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Age-dependent neurodegenerative disorders are a set of diseases that affect millions

of individuals worldwide. Apart from a small subset that are the result of well-defined

inherited autosomal dominant gene mutations (e.g., those encoding the β-amyloid

precursor protein and presenilins), our understanding of the genetic network that

underscores their pathology, remains scarce. Genome-wide association studies (GWAS)

especially in Alzheimer’s disease patients and research in Parkinson’s disease have

implicated inflammation and the innate immune response as risk factors. However, even

if GWAS etiology points toward innate immunity, untangling cause, and consequence

is a challenging task. Specifically, it is not clear whether predisposition to de-regulated

immunity causes an inadequate response to protein aggregation (such as amyloid

or α-synuclein) or is the direct cause of this aggregation. Given the evolutionary

conservation of the innate immune response in Drosophila and humans, unraveling

whether hyperactive immune response in glia have a protective or pathological role in

the brain could be a potential strategy in combating age-related neurological diseases.
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INTRODUCTION

Aging is characterized by the time-dependent deterioration of cellular function and fitness of an
organism, accompanied by an increased susceptibility to diseases (1). This decline in function
is inexorable, and is a key risk factor for a number of human disease pathologies such as
diabetes, cancer, cardiovascular disorders, and neurodegenerative diseases (2). As the world’s
geriatric population continues to grow at an exceptional rate (3), a substantial economic burden
is placed on the healthcare system to deal with the development of age related diseases. Therefore,
understanding the mechanism of longevity and identifying targets to improve health during aging
is of paramount importance.

Over the last decade there have been a number of attempts to explain the phenomenon of
aging (1). Different processes that affect aging can be categorized into nine hallmarks that are
shared by aging and age-related diseases (4). These include: altered intercellular communication,
stem cell exhaustion, cellular senescence, mitochondrial dysfunction, deregulated nutrient sensing,
genomic instability, telomere attrition, loss of proteostasis (protein homeostasis), and epigenetic
alterations. These co-occur as an organism ages and are extensively interconnected. However, there
are several questions regarding the interconnectedness of these hallmarks. One such question is
the role of inflammation and its impact on age-related disorders (5). There is an age-dependent
decline in immune response, this phenomenon is termed as “immunosenescence” (6, 7). This
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process is marked by a reduction in the adaptive immune
response and was initially believed to be a consequence of a
progressive rise in low-grade chronic pro inflammatory status
known as “inflammageing” (8–10). More precisely, as the thymus
releases the last pool of naïve T-cells and that pool gets
depleted each time there is an infection, older people (>65)
become progressively weaker in their T-cell responses (5–7).
Increase in innate immune pro-inflammatory levels has been
seen as a “balancing act” to counter adaptive response reduction.
Nevertheless, recent studies have observed that the two processes
are mutually maintained and affect one another (11). For
instance, depletion of adaptive immune cells strengthens the
innate immune response causing inflammageing; similarly, the
increased innate immune inflammatory mediators leads to a
reduction in the number of adaptive immune cells causing
immunosenescence. Cumulative studies have also indicated an
age-dependent change in the innate immune cell types that
leads to an overall decrease in their ability to collaborate in
the initiation of the adaptive immune response [reviewed by
(6)]. Inflammageing is often a result of non-resolving or sterile
inflammation and is thought to be as a possible underlying
basis for most age related diseases such as infections, cancer,
autoimmune disorders, and chronic inflammatory diseases (12).
Additionally, cell senescence in other tissues generates cytokines
that signal the necessity for these cells to be removed by
macrophages, to avoid what is called “by-stander senescence”
propagating in tissues. This further enhances age-dependent
systemic pro-inflammatory activity (5–9). The above, happens
to everyone in the context of healthy aging. Some however,
are “high responders” and develop neurodegeneration. Does
predisposition to different levels of immunity influence this? This
review focuses on the role of immunity in neurodegenerative
disorders. The primary goal is to understand the importance
of immune regulation and its role in aging and age-related
diseases.We start by exploring the correlation between immunity
and neurodegeneration connected to specific disorders. Then
we explore the advantages and disadvantages of non-vertebrate
animal models in studying aging and neurodegeneration. We
continue with a brief introduction to Drosophila immune
response and central nervous system. Finally, we conclude with
studies suggesting a role for the immune system as amodulator of
basal levels of age-dependent neurodegeneration and talk about
the need to explore the potential role of negative regulators
in immunotherapy.

IMMUNITY AND NEURODEGENERATION

While the correlation between inflammation and
neurodegeneration is well-known (13), whether inflammation is
one of its causes or a consequence remains unclear. Inflammation
can be triggered as a consequence through the production of
apoptotic factors and cytokines signaling during neuronal death
However, immune cells produce neurotoxic cytokines that
could cause death of neurons (14). Initially, the activation of
the immune response in the central nervous system (CNS)
was believed to be responsible for the elimination of infectious

agents and the clearing of debris after injury, suggesting
a neuroprotective role of inflammation. A positive role of
antimicrobial peptide (AMP) production and aging has been
suggested by Loch et al. (15). Genome wide association studies
(GWAS) have reported the activation of numerous genes of the
inflammatory pathway during aging (16). Age is the greatest risk
factor for neurodegenerative disorders and age-related chronic
activation of the immune response is a shared feature among
many neurodegenerative disorders (17). However, the cause of
this sterile inflammation is still unknown.

Studies in animal models indicate the importance of
inflammation in several neurodegenerative disease pathologies
(18). Altering expression of Cdk5 protein kinase (Cdk5α) leads
to disruption in autophagy that in turn leads to upregulation
of AMP and age-dependent degeneration of dopamine neurons
in Drosophila (19). Neuroinflammation has been a crucial
factor for the pathogenesis of diseases such as Alzheimer’s
Disease (AD) (20). Microglia, the resident innate immune
cells of the CNS are shown to be chronically activated
around these plaques. It is believed that the uncontrolled
inflammation of these cells leads to the secretion of multiple
neurotoxic factors such as inflammatory mediators and
reactive oxygen species by glial cells that aggravate the
pathology of the disease (14). It is further demonstrated
that mutations in microglial protein TREM2, PLCG2, and
ABI3 increase the risk for AD (21). Additionally, molecular
and pathological interaction studies have established glial
expression of TREM2/TYROBP as a key factor in tau mediated
neurodegeneration (22). Activated microglia is suggested
as a potential marker to detect AD before the appearance
of plaques (23). Additional risk genes for late onset AD
connected to microglia and immunity have been identified
recently (24). Genetic analysis of these late-onset AD risk genes
identified a transcriptional network of 12 largely microglial
genes that form a transcriptional network (25). Six of these
(OAS1, LAPTM5, ITGAM, ABI3, PLCG2, SPI1) have good
Drosophila homologs expressed in the nervous system (our
unpublished observations).

Drosophila models illustrate the importance of the Toll
mediated NF-κB response in the neurotoxicity cause by the
presence of Aβ42, an isoform of the beta amyloid protein. Down
regulation of this immune pathway was shown to reduce the
pathological activity of Aβ42 (26). Evidence in both human and
animal model studies have illustrated the correlation between
inflammation and Parkinson’s disease (PD) (27). Mechanisms
of neuronal dysfunction such as mitochondrial dysfunction and
oxidative stress have been linked to pathogenesis of PD (28).
Dopaminergic neurons (DA) in the midbrain are shown to be
sensitive to pro inflammatory cytokines, reactive oxygen species,
and chemokines such as TNF-α and IFN that exacerbating
neuronal lesions (29). Additionally, there is a rich population
of microglia in the substantia nigra, which is the region of the
brain that shows the most DA neuron loss in PD patients (30).
Studies have observed correlation between deposition microglial
activation and alpha-synuclein making microglia an attractive
therapeutic target (31, 32). However, PD is considered as a
condition that is hypothesized to starts in the intestine as
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chronic inflammation, thenmay transfer α-synuclein to the brain
through the vagus nerve (33).

Transgenic mice lacking the TNF- receptor demonstrate
a reduction in the TH-immunoreactivity after being exposed
to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin).
Prolonged use of non-steroidal anti-inflammatory drugs such as
ibuprofen is shown to reduce risk of PD (27). Consistent with
these studies, an increase in circulating cytokines and increased
microglial activation have also been linked to early stages of
Huntington’s disease (34, 35). However, production of pro
inflammatory molecules is not just limited to microglia. Other
types of glia cells such as astrocytes are also used to investigate
the progression of inherited ALS (36). Studying these processes
in humans is extremely challenging. Therefore, to explore the
processes that govern aging requires accessible model systems
that help provide critical insights into the cellular and molecular
levels of aging.

ANIMAL MODELS OF AGING

There are several challenges in studying primate subjects in
aging research. These include a number of ethical issues,
environmental factors, as well as their relatively long lifespan.
Consequently, aging researchers have turned to unicellular or
small animal models to investigate the genetic and physiological
mechanisms related to human aging and longevity. These models
allow us to better control for several intrinsic and extrinsic
factors such as uniformity in background genetics, large sample
sizes, genetic tractability as well as environmental factors such
as managed nutrient availability and chemically-defined diets.
These conditionsmakemechanistic analysis easier and ultimately
help identify novel pharmaceutical targets. Some of the popular
models used in aging research include: the budding yeast
(Saccharomyces cerevisiae), the nematode worm (Caenorhabditis
elegans), the fruit fly (Drosophila melanogaster), and mouse
(Mus musculus).

Saccharomyces cerevisiae
Studies in model organism have identified conserved pathways
that influence the rate of aging (37). The simplest organism
that can be used to study eukaryotic aging is Brewer’s yeast
or Saccharomyces cerevisiae. This single celled living organism
shares a number of genes with humans, out of which a significant
number carry out the same function in both organisms (38). This
includes mechanisms that facilitate pathogen recognition during
its vegetative development (18). Fungi possess a class of cytosolic
NOD (Nucleotide Oligomerization Domain)- like receptors or
NLRs are responsible for self and non-self-recognition. These
fungal receptors share homology with the effector domains of
several plant or animal NLRs and provide a unique opportunity
to explore infectious host-pathogen interactions (39).

Aging in yeast can be studied using two different models. The
first, replicative lifespan (RLS) that describes the total number
of cell divisions a single mother (virgin) cell undergoes, the
second, the chronological lifespan (CLS) that represents the
length of time a cell can stay viable in a post mitotic state (40).
CLS shows an elevation in DNA damage that is a characteristic

that resembles that of post mitotic cellular aging in humans
(41). However, both models rely on nutrient availability and
negatively affect each other (42). The small genomic size and
rapid generation time of 3 h makes yeast a great model for high
throughput screening and exploiting genetic interactions that
are thought to be involved in human aging (42). It is also used
to study the effects of dietary restriction (43), oxidative stress
(44), and target of rapamycin (TOR) nutrient response pathway
on age related phenotypes (42, 45) Moreover, yeast models are
used to study a number of age related diseases including Werner
syndrome, (41) Huntington’s disease (46), Alzheimer’s disease
(47), Parkinson’s disease (48). The lessons from yeast have given
us valuable insights into how stress and aging are modulated in
higher organisms. However, yeast lacks the complexity of a higher
eukaryotic cell and intercellular interactions that are of major
importance in aging and age-related disorders.

Caenorhabditis elegans
Another invaluable model system to study aging is the small
nematode worm, Caenorhabditis elegans. C. elegans have a short
lifespan of about 2–3 weeks at 20◦C. This small worm grows to
be about a millimeter in length and displays complex behavior
such as avoidance behavior when exposed to pathogens. It is
compatible with a wide range of genetic techniques including
chemical mutagenesis screens, CRISPR, and RNAi. Unlike yeast,
it allows us to study tissue-to-tissue communication by tissue-
specific transgenic expression and knockdown techniques in
a multicellular context. C. elegans lack an adaptive immune
response and are devoid of any migratory innate immune
cells. Instead the protective immune response relies on three
lines of defense. The first is avoidance behavior in which the
worm can discriminate between different species of bacteria by
recognizing odors of specie specific molecules such as cyclic
pentadepsipeptide biosurfactant serrawettin W2 produced by
Serratia marcescens (49). The second line of defense consists
of physical barriers. The strong exoskeleton of C. elegans
is made up of collagen and chitin that creates a physical
barrier limiting the entry of potential pathogens. Additionally,
a pharyngeal grinder prevents pathogens from accessing the
intestines. The third and final line of defense is the humoral
response which involves the activation of conserved signaling
pathways (including MAP kinase cascades) that leads to the
production of several antimicrobial peptides (50, 51).

C. elegans allow us to experimentally demonstrate the
roles of several other conserved processes in aging such as
caloric restriction, mitochondrial pathways energy metabolism,
endocrine signaling, and signal transduction, the stress response,
protein translation, and gene expression in aging. (52). At the
convergence of immunity and aging, recent studies have shown
the role of innate immunity regulated by p38 signaling and
the transcription factor ATF-7 as responsible for the lifespan
extension caused during dietary restriction (53). However, C.
elegans are evolutionarily distant from humans and has a very
different nervous system organization of just 302 neurons leading
to behaviors unique to its lifestyle (54). Nevertheless, studies of
neuronal cell death in worms has implicated proteins very closely
related to mammalian calpains and cathepsins (55). Calpains
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are a family of calcium regulated cysteine proteases that are
highly expressed in neurons. They affect a wide range of cellular
functions including cell division, proliferation, migration, and
death. In neurons, these proteases have been linked to synaptic
plasticity and neurodegeneration (56). The calpain mediated
cleavage of carbonylated Hsp70.1 due to oxidative stress leads
to loss of lysosomal integrity and rupture. Among the contents
of the lysosome, a hydrolytic enzyme (cathepsins) is also
released that takes over the role of a “death-executing proteases”
by degrading several cellular proteins (55, 57). This Calpain-
mediated cleavage of Hsp70.1 helps elucidate the importance of
proteolysis in neuronal death and serves as a promising target
for preventive interventions of neuronal death (57). Thus, at the
cellular level, worm genetics can provide new insights into brain
cell death.

Mus musculus
While yeast and worms have broadened our understanding
into the cellular mechanisms of aging and age-dependent
neurodegeneration, they fail to replicate system level neurological
changes that occur during human aging. Therefore, mammalian
model organisms are essential to unravel these complex
mechanisms. What makes the mouse an indispensable model
is the easy genetic manipulation, short lifespan, low-cost
(compared to other primate models), and considerable
similarities with human physiological and cellular function
(58). Many mouse models of human aging have been developed
and characterized, including models for Werner syndrome (59),
Ataxia telangiectasia (60), Alzheimer’s (61), and Parkinson’s
diseases (62). Although the degree of complexity of the
mouse brain is lower than that of a human, there are several
cellular similarities of the nervous system. They show complex
behaviors and are a good tool to measure cognitive changes in
neurodegenerative disorders (63).

Studies in mice with Alzheimer’s disease have highlighted
rapamycin as a valid therapeutic approach for prevention or
treatment of AD (64, 65). Mouse models that display lifespan
extension and rise in delayed aging phenotypes are in line
with the observation that DNA metabolism influences aging.
Furthermore, factors such as caloric restriction and defects in
genomemaintenance have been investigated inmice (66). Li et al.
demonstrated the role of chronic high fat diet in mice causes
loss of neuronal stem cells in the hypothalamus via IKKβ/NF-
κB activation that eventually leads to obesity and pre-diabetes
(67). The hypothalamus the neuroendocrine functional center of
the body is also responsible for systemic aging though NF-κB
signaling (25) and thus provide a potential therapeutic approach
to combat age and age related disorders (68). This seems to
be an evolutionary conserved component of aging as NF-κB
in the brain is a major life span determinant in Drosophila
as well [(41), see below]. Even though laboratory mice are an
admirable model to study some age- related phenotypes, they
do not fully mimic the mechanism. Laboratory mice are inbred
and age very quickly. They invest more in reproduction and less
in somatic maintenance and therefore do not display the trade-
off between fecundity and longevity observed in humans. They
also do not recapitulate age related disease pathologies as seen

in humans (e.g., Werner diseases models and amyloid plaques in
AD mice models).

Drosophila melanogaster
Over the last two decades,Drosophila has developed as a powerful
tool to investigate human disease mechanisms. It has orthologs of
∼65% of all genes causing heritable diseases in humans (69, 70),
making it an attractive model organism to address novel lines
of inquiry for human diseases (71). Moreover, for every one
of these genes, the fly will most of times have one copy while
humans will normally have a group of genes with the same
function. The fruit fly is small, has a low cost of rearing and
is easy to manipulate in the laboratory. It has short generation
time of 10 days at 25◦C, a relatively short lifespan and produces
a large number of eggs which boosts statistical relevance of the
data obtained. Drosophila shows complex behavioral phenotypes
including social aggregation, re-enforced learning as well as
sleep activity that help address questions of brain function.
Transgenic fly lines can be created using numerous sophisticated
genetic and molecular tools such as insertions of P-elements (72)
CRISPR, RNAi silencing, tissue specific GAL4-UAS expression
system. Additionally, genome-wide genetic screening, genome-
wide analyses with deep sequencers, such as RNA-seq and ChIP-
seq, and metabolomics analyses allows us to enquire the cellular
and molecular mechanisms of aging and age-related diseases.
Drosophila has been crucial in the discovery and understanding
of innate immune signaling and the development of the
nervous system. The fly exhibits multiple physiological changes
associated with aging and age related diseases such as reduced
locomotive ability (73, 74), impaired learning and memory (75),
progressive decline in intestinal barrier function (76), increased
inflammation (77), reduced reproductive capacity, and altered
neuronal function (78, 79). Additionally, several environmental
manipulations such as effects of dietary restrictions are easy to
observe (80).

The process of development of neurons is conserved from
flies to humans. Drosophila has a relatively complex nervous
system that is separated from the rest of the body with the
blood brain barrier built by glial cells and neurons (81). It’s CNS
contains about 200,000–300,000 neurons can be histologically
divided into two distinct regions (82): the neuronal cell cortex,
formed by all the neuronal cell bodies, and a synapse dense
neuropil, to which all the dendrites and axons project (83).
The fly brain is a sophisticated structure that has several sub-
structures: including the antennal lobes, the mushroom bodies,
the central body complex, the protocerebrum, the optic lobes,
the posterior slope, and lateral deutocerebrum. Sensory organs
and the musculature send signals to the CNS via peripheral
nerves. The neurons in these associated structures are supported
with glial cells. Apart from being the resident immune cells
for the CNS, glial cells are responsible for maintaining ionic
homeostasis, recycling neurotransmitters, and for the formation
of the blood brain barrier (83).Drosophila glial cells can be largely
categorized on the basis of their location and/or morphology.
There are six morphologically and molecularly distinct glial
subtypes; perineurial glia (PG), subperineurial glia (SPG), cortex
glia (CG), ensheathing glia (EG), astrocytes-like glia(ALG), and
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wrapping glia (EG in the PNS) (84). The surface of CNS and
the peripheral nerves are covered with a thick carbohydrate-
rich lamella secreted by perineural glia (PG) and macrophages
(85). This PG layer is discontinuous and forms glia–glia pleated
septate junctions (pSJs) with subperineural glial cells (SPG)
that lie directly below the PG layer. These cells establish the
Blood Brain Barrier (BBB) and separate the neuronal elements
from the potassium-rich hemolymph. Apart from the BBB, the
peripheral nerves have a specialized form of ensheathing glia
called wrapping glia, that encloses motor and sensory axons (86).
Deeper in the CNS beneath the BBB lie cortex glia, ensheathing
glia, and astrocytes-like glia which are closely associated to
neurons (87). Cortex glia or cell body associated glia are found
within the cell cortex and invade the space between neuronal
cell bodies. These cells are in contact with the tracheas and
the BBB, suggesting that they are likely responsible to transfer
nutrients and gases from the hemolymph to neurons (81). The
ensheathing glial cells compartmentalize the brain by forming a
sheath around the neuropil (88). These cells are responsible for
the phagocytoses of axonal debris (89). As the name suggests
astrocyte-like glial cells are functionally and morphologically
similar to mammalian astrocytes (90). They are responsible
for the maintenance of neurotransmitter homeostasis and in
regulating circadian rhythm (91).

Additionally, a large amount of effort has been exerted
in creating many distinct Drosophila models for a range of
neurological disorders such as Parkinson’s disease (PD) (92),
Alzheimer’s disease (AD) (93, 94), and polyglutamine diseases
(polyQ) (95, 96). Many of these diseases are caused by abnormal
production or accumulation of different proteins such as the
accumulation of Lewy bodies in PD, amyloid plaques in AD,
and inclusions in polyQ diseases. These protein defects are
not normally observed in Drosophila. However, they can be
artificially produced in flies by introducing human genes into
the genome and over expressing them in neurons through
the UAS/GAL4 system (97). This is both an advantage and
a disadvantage. This technique helps replicate human-like
morphological lesions of these diseases and devise screens to
genetically identify mutations that suppress the extend of the
resulting lesions. However, it is difficult to distinguish the
immune responses to such protein build-up from mere non-
specific stress responses due to overproduction of an exogenous
protein (98).

INTRODUCTION TO DROSOPHILA

IMMUNITY

The innate immune system, an immune reaction with broad
specificity, is an organism’s first line of defense. It is centered
on receptors, which target conserved features of microbial
invaders and expeditiously activate downstream cascade to
destroy pathogens (99). In jawed vertebrates and some jawless
fishes (lampreys) this activation leads also to the induction of
adaptive immunity. Unlike those vertebrate categories however,
insects lack an adaptive immune system and therefore rely on a
relatively sophisticated set of innate defense responses for their

survival. The development and function of these reactions are
shown to be shared with higher organisms and can be used to
study innate immunity and inflammation in humans (100).

Due to the wide range of genetic manipulation techniques it
offers, Drosophila has been a powerful model to study innate
immunity (101). It utilizes a wide range of actions to form
effective barriers against pathogens, first of which is a local
immune response. This includes the elimination of incoming
pathogens by constitutive secretion of AMPs and by reactive
oxygen species (ROS) in barrier epithelia such as gut, genitals,
cuticle (102, 103), followed by a cellular response which includes
engulfment, entrapment, andmelanization of the pathogen (104–
106). The final response is marked by the rapid synthesis of
antimicrobial peptides (AMPs) in the haemocytes and the fat
body. The AMPs are regulated by two signaling pathways: The
Toll pathway, which was the first in the family of Toll-like
receptors discovered in a wide range of organisms from sea
urchins to humans, and the IMD pathway homologous to the
tumor necrosis factor receptor 1 (TNFR1) in mammals (107).

The Toll-mediated responses are triggered by bacterial or
fungal infection which leads to the activation of two Rel
transcription factors, Dif and Dorsal that regulate hundreds
of genes [reviewed in (100)] (Figure 1). Apart from its role
in immunity, the Toll pathway plays a crucial role in the
determination of the dorsal-ventral polarity during Drosophila
early embryogenesis (108, 109). In order to initiate the Toll
response, bacterial or fungal pathogens, are sensed by receptors in
the form of Peptidoglycan Recognition Proteins (PGRPs; in this
case PGRP-SA) or Glucan Binding Proteins (GNBP1, GNBP3) or
through cleavage of endogenous proteases (such as Persephone
or Psh) (110–112). The next step gives rise to an extracellular
proteolytic cascade that culminates in the proteolytic cleavage
and activation of the Toll receptor ligand Spatzle (Spz) leading
to its activation (113). Spatzle binds to the Toll receptor that
recruits MyD88 through its TIR domain, which further interacts
with Tube and Pelle through their respective death domains
(DD) and promote the phosphorylation of Cactus. Cactus is the
Drosophila IkB homolog and is bound to Dorsal and/or Dif,
inhibiting their activity and nuclear localization. Once degraded,
Dorsal and Dif translocates to the nucleus and ultimately leads
to the transcription of AMPs and other target genes [reviewed
in (114)].

Another evolutionarily conserved singling cascade is the
immune deficiency (Imd) pathway (Figure 1), the activation
of which is achieved with the help of two PGRP receptors
namely, PGRP-LC and PCRP-LE. These receptors bind better
to DAP-type peptidoglycan present on Gram-negative bacteria
and Gram-positive bacilli and trigger a response, that finally
leads to the activation of Rel/NF-κB transcription factor Relish
(115). The activated PGRP receptors initiates a signaling cascade
and recruits a protein complex containing Imd, a death domain
protein, dFadd, and Dredd. Dredd is the caspase-8 homolog, is
activated by Iap2 (inhibitor of apoptosis 2) and cleaves Imd to
reveal a site important for its role as a transient signaling hub.
Iap2 then ubiquitnates Imd and recruits Tab2/Tak1 complex to
the reaction site that phosphorylates the Drosophila IKK complex
(116). Relish is activated by two events: the phosphorylation of
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FIGURE 1 | Drosophila immune response. Toll pathway (on left) and IMD pathway (on right). See main text for details to the legend.

its N terminal by Tab2/Tak1 complex and the cleavage of its
C terminal ANK repeats domain by Dredd. The activated N
terminal (Rel-68) enters the nucleus and initiates transcription
of AMPs (116).

The improper activation of the immune signaling
pathways is associated with inflammation, cancer, and
neurodegeneration (77, 117), and leads to developmental
defects during ontogenesis (118–120). To prevent
the harmful consequences of unwarranted activation,
the pathway is firmly regulated by extracellular and
intracellular proteins.

Negative Regulation of IMD
The IMD immune response is tightly regulated at many levels,
first of which is the dilution of the activating signal. This
is done by the secreted PGRP-SC and PGRP—LB amidase
that breakdown bacterial peptidoglycan into non-stimulatory
fragments in the extracellular matrix (119, 121). On the plasma
membrane, the three PGRP-LC isomers interact with each other
to suppress spontaneous dimerization and reduce the number
of functioning receptors (122). Additionally, PGRP-LF binds
with PGRP-LC to form non-signaling heterodimers and down
regulate the response (123). Intracellularly, PIMS/pirk/rudra
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coimmunoprecipitates with Imd causing a disruption in its
association with the cytoplasmic tail of PGRP-LC receptor
leading to its the depletion from the membrane. Pirk mutant
have constitutively activated immune response and are short
lived. Moreover, flies over expressing pirk have a reduced Imd
response (124–126). Dnr1 inhibits the activity of Dredd caspase
by promoting its proteolytic degradation. Dnr 1 mutants have
shorter lifespans and exhibit age-dependent neuropathology
(127). The activity of the Dredd caspase is also impaired
by Caspar, which inhibit Dredd-dependent modification of
Relish and further blocking its translocation to the nucleus
(13). The activity of NF-kB is regulated by several ubiquitin-
mediated interactions, deregulation of these factors cause chronic
inflammation and cancer (128). Further negative regulators of the
Imd pathway include SkpA, dUSP36, CYLD, POSH, Trabid, and
transglutaminase (TG). Drosophila ubiquitin-specific protease
36 (dUSP36) inhibits the K63-polyubiquitinated Imd build up
and promotes its degradation (129). It is a negative regulator
of the pathways as silencing dUSP36 constitutively activates
the IMD signaling pathway. This activation is lost in germ
free flies leading to the hypothesis that this interaction might
be microbiome dependent (130). K63-linked ubiquitination of
dTAK1 is monitored by another negative regulator of IMD
known as Trabid. Flies lacking this protein show a remarkable
increase in the amount of the IMD target, Diptericin with a
dramatic reduction of the lifespan (131). A further negative
regulator of TAK1, POSH (Plenty-of-SH3s) prevents engagement
with the JNK scaffold (132). Downstream, the cylidromatosis
disease homolog dCYLD interacts with the Drosophila IKKγ

homolog Kenny and disrupts downstream signaling (133). In its
absence, triglyceride and AMP levels increase (133). At the level
of Relish finally, SkpA and the proteasome-ubiquitin pathway
(134) and Transglutaminase (135) suppress NF-κB activity.

PREDISPOSITION TO AN OVERACTIVE
IMMUNITY CAUSES
NEURODEGENERATION

Human genetics and animal model research have illustrated
the correlation between innate immunity in the brain and
the pathogenesis of neurodegenerative disorders (Table 1).
Increasing amount of evidence suggests that the accumulation
of aggregated proteins is only a part of the pathology of
neurodegenerative disorders and not the full story [reviewed
in (143)]. Increasing evidence suggests the role of the immune
system as an aetiological mechanism that influences not only
the pathology of the diseases but also modulates basal levels
of age dependent neurodegeneration in the context of healthy
aging (144).

Loss of Negative Regulation of IMD
Cao et al. illustrated that chronic activation of the
immune response in the wild type Drosophila brains
causes neurodegeneration (127). Flies with loss of function
mutations in a Relish repressor gene dnr-1 show signs of early
neurodegeneration and an increase in the number of Relish

target genes transcripts in the fly brain. The authors suggest
the cause of this neurodegeneration as AMP-associated toxicity
caused by constitutive expression or an extremely high level of
AMPs present in neurons or glial cells. The study also revealed
that the overexpression of AMPs in nervous tissue can cause
neurodegeneration and established a causative relationship
between neurodegeneration and IMD signaling. However,
overexpression of AMPs brings expression to much higher
levels than the dnr-1 mutant and therefore more work is
needed to prove this point. Nevertheless, the possibility of a
neuroprotective role of negative regulators in neuronal viability
is clearly suggested here (127).

A similar result were obtained by Kounatidis et al., who
demonstrated an age-dependent increase in NF-kB- controlled
immune activity in Drosophila in the context of healthy aging
(77). Most of it was dependent on the microbiota, as germ free
flies had much reduced age-dependent AMP increase compared
to conventionally reared insects (77). Nevertheless, there was
consistently a 2–4x age-dependent AMP increase in germ free
flies as was a clear sterile inflammation in the brain. Moreover,
the loss of Trabid, Pirk, and TG in neuronal tissue resulted in
shortening of lifespan, locomotion defects, and the formation
of brain lesions. This phenotype was rescued once Relish
was suppressed in glial cells of these flies. In wild type flies,
suppressing relish in glial cells resulted in lifespan extension.
Therefore, genetic predisposition to higher immune levels with
mutation in trbd, pirk, and tg led to early neurodegeneration and
curtailed lifespan (77).

Autophagy and Immunity
An interesting connection between autophagy, immunity and
neurodegeneration was recently made by the observation that
mutants for the Cdk5 protein kinase have increased AMP
expression in the brain and loss of dopaminergic neurons. This
happens because loss of Cdk5 disrupts autophagy and this results
in increased levels of immunity (19). This point is important
since autophagy seems to be necessary and sufficient to drive
the increase in AMP levels. Given the dysregulation of Cdk5
and innate immunity in human neurodegeneration and the
conserved role of this kinase in the regulation of autophagy, this
sequence of events is likely to resemble what happens in humans
(19). However, the connection between immunity and autophagy
remains largely unexplored. One indication is the interaction
between Kenny (IKKγ) and the autophagy protein Atg8, which
targets Kenny for selective degradation. Loss of Atg8, “releases”
Kenny, enhancing IKK signaling, and resulting in chronic IMD
induction (145).

Neurodegenerative Disease Models
The Penetrating traumatic brain injury (pTBI) model show a
greater expression of AMP genes and an over activation of
the innate immune response in both young and older flies
(136). The positive interaction between pTBI and aging was
further supported by the high expression of Imd negative
regulators in older pTBI fly brains. The study indicated that
aging exasperates the immune response caused by pTBI and
causes neurodegeneration. Additionally Yorkie, a co-activator
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TABLE 1 | Summary of papers at the junction of immunity and neurodegeneration in Drosophila.

Gene Immune phenotype Neurological phenotype References

pirk/rudra/pims (loss of

function)

Overactivation of IMD Locomotion, reduced lifespan,

brain neurodegeneration

(77)

trabid (loss of function) Overactivation of IMD Locomotion, reduced lifespan,

brain neurodegeneration

(77)

transglutaminase (loss

of function)

Overactivation of IMD Locomotion, reduced lifespan,

brain neurodegeneration

(77)

dnr1 (loss of function) Overactivation of IMD Locomotion, reduced lifespan,

brain neurodegeneration

(127)

cdk5 (loss of function) Overactive immunity

through reduction of

autophagy

Loss of DA neurons (19)

Toll and IMD activity

increases

Overactive immunity Age-dependent

neurodegeneration in a model

of pTBI

(136)

yorkie activity Suppression of IMD and

Toll

Reduction of PolyQ-mediated

neurodegeneration

(137)

relish (knock-down in

DA neurons)

Suppression of IMD Increased resistance to

paraquat, rescue of motility

defects and DA neurons in a

Drosophila model of PD

(138)

relish (loss of function) Suppression of IMD Suppression of retinal

degeneration in norpA

mutants

(139)

draper activity Glial phagocytosis Better clearance of

Aβ-amyloid

(140)

draper (age-dependent

reduction)

Dysfunctional

glial-mediated engulfment

Neuronal death (141)

spz-5 (in neurons) Activation of Toll-6 in glia Neuronal death; dying

neurons signal to glia

(142)

We only list those showing a causative link between immune activity or immune-related signaling and neurological phenotype.

of Hippo pathway was also shown to reduce polyglutamine
(PolyQ)-mediated neurodegeneration by negatively regulating
Toll and Imd pathways via cactus and relish, respectively (137).

Recently, transcription of innate immune genes were observed
as the prominent response to paraquat in a Drosophila model
of PD (138). Interestingly, Relish knock down in dopaminergic
neurons conferred resistance to paraquat and rescued both
motility defects and loss of dopaminergic neurons. The study
indicates that the immune reaction might not be protective
and indicate potential drug targets for preventing neuronal loss
during PD. Immunity induced neurodegeneration can explain
the neurodegenerative phenotypes observed in both ataxia–
telangiectasia mutated (ATM) gene and retinal degeneration
in norpA (no receptor potential) mutants (139). Reduction in
the ATM kinase activity in the glial cells may be responsible
for the increased innate immune response through protein
phosphorylation and cause neurodegeneration in these mutants.
Furthermore, retinal degeneration in norpA mutant flies was
shown to be dependent on Relish and Dredd.

Neuroprotective Roles of Immunity
In addition to the role of the long-term heightened IMD signaling
in causing neurodegeneration, there is also a neuroprotective
aspect of glial signaling components connected to immunity.

Ray et al. showed the neuroprotective role of the glial
engulfment receptor, Draper, in Drosophila model of AD
(140). Overexpression of glial draper reverses amyloid (Aβ)
accumulation along with AD associated behavior phenotypes.
They also show that protein degradation pathways are expressed
downstream to Draper in response to amyloid accumulation.
This supports the theory that glial cells may be responsible for
the clearance of neurotoxic amyloid peptides in the brain through
a Draper/JNK/STAT92E signaling cascade (140). Draper is also
observed to have a significant role in clearance of damaged axons.
Purice et al. observed an age-dependent decline in the levels of
Draper that causes dysfunctional glial engulfment in older flies
(141). Dying neurons activate Toll receptor ligand, Spz, in the
cortex glia, that further drives the expression of Draper to ensure
efficient clearance of the neuron (142).

Gut-Brain Axis
Recent studies have also focused on the role of gut- brain
crosstalk and neurodegeneration. Wu et al. highlighted the effect
of enteric infection in AD progression (146). Gut dysbiosis in AD
mutant flies caused an increase in haemocyte recruitment to the
brain and activation of TNF-JNK mediated neurodegeneration.
Neurodegeneration and reduction in lifespan were rescued in
flies with genetically depleted Eiger (an activator for JNK
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pathway) in the brain, further supporting the hypothesis.Westfall
et al. explored how symbiotic and probiotic formulation can
influence gut brain signaling and delay the progression of
AD (147).

Limitations
Needless to say, no model system is without limitations. It is
important to note that like most invertebrate organisms, the
fruit fly is evolutionarily distant from humans and does not
accurately mimic all the neurodegenerative phenotypes observed
in human diseases such as tau aggregates and plaques (148).
Drosophila lacks an adaptive immune response making it difficult
to recapitulate complex changes in the immune response, that
might take place during aging. Additionally, the hemolymph of
the fly contains primitive hemocytes which cannot undergo DNA
rearrangement and somatic hypermutation like mammalian
lymphocytes. Unlike mammals, flies do not possess microglia
rather, all glial cells can perform microglial tasks; such as
engulfing neuronal corpses during development (84). However,
this restricts studies that attempt to understand the complicated
relationship between the immune system and the relation
between neuroprotection and neurodegeneration. Nevertheless,
the studies summarized here highlight evidence suggesting that
the immune system plays an important role in neurodegenerative
disorder in Drosophila. Two key contributors to lifespan
reduction and neuropathy are overproduction of AMPs and
impaired phagocytosis. Even though animal models do not
represent the diseases completely (for example in the lack of
direct orthologs for the human proteins prone to aggregation
in AD or PD), comparative studies of brain development and
the innate immune response have demonstrated significant
evolutionary conserved mechanisms between vertebrates and
invertebrates. Moreover, the deregulation of innate immunity
as etiology for neurodegeneration stands in Drosophila even in
the absence of tau or β-amyloid. There is a large therapeutic
potential of immunomodulation and therapeutic immunization
(149) to help combat the development of such diseases by
screening fast in whole animal models such as the fly. Moreover,
since the role of immune activity in microglia and astrocytes in
neurodegeneration is well-documented, we could envisage that
negative regulators of immunity could be potential candidates for
early interventions.

CONCLUSION

The precise mechanism of the development of neurodegenerative
diseases is still unknown and this presents a challenge for
the development of treatments and therapies. Currently,
therapies focus only on treating isolating disease symptoms
such as protein accumulation, sleep disturbances, memory
loss, or behavioral changes. Additionally, disease modifying
therapies are largely unsuccessful and there is need for
more drug candidates to enter the pipeline. Since most of
the cases of neurodegeneration are only diagnosed after
severe neuronal loss. Exploring preclinical symptoms as
potential therapy can facilitate the development of treatments
for the early symptoms of the disease. Aberrant immune
regulation resulting in chronic inflammation long before
neurological symptoms manifest themselves may be at the
root of these diseases. We believe that Drosophila represents
an ideal compromise between its relevance to humans and
its demographic power and genetic tractability, making it a
model of choice for understanding mechanistic aspects of
age-related neurodegeneration.
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