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Introduction: Diabetes is the most common cause of chronic kidney disease (CKD). Urinary albumin

excretion rate (AER) and estimated glomerular filtration rate (eGFR) are commonly used to monitor the

onset and progression of diabetic kidney disease (DKD). We studied if the preceding rate of kidney function

decline, that is, the eGFR slope, is independently associated with incident clinical cardiorenal events.

Methods: This study included longitudinal data for 2498 Finnish individuals with type 1 diabetes (T1D). The

eGFR slope was calculated from 5 years preceding the study visit. Data on kidney failure, coronary heart

disease (CHD), stroke, 3-point major adverse cardiovascular events (MACE), heart failure, and death were

obtained from national registries. The associations between the eGFR slope and incident events were

assessed with multivariable competing risk models during the average follow-up of 9.2 years.

Results: The eGFR slopes were associated (P # 0.001) with all outcomes when adjusted for age, sex, and

HbA1c. However, eGFR slope remained associated only with the composite outcome of kidney failure or

death when the albuminuria group and eGFR at the study visit were included in the model (P ¼ 0.041). In

addition, eGFR slope was independently associated with kidney failure in individuals without CKD (eGFR >
60 ml/min per 1.73 m2; P ¼ 0.044), and with heart failure in those with CKD (P ¼ 0.033). However, eGFR

slope did not markedly improve the model C-index.

Conclusion: The eGFR slope was independently associated with kidney failure in those without CKD, and

with heart failure in those with CKD. However, it is unlikely to have major relevance for clinical practice

when the current eGFR and albuminuria status are known.

Kidney Int Rep (2023) 8, 2043–2055; https://doi.org/10.1016/j.ekir.2023.07.026

KEYWORDS: competing risk regression; decline of eGFR; eGFR slope; heart failure; kidney failure; type 1 diabetes

ª 2023 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
D
iabetes is the most common cause of CKD, ac-
counting for 31% of the CKD-associated

disability-adjusted life-years.1 Individuals with T1D
develop the disease early in life, and are at particularly
high risk: 1 in 4 individuals with T1D is reported to
develop kidney failure after 40 years of diabetes
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duration in the United States.2 Even though the inci-
dence of kidney failure has significantly decreased in
people with T1D over the past decades, the 40-year cu-
mulative risk remains over 10% in more recent studies
despite improvements in the treatment of elevated
blood glucose and hypertension.3 In particular, the
progression rate from severe albuminuria to kidney
failure remains high at 35%,4 emphasizing the need
for early intervention to prevent DKD. In addition,
the risk of both cardiovascular disease (CVD) and all-
cause mortality increases steeply with the severity of
DKD.5,6 Although the risk of CVD has markedly
decreased over time, the standardized incidence ratio
remains 9-fold for CHD and 3-fold for stroke in individ-
uals diagnosed with T1D in the 1990s compared with
the general population.7 Although there is no cure for
2043
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DKD, improved glycemic control8–10 and antihyperten-
sive treatment with renin-angiotensin system inhibitors
can slow down the progression of the disease.11–13

Therefore, effective identification and early intervention
with standard of care is essential for the prevention of
both kidney failure and CVD events.

Prediction of kidney failure remains a challenge, even
among those with severe albuminuria.14 Kidney func-
tion can be assessed with eGFR based on serum creati-
nine or cystatin C measurements. For people without
CKD, kidney function declines gradually with age from
normal values ($90 ml/min per 1.73 m2) by approxi-
mately 1 ml/min per 1.73 m2 per year.15,16 However, the
rate of the eGFR decline, that is, the eGFR slope, varies
greatly among individuals. In a study from the Joslin
Diabetes Center, 25% of participants who developed
kidney failure had an eGFR slope of �15 ml/min per
1.73 m2 per year or steeper, resulting in kidney failure
within 2 to 5 years, when starting from an eGFR of 100
ml/min per 1.73 m2. Previous studies have shown that
clinical risk factors such as higher HbA1c, urine
albumin-to-creatinine ratio (ACR), and eGFR are associ-
ated with rapid eGFR decline.17

It has been suggested that once kidney function
starts to decline, the rate of eGFR decline is linear.18

Therefore, the following questions arise: whether
knowing the rate of eGFR decline in the past would
improve the prediction of kidney failure and other
clinical end points, and whether this information
would provide additional prognostic information to the
clinical measurements available at the time of a visit to
a clinic. Studies in the general population and in in-
dividuals with CKD indicate that a steep decline of
eGFR is associated with CVD events19,20 and/or
death,19–23 in some studies even independent of the
baseline kidney parameters.23 Rapid kidney function
decline has been associated with MACE among in-
dividuals with type 2 diabetes.24 Furthermore, in 8879
participants with type 2 diabetes, a decrease in eGFR
of < �1.63 ml/min per 1.73 m2 per year was associated
with the future risk of kidney and cardiovascular
events and all-cause mortality even after adjustment for
the baseline eGFR.25 On the contrary, in a study of 1441
participants with a relatively well-preserved kidney
function and a short duration of T1D from the Diabetes
Control and Complications Trial and the subsequent
Epidemiology of Diabetes Interventions and Compli-
cations study, an early rapid eGFR loss ($3% per year)
was not associated with the risk of CKD, mortality, or
MACE after adjusting for the baseline eGFR.26 Given
these contradictory results, the aim of the present
study was to evaluate whether the preceding eGFR
slope would provide additional value beyond the kid-
ney parameters measured at the study visit in
2044
predicting the risk of kidney and CVD end points as
well as death, in a large cohort of Finnish individuals
with T1D with a wide range of eGFR, age, and duration
of diabetes.

METHODS

Data Collection

The original study population included 5505 in-
dividuals with T1D from the Finnish Diabetic Ne-
phropathy (FinnDiane) Study, which is an ongoing
nationwide multicenter study launched in 1997. The
recruitment and clinical characterization of the partic-
ipants has been described earlier.27 In brief, adult in-
dividuals with T1D are recruited from >80 hospitals
and health centers throughout Finland. Data on dia-
betic complications, history of cardiovascular event(s),
and prescribed medications are registered during a
standard visit to the attending physician using stan-
dardized questionnaires, and blood and urine samples
are collected during this FinnDiane “A-visit.” Partici-
pants are invited to a second, FinnDiane “B-visit”
following a similar study protocol approximately 5 to 7
years after the FinnDiane A-visit. ACR was measured
from a 24-hour or overnight urine collection at the time
of the study visits. Serum creatinine values were
measured and used to calculate eGFR with the CKD-
Epidemiology Collaboration (CKD-EPI) formula.28

In addition, we considered 3084 additional in-
dividuals with T1D from the Finnish Institute for
Health and Welfare (THL) diabetes studies with
phenotypic data obtained from the medical files and
national registries. For 584 of these participants, we
had data on ACR, eGFR, and HbA1c from blood, serum,
and urine collected at THL during 1995 to 2004; the
sample collection date was considered as the study
baseline visit. For the remaining participants without
sample collection, the latest date from medical files
available (median 2014, range 1991–2016) was consid-
ered as the baseline date for this study.

The study protocols were approved by the Helsinki
and Uusimaa Hospital District Ethics Committee, and
the study was performed in accordance with the
Declaration of Helsinki. Written informed consent was
obtained from each participant.

Phenotype Definitions and Study Inclusion

Criteria

The participant inclusion and exclusion criteria are
presented in Figure 1. All participants were diagnosed
with T1D by their attending physician. Furthermore,
we included only participants with the age at diabetes
onset <40 years and insulin treatment initiated within
1 calendar year from the diagnosis of diabetes
(or unknown for the THL participants, if no suspicion
Kidney International Reports (2023) 8, 2043–2055



Figure 1. Participant inclusion flowchart for the 4 data sets. KF, kidney failure. T1D, type 1 diabetes; THL, the Finnish Institute for Health and
Welfare.
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of other type of diabetes). We excluded participants
with age <18 years at the study visit, or diabetes
duration of <5 years. The participants were classified
as having normal AER, moderate albuminuria or severe
albuminuria based on AER or ACR values from 2 out of
3 consecutive overnight, 24-hour, or spot urine col-
lections as described earlier.29 Kidney failure was
defined as requiring dialysis or kidney transplant.
Participants with kidney failure, unknown albumin-
uria class, or eGFR <10 ml/min per 1.73 m2 at the study
baseline were excluded. Study visits until December
31, 2016, were included.

Serum (or plasma) creatinine values were collected
from themedical files for all participants, and values were
extracted within 5 years before the study visits. The
serum creatinine measurement method changed from the
Jaffe to the isotope dilution mass spectrometry method in
2002 in the entire country. Therefore, the values before
2002 were calibrated to isotope dilution mass spectrom-
etry measurements with the following formula, Serum
creatinine (isotope dilution mass spectrometry) ¼
(0.953 � Serum Creatinine [Jaffe]) � 7.261.

eGFR was calculated with the CKD-EPI formula,28

assuming European origin. For the slope calculation,
we required at least 3 eGFR measurements over a 3-year
period within the 5-year window before the baseline.
In addition, we required the last eGFR measurement
included in the slope calculation to be within half a
year from the baseline visit. As sensitivity analysis, we
tested requiring up to 24 eGFR measurements. The
slope was estimated by fitting a slope with linear
Kidney International Reports (2023) 8, 2043–2055
regression. The baseline eGFR value was included in
the slope estimation, and the median number of eGFR
measurements used for slope estimation was 7 (inter-
quartile range 5–11). A small number (16/2514 ¼ 0.6%)
of implausible slopes (potentially data errors or acute
kidney events affecting the slope) were excluded after
visual inspection.

If the inclusion criteria were not fulfilled, or slopes
were not available at the FinnDiane A-visit, we selected
the FinnDiane B-visit as the study baseline, when
available. Similarly, we prioritized the THL study visit
over the study dates based on latest medical files. We
excluded 13 medical file records for which the latest
record was from the date of death (n ¼ 7) or within 1
month from the death (n ¼ 6). Altogether 2498 in-
dividuals were selected: 727 individuals from the
FinnDiane A-visit, 892 individuals from FinnDiane B-
visit, 226 individuals from the THL visit, and 653 in-
dividuals from the THL medical files (Figure 1).

Definition of Kidney Failure, Cardiovascular End

Points, and Death

The end points included kidney failure, all-cause
mortality, CHD including myocardial infarction or
coronary revascularization, heart failure, ischemic or
hemorrhagic stroke, and 3-point MACE that was
defined as composite of the first occurrence of nonfatal
acute CHD event or stroke, or cardiovascular death. In
addition, we included a composite event of kidney
failure or any death. These data were retrieved from
the Finnish Care Register for Health Care and the
2045
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Finnish Cause of Death Register using the International
Classification of Diseases codes and Nordic Classifica-
tion of Surgical Procedure codes until December 31,
2017 (Supplementary Table S1). The coding of such
diagnoses in these registers has been previously eval-
uated and found valid.30,31

Statistical Analysis

Group differences between the eGFR slopes and base-
line characteristics were analyzed with Kruskal-Wallis
rank sum test for continuous variables and with c2

test for categorical variables. Due to the large number
of deaths during the follow-up, the associations be-
tween the preceding eGFR slope and the incident
clinical end points were estimated with the Fine and
Gray competing risk model32 to fit the proportional
subdistribution hazards using death as the competing
risk. Prevalent cases were excluded from the corre-
sponding analyses. Cox proportional hazards regression
was utilized to test association with death or the com-
posite of kidney failure or death, and, as a sensitivity
analysis, to estimate the cause-specific hazards for other
outcomes. In addition to univariable tests, we per-
formed several multivariable competing risk and Cox
survival models as follows: (i) model 2: including
investigator classified sex, baseline age, and HbA1c; (ii)
model 3: model 2 variables and the albuminuria group
(i.e., normal AER/ moderate/ severe albuminuria); and
(iii) model 4: model 3 variables and the baseline eGFR
value. Furthermore, we fitted models (model 3b and
model 4b) where albuminuria group was replaced by
continuous ACR (log2-transformed) as sensitivity ana-
lyses. Individuals with missing covariate values were
excluded from the corresponding analysis. Analyses
were repeated for different strata based on the albu-
minuria or CKD group, and with the albuminuria or
CKD group as an interaction term. The proportional
hazards assumption was tested for the global model and
the eGFR slope separately, and the Schoenfeld residuals
were plotted for eGFR slope. For each outcome and
strata, we compared model 4 with and without eGFR
slope by calculating the concordance of the models
(Harrel’s C-index), and with likelihood-ratio test and
continuous net reclassification index with 1000 boot-
strap samples based on the Cox models.

Statistical analysis was performed with R (https://
www.r-project.org/) version 4.2.0/4.2.1/4.3.0, using
the “survival” package (v.3.2-13/v.3.4-0/v.3.5-5)33 for
Cox regression, tidycmprsk (v.0.1.2/v.0.2.0) for the
competing risk analysis.

RESULTS

The mean age of the participants at study baseline was
42.7 years (SD 12.0), with a diabetes duration of 27.4
2046
years (SD 11.2) at the index visit. A total of 296 (11.8%)
participants had CKD, defined as eGFR <60 ml/min per
1.73 m2, whereas the mean eGFR was 93.6 ml/min per
1.73 m2 at baseline (median 100 ml/min per 1.73 m2,
interquartile range 80.5–113; Supplementary Table S2).
At baseline, 151 participants (6.0%) had experienced a
CHD event, 92 (3.7%) had experienced stroke, and 175
(7.0%) had experienced a combined 3-point MACE.

eGFR Slopes are Steepest Among Those With

the Lowest Baseline eGFR

The mean annual eGFR slope, calculated from values
within 5 years before the baseline, was�1.32 ml/min per
1.73 m2 per year (SD 3.45) ranging from �36.0 to þ14.9
ml/min per 1.73 m2 per year. The slope quintiles were
associated with sex, diabetes duration, HbA1c, and sys-
tolic blood pressure (P< 0.05; Supplementary Table S3).
The eGFR slope was the steepest among people with the
lowest eGFR at baseline. It was�7.37 ml/min per 1.73 m2

per year (SD5.26) among thosewith eGFR<15ml/minper
1.73m2,whereas among thosewith eGFR$90ml/min per
1.73 m2 it was �0.332 ml/min per 1.73 m2 per year (SD
2.54) (Figure 2a). Similarly, the preceding eGFR slope was
the steepest among people with severe albuminuria
(Figure 2b).

eGFR Slopes are Associated With Incident

Clinical Outcomes

The eGFR slopes were steeper among people who devel-
oped kidney failure (�5.49 ml/min per 1.73 m2 per year
(SD 4.89), n¼ 191), on average 5.3 years after the baseline,
compared with those who did not (�0.972 ml/min per
1.73 m2 per year (SD 3.06), n ¼ 2307, P ¼ 3.1�10�46)
within an average follow-up time of 9.0 years. Similarly,
the eGFR slope was steeper among people who developed
a CVD event during the follow-up (P < 0.001 for each;
Table 1). During the average 9.2 years of follow-up, 325
(13.0 %) of the participants died.

In univariable competing risk survival models, the
eGFR slope was significantly associated with the clin-
ical end points (Figure 3a, Supplementary Figure S1).
The hazard ratio (HR) for kidney failure was 0.59 (95%
confidence interval [CI] 0.50–0.70; P < 0.001) per 1 SD
increment in the eGFR slope (i.e., per 3.45 ml/min per
1.73 m2 per year; Table 2). As expected, the strongest
predictors of kidney failure included baseline eGFR,
ACR, albuminuria group, and the eGFR slope (C-index
0.95, 0.94, 0.89, and 0.83, respectively; Figure 3b). The
eGFR slope was a significant (P< 0.001) but a relatively
weak predictor of CVD events and death, with C-index
ranging from 0.60 to 0.64 (Supplementary Table S4).

The eGFR slope remained associated with each
outcome in multivariable competing risk survival
models including sex, and baseline age and HbA1c as
Kidney International Reports (2023) 8, 2043–2055
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Figure 2. Distribution of the eGFR slopes within the 5 years preceding the study baseline. (a) stratified by the CKD classes 1–5. CKD1: eGFR$ 90
ml/min per 1.73 m2; CKD2: 60 ml/min per 1.73 m2 $ eGFR > 90 ml/min per 1.73 m2; CKD3: 30 ml/min per 1.73 m2 $ eGFR > 60 ml/min per 1.73 m2;
CKD4: 15 ml/min per 1.73 m2 $ eGFR > 30 ml/min per 1.73 m2; CKD5: eGFR <15 ml/min per 1.73 m2. (b) Stratified by albuminuria status. CKD,
chronic kidney disease; eGFR, estimated glomerular filtration rate.
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covariates (model 2). However, to answer the question
about whether it is clinically useful to know the pre-
ceding eGFR slope in addition to the clinical measure-
ments available at patient visit, we further adjusted the
models for the baseline albuminuria group (model 3;
normal AER/moderate albuminuria/severe albuminuria)
and eGFR (model 4). The eGFR slope remained a sig-
nificant predictor (P < 0.05) of heart failure, kidney
failure, and death in model 3, and of the composite
outcome of kidney failure or death in model 4 adjusted
for the baseline eGFR (Cox regression HR 0.91, 95% CI
0.83–1.00, P ¼ 0.041; Table 2, Figure 3a). In the same
model, higher age, male sex, higher baseline HbA1c,
moderate and severe albuminuria, and lower baseline
eGFR were significantly associated with incident kid-
ney failure or death (P < 0.05 for each; Supplementary
Figure S2). Adding the eGFR slope to the clinical model
did not improve the model’s C-index (0.87 for both),
but the likelihood-ratio test indicated nominal
improvement (P ¼ 0.044; Supplementary Table S5). As
a sensitivity analysis, the association disappeared in the
model 4b that adjusted for log2(ACR) instead of the
albuminuria group. However, the exact ACR values
were available for fewer people and the number events
dropped from 404 to 303, potentially explaining the
loss of association (Supplementary Figure S2).

As a further sensitivity analysis, the subdistribution
hazards obtained from the Fine and Gray competing risk
analysis were similar to the cause-specific hazards ob-
tained with Cox proportional hazards regression, with a
tendency for larger effect size estimates for the Cox
models as reported earlier.34 The eGFR slope was addi-
tionally a significant predictor of kidney failure in the
fully adjusted Cox regression model 4 (HR ¼ 0.86, 95%
CI 0.77–0.96, P ¼ 0.010; Supplementary Table S4). Some
Kidney International Reports (2023) 8, 2043–2055
of the covariates violated the proportional hazards
assumption (P < 0.05; Supplementary Table S5); how-
ever, visual inspection of the scaled Schoenfeld residual
plots indicated no major departure from a horizontal line
for the eGFR slope (Supplementary Figure S3). Require-
ment of an increasing number of available eGFR mea-
surements within the preceding 5-year period strongly
reduced the number of controls for kidney failure;
however, eGFR slope remained associated with kidney
failure or death in model 4 (Supplementary Figure S4).

eGFR Slope is Independently Associated With

Incident Kidney and Heart Failure in Stratified

Analyses

To assess if the eGFR slope could be informative in
specific patient groups, we stratified the competing
risk survival models by the baseline albuminuria
group and eGFR. The eGFR slopes were associated
(model 4, P < 0.05) with kidney failure in individuals
without CKD (eGFR $60 ml/min per 1.73 m2;
HR ¼ 0.69, 95% CI 0.48–0.99, P ¼ 0.04;
Supplementary Figure S5). The likelihood-ratio test
suggested that adding the eGFR slope improved model
4 (P ¼ 0.013); however, the C-index did not improve
markedly (0.92 vs. 0.93). eGFR slope had only limited
value in predicting kidney failure among the partici-
pants with established CKD at baseline (eGFR <60 ml/
min per 1.73 m2; univariate C-index 0.66, Figure 4b,
P ¼ 0.90 in model 4). However, the CKD � eGFR slope
interaction term was not significant for kidney failure
(Supplementary Table S6). For the composite outcome
of kidney failure or death, eGFR was a significant
predictor in the multivariable models in those with
severe albuminuria or CKD (P ¼ 0.019 and P ¼ 0.017,
respectively; Figure 4a; Supplementary Table S5). The
2047



Table 1. eGFR slope and other clinical characteristics stratified by the incident clinical outcomes

Parameter

Kidney failure CHD Stroke 3PLMACE Heart failure Death

Yes No Yes No Yes No Yes No Yes No Yes No All

(n [ 191) (n [ 2307) (n [ 266) (n [ 2081) (n [ 120) (n [ 2286) (n [ 235) (n [ 2088) (n [ 171) (n [ 2282) (n [ 325) (n [ 2173) N [ 2498

eGFR slope
(ml/min per 1.73 m2

per year)

�5.49 (4.89) �0.97 (3.06)a �2.15 (3.88) �1.15 (3.39)a �2.67 (4.10) �1.20 (3.41)a �2.11 (4.03) �1.14 (3.40)a �3.04 (4.36) �1.15 (3.32)a �2.95 (4.67) �1.07 (3.16)a �1.32 (3.45)

Baseline eGFR
(ml/min per 1.73 m2)

41.2 (26.1) 98.0 (22.1)a 72.4 (29.6) 98.2 (24.2)a 71.8 (30.5) 95.9 (25.4)a 73.1 (31.0) 98.3 (23.5)a 63.3 (30.6) 96.7 (24.6)a 64.8 (29.8) 98.0 (23.7)a 93.6 (27.0)

ACR (mg/mmol) 115
[33.8, 246]

0.73
[0.30, 2.76]

5.25
[0.99, 59.7]

0.70
[0.30, 2.83]

11.2
[1.18, 85.3]

0.76
[0.30, 3.44]

7.22
[1.06, 85.9]

0.70
[0.30, 2.67]

18.2
[1.74, 106]

0.75
[0.30, 3.25]

16.3
[1.57, 89.3]

0.70
[0.30, 2.72]

0.86
[0.32, 4.84]

ACR missing, n (%) 52 (27.2) 584 (25.3) 49 (18.4) 547 (26.3) 28 (23.3) 584 (25.5) 57 (24.3) 532 (25.5) 36 (21.1) 584 (25.6) 81 (24.9) 555 (25.5) 636 (25.5)

Male sex, n (%) 111 (58.1) 1100 (47.7)b 135 (50.8) 988 (47.5)b 73 (60.8) 1092 (47.8)b 130 (55.3) 987 (47.3)b 82 (48.0) 1100 (48.2) 188 (57.8) 1023 (47.1)a 1211 (48.5)

Age (years) 44.1 (9.93) 42.6 (12.2)b 50.0 (9.98) 40.9 (11.5)a 47.5 (10.6) 42.1 (12.0)a 48.1 (10.3) 41.2 (11.7)a 50.7 (10.8) 41.9 (11.8)a 50.7 (10.7) 41.5 (11.8)a 42.7 (12.0)

Duration (years) 31.1 (9.06) 27.1 (11.3)a 34.9 (10.0) 25.6 (10.4)a 31.6 (10.0) 26.8 (11.0)a 33.0 (10.3) 25.9 (10.6)a 35.8 (10.6) 26.6 (10.9)a 34.4 (10.8) 26.4 (10.9)a 27.4 (11.2)

HbA1c (%) 9.03 (1.59) 8.27 (1.29)a 8.79 (1.64) 8.26 (1.28)a 8.79 (1.39) 8.30 (1.32)a 8.78 (1.57) 8.27 (1.29)a 8.99 (1.58) 8.27 (1.30)a 8.83 (1.53) 8.25 (1.29)a 8.32 (1.33)

HbA1c (mmol/mol) 75.2 (17.4) 66.9 (14.2)a 72.6 (17.9) 66.8 (14.0)a 72.6 (15.2) 67.2 (14.5)a 72.5 (17.2) 66.8 (14.1)a 74.8 (17.2) 66.9 (14.2)a 73.0 (16.7) 66.7 (14.1)a 67.5 (14.6)

HbA1c missing, n (%) 8 (4.2) 40 (1.7) 11 (4.1) 33 (1.6) 3 (2.5) 44 (1.9) 11 (4.7) 33 (1.6) 3 (1.8) 40 (1.8) 10 (3.1) 38 (1.7) 48 (1.9)

SBP (mm Hg) 146 (22.0) 136 (17.9)a 146 (19.8) 135 (17.6)a 149 (21.8) 136 (17.8)a 147 (20.8) 135 (17.3)a 148 (21.3) 136 (17.8)a 145 (21.4) 136 (17.6)a 137 (18.4)

SBP missing, n (%) 35 (18.3) 329 (14.3) 43 (16.2) 292 (14.0) 20 (16.7) 331 (14.5) 35 (14.9) 298 (14.3) 25 (14.6) 329 (14.4) 65 (20.0) 299 (13.8) 364 (14.6)

BMI (kg/m2) 25.4 (4.11) 26.1 (4.13) 26.1 (3.59) 26.0 (4.17) 26.0 (4.65) 26.0 (4.12) 26.1 (4.16) 26.0 (4.11) 26.6 (4.31) 26.0 (4.11) 25.9 (3.89) 26.0 (4.16) 26.0 (4.13)

BMI missing, n (%) 50 (26.2) 453 (19.6) 68 (25.6) 403 (19.4) 28 (23.3) 454 (19.9) 54 (23.0) 409 (19.6) 32 (18.7) 455 (19.9) 96 (29.5) 407 (18.7) 503 (20.1)

Albuminuria

Normal AER n (%) 6 (3.1) 1601 (69.4)a 99 (37.2) 1449 (69.6)a 34 (28.3) 1547 (67.7)a 79 (33.6) 1472 (70.5)a 43 (25.1) 1552 (68.0)a 79 (24.3) 1528 (70.3)a 1607 (64.3)

Moderate alb, n (%) 5 (2.6) 398 (17.3) 50 (18.8) 316 (15.2) 24 (20.0) 352 (15.4) 42 (17.9) 315 (15.1) 29 (17.0) 367 (16.1) 58 (17.8) 345 (15.9) 403 (16.1)

Severe alb, n (%) 180 (94.2) 308 (13.4) 117 (44.0) 316 (15.2) 62 (51.7) 387 (16.9) 114 (48.5) 301 (14.4) 99 (57.9) 363 (15.9) 188 (57.8) 300 (13.8) 488 (19.5)

N eGFR
measurements

19.0
[10.0, 28.0]

6.00
[5.00, 10.0]

9.00
[6.00, 15.0]

6.00
[5.00, 10.0]

11.0
[6.75, 17.5]

7.00
[5.00, 10.0]

10.0
[6.00, 16.5]

6.00
[5.00, 9.00]

12.0
[8.00, 19.0]

7.00
[5.00, 10.0]

12.0
[8.00, 23.0]

6.00
[5.00, 10.0]

7.00
[5.00, 11.0]

Baseline visit 2001
[1999, 2005]

2007
[2004, 2014]a

2004
[2000, 2005]

2007
[2004, 2014]a

2003
[2000, 2005]

2007
[2004, 2013]a

2003
[2000, 2005]

2007
[2004, 2014]a

2003
[1999, 2006]

2007
[2004, 2014]a

2003
[1999, 2006]

2007
[2004, 2014]a

2007
[2003, 2013]

ACR, urinary albumin-to-creatinine ratio; AER, albumin excretion rate; alb, albuminuria; BMI, body mass index; CHD, coronary heart disease; eGFR, estimated glomerular filtration rate; 3P-MACE, 3-point major adverse cardiovascular events; SBP,
systolic blood pressure.
aP-value < 0.001.
bP-value < 0.05.
Prevalent events are not shown. Values are given as mean (SD) or median [interquartile range] for continuous variables, and as N (%) for counts.
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Figure 3. Association between the eGFR slope and clinical outcomes. (a) Hazard ratio for the association of eGFR slope with clinical outcomes
in the full cohort with different multivariable models. Model 2: eGFR slope, sex, baseline age and HbA1c; Model 3: the previous model plus
baseline albuminuria group; Model 4: the previous model plus baseline eGFR. Closed circles indicate significant (P < 0.05) values. (b) Model
concordance C-index for the univariable models in the full cohort. Horizontal bars indicate 95% confidence intervals. ACR, albumin-to-creatinine
ratio; CI, confidence interval; CHD, coronary heart disease; eGFR, estimated glomerular filtration rate; KF, kidney failure; MACE, major adverse
cardiovascular event.
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interaction term between the CKD status and the eGFR
slope was significant, such that the risk was more
pronounced in those with CKD (P ¼ 0.0018;
Supplementary Table S6). Adding eGFR slope to the
fully adjusted multivariable Cox models improved the
model in these strata (likelihood-ratio test P < 0.05;
Supplementary Table S5); however, eGFR slope did
not markedly change the model C-indexes (Figure 4c).
Kidney International Reports (2023) 8, 2043–2055
Furthermore, the eGFR slope was significantly asso-
ciated with heart failure in individuals with CKD (model
4, HR ¼ 0.86, 95% CI 0.75–0.99, P ¼ 0.033, 77 events;
Supplementary Figure S6). In addition, CKD � eGFR
slope interaction term was significant (P ¼ 0.048) in the
full cohort supporting the association of eGFR slope
with heart failure in individuals with CKD but not in
individuals without CKD. The association also remained
2049



Table 2. Association between estimated glomerular filtration rate slope and clinical outcomes in survival models (Fine and Gray competing risk
models with death as competing risk; or Cox proportional hazards regression if death included as outcome)

Outcome

Model 1 Model 2 Model 3 Model 4

N HR (95% CI) P-value N HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Kidney failure 191/2498 0.59 (0.50, 0.70) <0.001 183/2450 0.58 (0.50, 0.69) <0.001 0.71 (0.62, 0.83) <0.001 0.98 (0.84, 1.14) 0.80

CHD 266/2347 0.82 (0.75, 0.90) <0.001 255/2303 0.8 (0.72, 0.89) <0.001 0.9 (0.81, 1.01) 0.074 1.01 (0.90, 1.15) 0.80

Stroke 120/2406 0.78 (0.69, 0.87) <0.001 117/2359 0.77 (0.68, 0.87) <0.001 0.89 (0.77, 1.03) 0.11 0.96 (0.82, 1.13) 0.70

3P-MACE 235/2323 0.83 (0.75, 0.91) <0.001 224/2279 0.84 (0.75, 0.93) 0.001 0.97 (0.87, 1.09) 0.7 1.1 (0.97, 1.25) 0.12

Heart failure 171/2453 0.73 (0.66, 0.81) <0.001 168/2410 0.68 (0.61, 0.75) <0.001 0.79 (0.70, 0.89) <0.001 0.9 (0.78, 1.03) 0.12

Death 325/2498 0.70 (0.65, 0.76) 4.3 � 10�18 315/2450 0.66 (0.60, 0.72) 2.5 � 10�19 0.81 (0.73, 0.89) 2.6 � 10�05 0.92 (0.82, 1.03) 0.14

Kidney failure
or death

419/2498 0.55 (0.51, 0.59) 2.3 � 10�61 404/2450 0.55 (0.51, 0.59) 2.8 � 10�54 0.69 (0.63, 0.75) 4.6 � 10�18 0.91 (0.83, 1.00) 0.041

CI, confidence interval; CHD, coronary heart disease; HR, hazard ratio; 3P-MACE, 3-point major adverse cardiovascular events; N, number of events/total number of individuals.
Model 1: estimated glomerular filtration rate slope. Model 2: estimated glomerular filtration rate slope þ baseline age, sex, HbA1c. Model 3: Model 2 þ baseline albuminuria group.
Model 4: model 3 þ baseline estimated glomerular filtration rate. For Models 3 and 4 the numbers were identical to model 2 for each outcome, thus not shown. For kidney failure, CHD,
stroke, 3P-MACE or heart failure, survival analysis was performed with Fine and Gray competing risk models with death as competing risk; for death and the combined outcome of
kidney failure or death, Cox proportional hazards regression was used.
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significant when adjusting for the continuous log2(ACR)
(model 4b, HR ¼ 0.86, 95% CI 0.73–1.00, P ¼ 0.046;
Supplementary Figure S6), or when evaluated with Cox
regression (HR ¼ 0.81, 95% CI 0.67–0.97, P ¼ 0.023).
Likelihood-ratio test suggested improvement of the
model performance when eGFR slope was added to
model 4 (P ¼ 0.029), even though it did not improve the
C-index markedly, which changed from 0.72 to 0.73
(Figure 4c), suggesting that knowing the preceding
eGFR slope had very little predictive advantage beyond
the eGFR and albuminuria status measured at the study
visit.
DISCUSSION

Despite the improvements in the treatment of diabetes
over the past decades, DKD and kidney failure remain
a significant concern in diabetes.4 Nevertheless, the
early identification of individuals at high risk for DKD
is still challenging.17 With the notion that the rate of
kidney function decline, that is, the eGFR slope is
relatively constant over the development of the dis-
ease,18 there has been enthusiasm both in biomarker
studies searching for biomarkers for rapid kidney
function decline,35–37 and evaluating the potential of
the preceding eGFR slope for the prediction of future
kidney and CVD events.19,26 In this large prospective
study of 2498 individuals with T1D with varying
baseline diabetes duration and eGFR, we showed that
the preceding eGFR slope was strongly associated with
incident kidney failure, CVD outcomes, and death
among individuals with T1D. However, when the
baseline albuminuria status and eGFR were consid-
ered, the preceding eGFR slope remained a significant
predictor only for the composite outcome of kidney
failure or death, with limited improvement in the
model performance. These findings suggest that
knowing the preceding eGFR slope adds little value to
2050
the clinical assessment, especially when data on the
albuminuria status and eGFR are available at the clinic
visit.

In the stratified analysis, the preceding eGFR slope
remained a significant predictor of kidney failure
among people without renal impairment (eGFR $ 60
ml/min per 1.73 m2) even after adjusting the model
for the baseline albuminuria group and eGFR. This is
in contrast to the previous reports in individuals with
T1D from the Diabetes Control and Complications
Trial/Epidemiology of Diabetes Interventions and
Complications study, where the slope did not predict
kidney or other clinical outcomes after adjusting for
the baseline covariates.26 The Diabetes Control and
Complications Trial study participants were primarily
normoalbuminuric and had relatively short diabetes
duration (mean 12 years) at the time of the eGFR slope
evaluation. The authors suggested that the changes in
eGFR during the early years of diabetes may reflect
resolution of hyperfiltration rather than the CKD
trajectory, explaining their lack of association with
future clinical outcomes.26 In our current study, even
the participants with eGFR $ 90 ml/min per 1.73 m2

had a long duration of diabetes (mean 24.1 years) and
median eGFR of 109 ml/min per 1.73 m2 (interquartile
range 100–118), suggesting that they are past the
potential hyperfiltration phase. The nominal increase
in the C-index from 0.92 to 0.93 in the fully adjusted
model upon addition of the eGFR slope suggests,
similar to the Diabetes Control and Complications
Trial/Epidemiology of Diabetes Interventions and
Complications study26, that considering the preced-
ing eGFR slope is unlikely to have any major clinical
impact in addition to the clinical measurements
available at the study visit. It should be noted that
the C-index of 0.92 in the fully adjusted model is
excellent and difficult to improve with any additional
variables.
Kidney International Reports (2023) 8, 2043–2055



Figure 4. Association between the eGFR slope and clinical outcomes in different strata. (a): The association of the eGFR slope with clinical
outcomes stratified by the baseline kidney function and albuminuria status. Model adjusted for sex, baseline age and HbA1c, albuminuria group,
and eGFR at the study visit (model 4). (b) C-index of concordance for the univariable models in the eGFR $ 60 and eGFR < 60 strata for kidney
failure or heart failure. (c): C-index of concordance for the multivariable models in the eGFR $ 60 and eGFR < 60 strata for kidney failure or
heart failure. Closed circles indicate significant (P < 0.05) values, horizontal bars indicate 95% confidence intervals. CI, confidence interval;
CHD, coronary heart disease; eGFR, estimated glomerular filtration rate; KF, kidney failure; MACE, major adverse cardiovascular event.
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Among theparticipantswithCKDatbaseline, the eGFR
slope was associated with incident heart failure and the
composite outcome of kidney failure or death in the fully
adjusted model; and, adding the eGFR slope to the model
did not improve the model’s C-index. The interaction
analysis suggested that the CKD class significantly
modified the effect of eGFR slope on heart failure and the
composite outcome of kidney failure or death, such that
the risk imposed by the steeper eGFR slope was more
important among individuals with prevalent CKD.
Although no previous reports exist for individuals with
T1D and preexisting CKD, previous studies from the
general population suggest that a steep decline of eGFR is
associated with CVD events19,20 and/or death19–23 even
after adjusting for the study visit eGFR.23 However, even
in the general population, the current eGFR was more
strongly associated with the 5-year kidney failure risk
than the preceding eGFR slope.38

Our study is one of the largest of its kind performed in
individuals with T1D to date. The strengths of this study
include the long diabetes duration (median 26.4 years),
large number of kidney and CVD events, as well as a wide
distribution of baseline eGFR values (median 100 ml/min
per 1.73 m2, range 10.2–175 ml/min per 1.73 m2) and
various stages of albuminuria, making the results gener-
alizable for the large T1D population. Furthermore, this
allowed us to perform stratified analyses to answer the
study questions in detail. Nonetheless, all stratified ana-
lyses suggested that there is only a limited advantage of
considering the preceding rate of the kidney function
declinewhen the current albuminuria status and eGFRare
known.

The study has limitations. The eGFR values were
calculated based on serum (or plasma) creatinine mea-
surements, rather than cystatin C, which more accurately
captures changes in kidney function.39 Although the
serum creatinine-based eGFR measurements and slopes
are more commonly available in the clinical practice, the
use of the cystatin C–based eGFR slopemight improve the
clinical prediction accuracy. Given the observational
nature of our study, our data had missing values, and the
number of the eGFRmeasurements available for the slope
definition varied among individuals, reflecting the real-
life frequency of patient visits. Consequently, the par-
ticipants with a higher eGFR at baseline had fewer mea-
surements of eGFR available for the calculation of slope;
that is, the valuesweremissing not-in-random. However,
in our sensitivity analysis, requiring a larger number of
eGFR measurements did not markedly influence the re-
sults. In addition, despite many participants having
normal AER at baseline (n ¼ 1607), we only observed
among them, 6 cases of incident kidney failure during the
median of 9.5 (interquartile range 3.4 –12.5) year follow-
up time, leading to low statistical power. Consequently,
2052
interaction analysis did not suggest significant differ-
ences between the albuminuria groups in the association
of eGFR slope with kidney failure. Finally, despite the
wide clinical spectrum of participants with T1D, we do
not know whether our results would generalize to in-
dividuals with type 2 diabetes as well.

To conclude, our results indicate that among in-
dividuals with T1D, the preceding eGFR slope is an
independent risk factor for the composite outcome of
kidney failure or death. In addition, it independently
predicts kidney failure in individuals without CKD,
and heart failure in individuals with CKD. However,
adding the preceding eGFR slope to the multivariable
model did not substantially improve the model’s pre-
diction performance. Thus, knowledge of the preced-
ing eGFR slope is unlikely to have any major relevance
in the clinical practice when the current eGFR and
albuminuria status are known.

APPENDIX

List of FinnDiane Study Members

The list of FinnDiane physicians and nurses participating in

the collection of the FinnDiane study subjects is provided

in the Supplementary Table S7.
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