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This review discusses recent advances in our understanding of

adhesion receptor trafficking in vitro, and extrapolates them as

far as what is currently possible towards an understanding of

migration in three dimensions in vivo. Our specific focus is the

mechanisms for endocytosis and recycling of the two major

classes of cell-matrix adhesion receptors, integrins and

syndecans. We review the signalling networks that are

employed to regulate trafficking and conversely the effects of

trafficking on signalling itself. We then define the contribution

that this element of the migration process makes to processes

such as wound healing and tumour invasion.
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Introduction
The ability of cells to translocate in vivo is a fundamental

requirement for embryonic development and tissue

homeostasis: it also makes an essential contribution to

the aetiology of, and host response to, virtually every

disease condition. An understanding of the complex

molecular mechanisms that enable cell migration would

therefore generate insights into a diverse range of bio-

logical processes, as well as offer the prospect of mod-

ulating aberrant movement. It is understandable

therefore that there has been intense interest in defining

the modes of migration employed by cells in vivo. Using a

diverse range of model systems, from cultured cells on

two-dimensional surfaces to intravital examination of

xenografts, apparently distinct phenotypic processes have

been described, including lamellipodial migration in 2D,
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and mesenchymal, amoeboid and lobopodial migration in

3D. In other articles in this issue, these different modes of

migration are described in detail.

Regardless of mode, each type of cellular translocation

shares some but not all, of the following features: receptor

recognition of extracellular matrix (ECM) topography,

formation and turnover of clustered adhesion signalling

complexes, adaptation and deployment of dynamic cyto-

skeletal polymers, membrane uptake and delivery, and

polarisation and spatial control of signalling. Whilst each

of these features can be examined in isolation, it is likely

that they are closely coordinated. Thus, adhesion com-

plex clustering may be determined by ECM topography

and/or cytoskeletal architecture, and membrane dynamics

may control the sites where signalling occurs. A current

aim is therefore to combine information obtained from

highly reductionist approaches into high order models of

migration.

Integrins
Integrins are a major family of adhesion receptors. In

mammals, 18 a and 8 b integrin genes encode polypep-

tides that combine to form 24 a,b heterodimeric receptors

[1,2]. Both subunits are non-covalently associated, type I

transmembrane proteins with large extracellular and

mostly short cytoplasmic domains. The combined extra-

cellular domains engage a range of extracellular matrix

and cell surface ligands, whilst the cytoplasmic domains

engage the actin cytoskeleton via a series of linker

proteins [1,2]. Integrins enable cells to sample the top-

ology and mechanochemical properties of their pericel-

lular environment and respond by changing their position

and differentiated state [1,2].

The regulation of integrin affinity by ligand and cyto-

skeletal proteins has been extensively studied, but in

recent years the endocytic trafficking of integrins has

emerged as a complementary mechanism through which

the availability of integrins at the plasma membrane is

controlled. Integrins are internalised via many of the best-

characterised endocytic routes, and this dictates the ability

of the receptors to promote cell migration in two and three

dimensions (reviewed in [3,4]). For example, endocytosis

controls the turnover of focal adhesions and therefore cell

migration in 2D [5–7], whilst direct interactions between

avb6 integrin and HAX-1 control receptor endocytosis,

and have been shown to regulate invasion in 3D ECM [8].

Following endocytosis, integrins, like other cargo recep-

tors, are sorted in early endosomes for degradation or

recycling back to the plasma membrane [3,9,10]. As the
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degradative turnover of integrins is relatively slow, endo-

cytic recycling is considered to play a major role in

regulating the spatiotemporal availability of integrins at

the plasma membrane. In this context, several studies

have demonstrated that the recycling of integrins con-

tributes to adhesion complex formation and migration in

2D [3,11,12].

Accumulating evidence suggests that trafficking integrins

also play an important role in regulating invasive

migration in 3D [13,14]. Indeed, in cells migrating in

3D-microenvironments, the vesicular regulators that con-

trol integrin trafficking accumulate towards the invasive

front [15,16,17�] (Figure 1). It is notable that specific

integrin heterodimers make different contributions to

this process. For example, avb3 and a5b1 integrins bind

to similar ligands, but can act antagonistically: whilst both

integrins promote migration, they do so by eliciting

different signalling responses and in fact mutually sup-

press each other [18]. Phosphorylation of rabaptin-5 by

PKD promotes Rab4-dependent avb3 recycling, and this

in turn promotes directionally persistent lamellipodial

migration in 2D and invasion into 3D ECM in the

absence of fibronectin (FN) [19,20��]. However, in the

presence of FN, this avb3-recycling pathway suppresses

invasive migration. This is because avb3, and avb3

recycling, inhibit the recycling and pro-invasive activity

of a5b1 [16,19,20��]. When avb3 (or its recycling) is

inhibited, or if cells express cancer-associated forms of

mutant p53, a5b1 associates with the Rab11-effector

Rab-coupling protein (RCP), and rapidly recycles to

the plasma membrane to promote invasion into FN-rich

ECM [16,20��,21]. Production of phosphatidic acid by

DGKa promotes the recruitment of RCP to the front of

invasive cancer cells via its C2 domain, resulting in

localised trafficking in this subcellular region [17�]. Inter-

estingly, RCP-driven a5b1 recycling does not influence
Figure 1
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the ability of the integrin to mediate attachment via its

ligand FN: instead, a5b1 and RCP recruit receptor tyro-

sine kinases and regulate their trafficking and signalling

to promote invasion [16,21,22].

a5b1 trafficking can also promote invasive migration in

FN-rich ECM through Rab25, a Rab11 family member

that is upregulated in aggressive ovarian cancer [23].

Rab25 binds directly to the cytoplasmic tail of b1 to

direct a5b1 trafficking at the front of invading cells

[15]. Here, endocytosed integrins are delivered to the

Rab25 compartment at the cell front, and inactive integ-

rins are trafficked directly back to the vicinal membrane

[15]. Active a5b1 heterodimers are, however, trafficked

via Rab25-positive late endosomes to lysosomes towards

the rear of cell. Here, CLIC3, which is co-upregulated

with Rab25 in a subset of aggressive ovarian and pan-

creatic cancers, promotes the recovery of a5b1 from

lysosomes and recycling to the plasma membrane at

the rear of the cell to facilitate invasion [24��]. Thus,

Rab25 can coordinate process extension, by recycling

unligated integrin to the cell front, with retraction by

recycling active integrins to the cell rear where they can

promote signals for forward movement.

Syndecans
Syndecans are a small family of membrane-intercalated

proteoglycans that serve as receptors for extracellular

matrix ligands and growth factors [25]. In mammals, there

are four members. It is remarkable that most ECM

molecules possess both integrin-binding and syndecan-

binding sites, and a clear synergistic relationship exists

between these two families. For example, adhesion com-

plex formation on several matrix ligands requires engage-

ment of, and signalling via, a syndecan co-receptor. In this

respect, syndecan-4 is the best-characterised family mem-

ber, with its importance for migration in vivo being
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arian carcinoma cells (A2780) transiently expressing Life-act GFP and

ence of cyclic RGDfV peptide and imaged using a spinning disk

mm). The 3D reconstruction was performed using the Imaris software. To

f the actin stack was displayed.

www.sciencedirect.com



Receptor trafficking and cell migration Jacquemet, Humphries and Caswell 629

Figure 2
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exemplified by the wound healing and angiogenesis

defects observed in null mice [25]. In cells, cooperation

between integrins and syndecan-4 has been demon-

strated to regulate directional cell migration by dictating

the spatiotemporal activation of the small GTPases Rac1,

RhoA, RhoG and Arf6 [26–28,29�,30��].

Like integrins and growth factor receptors, syndecan

function is regulated by endocytic trafficking [31�,32].

Whilst it has been suggested that syndecans can be

internalised by macropinocytosis [33�], and that syndecan

internalisation can be mediated via the binding of Rab5 to

the syndecan-1 cytoplasmic domain [34], the mechanisms

describing endocytosis of syndecans themselves are

incompletely described. Syndecan recycling back to

the plasma membrane has been shown to be dependent

on a syndecan-syntenin-PIP2 association and the activity

of the small GTPase Arf6 [32]. Interestingly, disruption of

syndecan recycling by mutating the syntenin-PIP2 bind-

ing site triggers the accumulation of FGF receptor and b1

integrin to syndecan-containing endosomes. These obser-

vations suggest that syndecans could participate in the

recycling of adhesion and growth factor receptors, possibly

by trapping receptors into a specific endosomal compart-

ment through their glycosaminoglycan chains [32].

Recent studies have indicated that syndecans are more

than just passive cargos trafficked to and from the plasma

membrane. Indeed, the syndecan-syntenin interaction

has been shown to promote the formation of exosomes

by recruiting ALIX [35��]. These data suggest that syn-

decans act as scaffolding platforms that recruit the

machinery responsible for membrane budding and fis-

sion. Interestingly, exosome production was demon-

strated to support tumour growth and metastasis,

suggesting that syndecan functions could regulate these

processes [36].

Syndecans have also been reported to regulate cell

migration by controlling the internalisation and recycling

of multiple receptors. Consistent with a regulatory role in

receptor endocytosis, syndecans (in particular syndecan-

4) have been shown to mediate the macropinocytosis of

FGFR1 in response to FGF2 [33�], the clathrin-depend-

ent internalisation of Wnt-receptor in response to R-

spondin in Xenopus [37] and caveolar endocytosis of

a5b1 integrin in response to H/0 (a soluble syndecan-4-

binding fragment of FN) [29�]. In this context, the synde-

can-4-mediated endocytosis of a5b1 has been shown to

facilitate adhesion turnover and regulate directional cell
( Figure 2 Legend ) The mechanisms underlying the reciprocal nature of avb

fibroblasts, avb3 recycling suppresses the recycling of a5b1 to promote lam

Intervening in the recycling of avb3, by manipulating avb3 directly, express

phosphorylation/engagement promotes the recycling of a5b1, and consequ

invasion into FN-rich ECM (b). The studies summarised above are persuasiv

adhesion receptors such as integrins and syndecans should be viewed as a

signalling events whilst black arrows indicate endocytic trafficking.
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migration in 3D microenvironments and efficient wound

healing in vivo [29�].

In addition, syndecan-4 can dictate specificity of recycling

between integrin heterodimers and therefore control the

mode of cell migration [30��]. Src-dependent phosphoryl-

ation of syndecan-4 was shown to suppress Arf6 activity

and to promote the recycling of avb3 integrin to the cell

surface, leading to adhesion stabilisation and rapid direc-

tional migration on 2D substrates [30��]. Conversely, H/0-

mediated stimulation of syndecan-4, or expression of a

syndecan-4 construct that cannot be phosphorylated by

Src, promoted Arf6 activation and the recycling of a5b1

integrin, resulting in adhesion turn-over and random

migration on 2D substrates [30��]. Importantly, Src-

mediated phosphorylation of syndecan-4 occurs in the

conserved domain, present in all syndecan family mem-

bers, and may represent a general mechanism whereby

syndecans regulate receptor trafficking [30��]. Interest-

ingly, Src can be activated by various receptors including

integrins and growth factor receptors [38–40], allowing

potential feedback loops within the recycling pathway.

Furthermore, this recent study supports previous obser-

vations relating to the heterodimer specific signalling and

trafficking to promote cell migration in 2D and in 3D

[18,19,20��,41] (Figure 2).

Whether syndecans are involved in general receptor

uptake or in the internalisation of specific receptors

remains to be determined. As syndecans bind to an array

of extracellular ligands, it will be important to assess

whether specific syndecan ligands induce distinct intern-

alisation pathways, or whether the internalisation route is

dictated by the internalised receptor. A further priority

will be to determine whether syndecans are internalised

and trafficked together with, or separately from, these

receptors.

From recent studies it is clear that syndecans, in particular

syndecan-4, play a key role during cell migration by

regulating the activation of various small GTPases and

the trafficking of adhesion receptors. It remains to be

elucidated whether these functions are independent or

whether the syndecan-mediated temporal activation of

small GTPases could be a consequence of the recycling

pathway.

Conclusion
Here, we have reviewed the recent advances that have

altered perceptions of the role of adhesion receptor
3 and a5b1 recycling. In many cell types, including cancer cells and

ellipodial migration in 2D and invasion into ECM that lacks FN (a).

ing mutant p53 (in cancer cells), or by influencing syndecan

ently a RhoA-ROCK dependent mode of random migration in 2D, and

e of the notion that the signalling and trafficking events governed by

 network, rather than individual, isolated events. Red arrows delineate
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trafficking during cell movement. An emerging insight is

the close connection between membrane dynamics and

signalling, and we are beginning to clarify how these

processes combine together to contribute to cell

migration in a range of events in vivo. Whilst there is

still much to be determined, some future perspectives can

be discerned.

The approaches used to define the signalling events that

are triggered by, and contribute to, receptor trafficking

have in large part been defined by biochemical and

immunocytochemical approaches. These techniques

either lack precision or necessarily involve averaging of

large cell populations. A priority for the future will there-

fore be improved precision, whether this involves local-

isation of signals to different membranes or pinpointing

the sites at which vesicle budding and fusion occur.

A further priority will be to understand the variation in

processes that underpin different modes of migration in

different systems, and the mechanisms of switching that

take place in relation to changes in cell phenotype and the

mechanochemical environment of the cell. These studies

will require a move to analysing ever more physiologically

relevant, reconstituted 3D systems in which ECM com-

position, growth factors and mechanical properties have

been reproduced, or the use of transparent organisms or

intravital microscopy.
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10. Böttcher RT, Stremmel C, Meves A, Meyer H, Widmaier M,
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