 0.541 0.684 0.567
CHD

WCC 8 0.710 0.549 0.709 0.451 0.737 0.629

GA 24 0.717 0.500 0.717 0.500 0.710 0.665
PID

WCC 22 0.707 0.564 0.705 0.436 0.716 0.665

GA 28 0.872 0.854 0.876 0.146 0.873 0.863
SHD

WCC 6 0.887 0.887 0.891 0.113 0.891 0.887

Table 7.  Comparison of the methods on the regression-based datasets. The best outcomes have been 
highlighted. WCC, world competitive contests algorithm; GA, genetic algorithm; PC, Pearson correlation; 
LA, Laplacian score; EN, entropy; MI, mutual information; FI, Fisher score; NOF, number of features; ET, 
elapsed time; ER, error; STD, standard deviation; CI, confidence interval; TS, test statistics; PV, p-value; CR, 
correlation; 1, indicates low bound of confidence interval; 2, indicates high bound of confidence interval.

Dataset Method NOF ET ER ER_STD ER_CI_1 ER_CI_2 ER_PV ER_TS CR CR_STD CR_CI_1 CR_CI_2 CR_PV CR_TS

Drug

WCC 44 18.260 0.080 0.030 0.128 0.140 3.06043E−21 25.144 0.962 0.017 0.948 0.950 1.07907E−52 312.159

GA 47 15.021 0.104 0.017 0.129 0.142 5.83777E−28 43.488 0.946 0.012 0.941 0.950 1.28025E−56 426.359

PC 49 4.158 1.186 – – – – – 0.329 – – – – –

LA 47 4.971 1.182 – – – – – 0.325 – – – – –

EN 50 4.957 0.987 – – – – – 0.322 – – – – –

MI 50 4.485 1.181 – – – – – 0.322 – – – – –

FI 49 4.800 1.186 – – – – – 0.322 – – – – –

EN_WCC 55 10.933 0.491 0.070 0.639 0.691 3.00496E−30 52.271 0.706 0.052 0.548 0.588 6.74362E−32 59.653

GA_WCC 24 17.530 0.105 0.010 0.125 0.133 7.9859E−34 69.586 0.884 0.015 0.867 0.878 2.42408E−53 328.658

WDBC

WCC 12 23.200 0.030 0.006 0.047 0.051 4.10491E−66 906.110 0.965 0.006 0.948 0.952 6.47489E−29 46.963

GA 13 35.952 0.034 0.006 0.048 0.054 7.8477E−67 959.312 0.035 0.006 0.940 0.944 1.21143E−27 42.391

PC 14 0.414 0.941 – – – – – – 0.326 – – – –

LA 14 0.442 0.910 – – – – – – 0.317 – – – –

EN 13 0.492 0.949 – – – – – – 0.305 – – – –

MI 14 0.479 0.907 – – – – – – 0.294 – – – –

FI 13 0.496 0.997 – – – – – – 0.293 – – – –

EN_WCC 12 23.200 0.030 0.006 0.047 0.051 4.10491E−66 906.110 0.965 0.006 0.948 0.952 6.47489E−29 46.963

GA_WCC 9 29.242 0.011 0.001 0.037 0.045 6.12101E−71 1001.001 0.983 0.000 0.966 0.971 8.16211E−34 52.660

Figure 18.  Scatter plot of the proposed method on the Drug and WDBC datasets. Blue and red points indicate 
real and predicted values, respectively. The value of RMSE for the drug and WDBC datasets are 0.14 and 0.01, 
respectively.
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wrapper-wrapper methods have been ignored. In the present investigation, a wrapper-wrapper approach based 
on GA and the proposed WCC-algorithm was introduced, which resulted in superior outcomes compared to 
the other approaches. The WCC algorithm starts with a first population of CSs and, then, applies its operators 
to them in order to obtain a better solution to the FS problem. The main difference between the WCC algorithm 
and other optimization algorithms relates to the steps of the algorithm and its operators. The two-step approaches 
differ from hybrid methods that merge the optimization algorithms such as the whale optimization algorithm and 
simulated  annealing62. In this study, to obtain an efficient combination of the algorithms, the advantages and limi-
tations of the GA and WCC algorithm were considered. Since the GA produces various CSs, the WCC algorithm 
confines them to a limited number. Unlike the WCC algorithm, the GA may suffer from low convergence speed 
and not show a suitable performance relative to other optimization algorithms. Given the mentioned reasons, 
GA and WCC algorithm were combined, and the results showed that their combination yields better outcomes.

Fifth, the performance of algorithms and methods varies on different datasets. Every algorithm or method 
has its own attitude relative to the FS problem, so their functionality may differ on various data. Generally, it is 
impossible to predict a priori, which of the methods or algorithms is suitable for a given problem. Nonetheless, 
wrapper-wrapper FS approaches appear promising to produce desired results. As a future work, the proposed 
method can be applied to other algorithms such as the Salp Swarm  Algorithm63 and  DE64 with considering 
limitations and disadvantages. Also, the proposed method scores a set of features and does not rank the features 
of the obtained set. To address this limitation, the proposed approach can be combined with state-of-the-art 
ranking techniques such as SVM-RFE65,66.

Conclusion
For selecting an optimal subset of features, a two-step wrapper-wrapper FS method based on GA and our pro-
posed algorithm (WCC) was introduced and applied to the thirteen biological datasets with different properties. 
In comparison with other approaches, it can be concluded that two-step techniques may lead to better results than 
single-step methods. Furthermore, among the two-step approaches, wrapper-wrapper FS methods may be more 
appropriate than others. For biological applications, it seems that wrapper approaches are the most convenient 
and reliable method, in large part because they do not need to be restricted to a predefined number of features. 
Taken together, based on our findings, wrapper-wrapper FS methods can be used to optimize the FS problems 
and result in robust and desired outcomes.
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