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Mutational bias and the protein code shape
the evolution of splicing enhancers
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William G. Fairbrother!34

Exonic splicing enhancers (ESEs) are enriched in exons relative to introns and bind splicing
activators. This study considers a fundamental question of co-evolution: How did ESE motifs
become enriched in exons prior to the evolution of ESE recognition? We hypothesize that
the high exon to intron motif ratios necessary for ESE function were created by mutational
bias coupled with purifying selection on the protein code. These two forces retain certain
coding motifs in exons while passively depleting them from introns. Through the use of
simulations, genomic analyses, and high throughput splicing assays, we confirm the key
predictions of this hypothesis, including an overlap between protein and splicing information
in ESEs. We discuss the implications of mutational bias as an evolutionary driver in other
cis-regulatory systems.
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plicing refers to the process of removing long intervening

sequences (i.e. introns) from pre-mRNAs and is catalyzed

by the spliceosome, a large dynamic macromolecule that
rivals the ribosome in complexity. Living cells are comprised
of many such complex networks of interacting parts. These
interactions arise from two macromolecular surfaces encoded
by separate loci that co-evolved to specifically recognize and
bind each other. They can be protein-protein contacts. They
can also be trans-acting factors that bind a nucleic acid recog-
nition element. Prior studies of the evolution of cis-regulatory
networks often focused on later events such as the evolution
of new specificity in existing trans-acting factors!-8. The evolu-
tionary reconstruction of large families of similar transcription
or splicing factors suggests that gene duplication followed by
neofunctionalization was a primary mechanism for the recent
expansion of trans-acting factor/cis-element networks in higher
eukaryotes1®8-12 In contrast to later events, there is less insight
into how initial recognition partnerships between trans-acting
factors and cis-elements can form!37. For example, how can a
category of cis-elements acquire the correct ensemble of locations
in the genome prior to the evolution of the recognition event?

This study investigates how exonic splicing enhancers (ESE)
became enriched in exons relative to introns prior to their
recognition by splicing activators. ESEs are short motifs that are
located in exons and are necessary for pre-mRNA splicing!3. A
key property of ESEs is their enrichment in exons relative to
introns!#. ESEs are often recognized by SR proteins, a family of
splicing factors that typically act as activators when bound in
exonic sequence and repressors when bound in the intron!°. ESEs
also occur infrequently in introns. It has been demonstrated that
ESE motifs disrupt splicing when relocated to an intron!®-18, This
result suggests that intronic occurrences of ESE motifs should be
subject to purifying selection!4.

The sequences that can function as exonic splicing enhancers
(ESE) have been identified through a variety of methods. Some
approaches are purely computational and infer k-mer function
based on distribution around splice sites!®19-21, whereas other
ESE models are determined empirically?2-26. A recent empirical
approach was used to assign an Enrichment Index (EI) score to all
possible hexamers based on their ability to enhance splicing from
several exonic positions in multiple minigene substrates?4,

Similar minigenes have been used to screen mutations for their
ability to cause splicing defects?’~30. Although most disease-
causing exonic mutations are presumed to affect the protein code,
approximately one in three disease-causing mutations also affect
splicing?!. Mutations do not occur uniformly in a sequence but
are strongly influenced by sequence context’!-34 Moreover,
mutational biases have evolved over time3°-38, In many verte-
brates, CpG nucleotides are highly mutable because of cytosine
methylation, where a spontaneous deamination of methylated
cytosine results in a C to T transition during replication3®. The
CpG motif has been associated with mutational hotspots for
disease39-4! and stronger purifying selection®2. Because of loss to
mutation, CpG dimers are depleted in all regions of the human
genome, but are more abundant in exons because many of the
remaining exonic CpGs are evolving under strong purifying
selection®2. CpGs are one example of context dependent mutation
rates. More sophisticated models leveraging large variant datasets
have recently been used to estimate the relative mutation rate of
nucleotides based on different k-mer sequence contexts3233,

In this study, we test the hypothesis that mutational bias in
conjunction with purifying selection on the protein code created
precursor ESEs (pre-ESEs), motifs that were enriched in exons
relative to introns which later evolved into ESEs. As the immediate
sequence context can strongly influence the probability of
a mutation, we reasoned that hypermutable motifs are rapidly

depleted from the genome. However, hypermutable motifs that
encode important protein motifs should be retained in exons by
purifying selection. Since ESEs need to be enriched in exons rela-
tive to introns, we hypothesize this passive mechanism created pre-
ESEs with an ESE-like distribution to which RNA binding proteins
could later adapt. If this hypothesis is correct, ESEs would be (a)
hypermutable (to facilitate their depletion from introns) and (b)
retained by purifying selection on the protein code. Here we
demonstrate mutable sequence motifs are evolving under higher
levels of purifying selection. We utilize high-throughput bio-
chemical assays, genomic analyses, and simulations to show that
ESEs are highly mutable sequences that have been retained
in exons because of selection on their protein-coding function.
The passive role of background mutational processes in shaping
cis-regulatory networks is also explored for other types of recog-
nition elements.

Results
Mutational bias and protein-based selection create pre-ESEs.
Initially, simulations were used to test the hypothesis that
mutational bias in conjunction with purifying selection on the
protein code could create motifs that were precursors to ESEs
(pre-ESEs). These pre-ESE motifs would be short k-mers that are
enriched in exons relative to introns. It has recently been shown
that mutation rates can vary >400-fold across different sequence
contexts3? (Fig. 1a). A program was written to simulate realistic
substitution probabilities in a genome of random sequence over
many generations (Methods). This synthetic genome was allowed
to evolve without selection (i.e. genetic drift) or with negative
selection that disallows any change to the protein sequence (i.e.
strict purifying selection). Substitutions were drawn in proportion
to recently published estimated relative mutation (ERM) rates
based on heptamer contexts32. Mutational bias has an enormous
impact on sequence composition during simulated evolution.
Sequence motifs, like CGTACG (Fig. 1b), associated with a high
mutation rate are rapidly depleted (i.e. mutated to sequences
associated with a lower mutation rate) (Fig. 1c, Non-coding, red
lines), whereas sequences with low mutability, like TTTTTT
(Fig. 1b), tend to accumulate in the synthetic genome (Fig. 1c,
Non-coding, blue lines). Applying purifying selection by dis-
allowing non-synonymous mutations reduces the magnitude but
not direction of these changes (Fig. 1c, Protein-coding) such that
the most mutable k-mer becomes ~3-fold enriched in regions
under protein selection (i.e. regions analogous to coding exons)
and the least mutable sequence becomes ~6-fold under-
represented in regions under protein selection (Fig. 1d). This
experiment demonstrates how mutational bias in conjunction
with selection on the protein code can generate k-mers that have
an ESE-like distribution, enriched in exons relative to introns.
To explore evidence of this phenomenon in human exons,
several comparisons were undertaken. The simulation demon-
strates highly mutable sequences are preferentially lost to mutation
(Fig. 1c). However, the constraint of the protein code prevents the
loss of some exonic sequences, leaving exons with a higher average
mutation rate than introns (Fig. 2a). To test whether human exons
have an elevated level of mutation relative to introns, the average
mutation rate (for all three possible substitutions) at each position
in human exons and introns was calculated and plotted as a
function of distance from splice sites (Fig. 2b). The estimation of
mean mutation rates in human exons and their flanking introns
suggests human protein-coding sequence is ~25% more mutable
than non-functional introns (Fig. 2b). This finding was indepen-
dently validated by an analysis of a large exome variant dataset*3.
Rare variants occurred at sites with a higher average mutability
than common variants, suggesting stronger purifying selection is
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Fig. 1 Mutational bias and protein-level selection shape motif evolution. a The highest (red)/lowest (blue) estimated relative mutation (ERM) rates

based on 7-mer contexts as reported by Carlson et al.32. b The most (red)/least (blue) mutable hexamers based on the mean ERM rates over all possible
single nucleotide changes and flanking sequence contexts. ¢ Simulations initialized on a genome of random sequence were used to model the effects of
protein-coding constraint and mutability on the evolution of motif frequencies (y axis) over time (x axis, mutations introduced per base of sequence). The
simulation was run under the following conditions: with the constraint of preserving amino acid identity (right panel) or without constraint (left panel).
Motif frequencies are shown for the most (red)/least (blue) mutable hexamers. Gray band shows the range across all 4096 hexamers as it evolves over
time. d The frequency ratio of motifs in simulations with versus without coding constraint (analogous to exon versus intron enrichment) rapidly increased/

decreased for the most (red)/least (blue) mutable hexamers.

acting in more mutable regions (Supplementary Fig. 1). This result
is also consistent with prior observations of higher CpG levels in
exons*4, conservation of CpG levels at matched codon positions*2,
higher de novo mutation rates in exons*>, and positive correlation
between site-level conservation and de novo mutation rates in
exons*l. Taken together, the genomic and population genetic
analyses corroborate the simulation’s finding that certain mutable
sequences were preserved in exons by purifying selection on their
protein-coding function. Indeed, the high degree of correlation
between k-mer composition in exons and the simulation indicates
the same hexamers enriched in human exons are preserved during
the simulated evolution of constrained protein sequence (Fig. 2c,
R? = 0.56 positive slope). This correlation suggests simple models
of mutational bias and purifying selection can account for more
than half of the variability in exonic to intronic k-mer enrichment.
The subset of k-mers that are enriched in exons have the correct
distributional profile to be ESEs, but had not been shown to satisfy
the second requirement of ESE function, the ability to bind splicing
activators.

The most mutable sequences in human exons are ESEs. To
determine whether these highly mutable sequences enriched in
exons can bind any of the numerous splicing activators present in
cells, each hexamer was associated with an empirically deter-
mined enhancer activity score, the EI**. A hexamer’s EI score was
found to correlate reasonably well with a hexamer’s enrichment
in human exons relative to introns (Fig. 2d, R? = 0.45 positive
slope). An ESE would be expected to be enriched in exons relative
to introns and have a high EI score (Fig. 2d, upper right quad-
rant). The ERM rate of possible mutations was associated with
each hexamer. The subset of hexamers predicted to possess ESE
activity coincide with the hypermutable regions of the genome
(Fig. 2d, red dots in upper right quadrant), suggesting that human
ESEs are made of the most mutable sequences. The same effect
was observed to the same (or greater) extent with two other ESE
models?> (Supplementary Fig. 2). This phenomenon is not strictly

a function of CpG-containing k-mers as repeating the analysis
without CpG resulted in the same trend (solid line) in all studies
(Supplementary Fig. 3a-c). Furthermore, the high correlation
between exon enrichment in vivo and in silico (Fig. 2c) suggests
that the ESE motifs observed in human exons arose sponta-
neously through the background mutation process in exons
evolving under purifying selection. This result demonstrates ESEs
are highly mutable and ESE-like distributions will form passively
without requiring selective forces related to their eventual func-
tion in splicing.

Selection against stop gain mutations preserve ESEs. It was
surprising that the correlation between hexamer composition in
the simulation and human exons was strong. The stringent
implementation of purifying selection on protein sequence
(disallowing all non-synonymous mutations) is an obvious
simplification of the selective forces under which proteins
evolve. To understand the nature of the protein-based selection,
a closer examination of mutations that disrupt splicing was
undertaken. We reasoned that if ESEs were shaped by purifying
selection on proteins, mutations that disrupt splicing should also
be disruptive to the protein code. A dataset of naturally occur-
ring de novo mutations was used because they capture endo-
genous mutational bias with a minimal role of selection in their
ascertainment?®. This dataset of 707 de novo mutations was
engineered into a high-throughput splicing reporter assay and
analyzed using the MaPSy protocol?® (Methods, Supplementary
Data 1). Briefly, the wild-type and mutant version of the exon
with intron flanks was incorporated into a splicing minigene
reporter (Supplementary Fig. 4a, b). All 1414 reporters were
pooled for transfection into HEK 293T tissue culture cells in
four replicates (Supplementary Fig. 5). Sequencing was used to
estimate the skew in mutant/wild-type allelic ratio (M/W splice
ratio) in the starting pool relative to the successfully spliced
fraction (Supplementary Fig. 4a). Within this set of 707 exonic
mutations, 54 mutations fell within the exonic portion of the 3’
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Fig. 2 Protein-coding regions exhibit higher mutability than non-coding regions. a Simulations initialized on a genome of random sequence (tiitial) Were
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(exonic) or without (intronic) constraint was plotted as a function of position (Methods). b Mean ERM rate (y axis) in aggregate human exon and intron
data was plotted as a function of distance from annotated 3’ and 5’ splice sites. € Hexamers enriched in protein-coding versus non-coding simulations are
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(Pearson'’s correlation test, p< 2.2 x 10716, n = 4096 hexamers), and exhibit higher mutability (greater ERM rate quintiles). Source data are provided as a

Source Data file.

and 5’ splice site regions (i.e. the first and final 3 nucleotides of
the exon). As expected, this class of variant was associated with
the highest degree of disrupted splicing. Scoring both allelic
versions for agreement to the splice site consensus indicated that
a decrease in splicing occurs when the mutation reduces the
match to the 5" or 3’ss (Supplementary Fig. 4c). The remaining
mutations comprised 192 synonymous, 413 missense, and
31 stop gain mutations. Stop gain mutations, which are the most
disruptive to protein function, were also found to be the most
disruptive to splicing (M/W splice ratios, Fig. 3a). Missense and
synonymous mutations disrupted splicing to a lesser extent than
stop gain mutations. To place these results in deeper context,
different datasets of variants, each with different ascertainment
(de novo mutations, disease alleles, and exome variants), were
explored for their effect on splicing (Fig. 3b-d). As expected,
disease-causing variants2® were more deleterious in the missense
and stop gain categories (Fig. 3b). Two splicing studies utilizing
exome variants were also reanalyzed?830 (Fig. 3c, d). Here,
missense and synonymous variants had little effect on splicing.
However, a commonality across all four studies was a strong
association between stop gain mutations and splicing disrup-
tion. This was true even when we considered MaPSy in vitro
splicing assay results?, which should not be affected by
nonsense-mediated decay (Supplementary Fig. 4d). The pro-
posed hypothesis argues that protein-based purifying selection
maintains mutable pre-ESE motifs in coding exons while
depleting them from introns. These high-throughput biochem-
ical experiments on thousands of naturally occurring variants
suggests the selection that retains ESEs is largely negative
selection against the creation of stop codons.

Mutation’s effects on protein and splicing are correlated. One
consequence of protein selection as a driver of ESE evolution is
that certain protein motifs should be associated with splicing?3.
To determine whether such motifs exist, each exonic occurrence
of a hexamer was mapped and translated in the appropriate
reading frame. The two amino acids with the greatest overlap
with the hexamer was associated with the hexamer’s EI score.
An average EI score for all 400 possible amino acid pairs was
tabulated from the weighted ensemble of hexamer EI scores that
encoded the amino acid pair in the human genome. Some amino
acid pairs are overrepresented in the proteome (i.e. occur more
frequently than the product of their single amino acid fre-
quencies). It is possible that these amino acid pairs are enriched
because of the need to encode ESEs. It is also possible these amino
acid pair enrichments reflect nearest-neighbor correlations driven
by requirements of protein structure. We reasoned that protein-
based patterns would also occur in prokaryotic proteomes,
whereas enrichments driven by splicing would be restricted to
species that had introns. To make this distinction, an amino acid
pair’s EI score was compared to its enrichment in the human
proteome and also an aggregate of non-splicing proteomes
(Methods). Amino acid pairs associated with high ESE activity are
enriched in the human proteome but not in non-splicing bacterial
proteomes (Fig. 4a). The greatest observed difference in enrich-
ment in amino acid pairs are consecutive occurrences of glutamic
acid, EE (Fig. 4a). This amino acid pair corresponds to the classic
GARGAR ESE motif!4,

EE is by far the most abundant amino acid ESE motif and
the second most abundant amino acid pair in the human
proteome. Simulating the mutation process using human exons
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p-values from Mann-Whitney two-tailed test. Source data are provided as a Source Data file.

and mutational bias (Methods) found this EE motif to be among
the most likely of all 400 amino acid pairs to mutate to a stop
codon (~1/3 of mutations created stops; Supplementary Fig. 6),
suggesting purifying selection against stop gain mutations played
a major role in the evolution of the GARGAR ESE. As only 1/9 of
all possible substitutions in GARGAR can create in-frame stop
codons, and transversions typically occur with lower probability
than transitions, it seemed unlikely that a third of all mutations in
this ESE should result in stop codons. However, the two G>T
mutations in this purine-rich context represent an unreported
hotspot motif occurring at twice the frequency of transitions and
approximately half the frequency of CpG (Fig. 4b). The initial
hypothesis proposed that context dependent elevated mutation
rate (i.e. mutational bias) coupled with protein selection drives
certain k-mers to adopt an ESE-like distribution (i.e. enriched in
exons, depleted in introns). The classic GARGAR ESE appears to
satisfy both criteria in that the highest mutation rates create the
greatest disruption to the encoded protein. Considering the
spectrum of mutations that can occur in GARGAR, there is a
strong agreement between the deleteriousness of the predicted
protein effect of the mutation and the predicted splicing effect
(Fig. 4c; change in EI for synonymous < missense < stop gain).
Although this relationship was discovered for GARGAR, nearly
all ESE protein motifs exhibit the same correlation between rank
order of variant deleteriousness to protein and splicing function
(Fig. 4d, e). These results, together with the observation that
amino acid pairs that encode ESEs are enriched in splicing
genomes (Fig. 4a), suggest a strong signature of protein-based
selection on the evolution of ESEs.

Mutational bias and the protein code drive evolution of ISEs.
The observation that selection on the protein code coupled with
mutational bias can create pre-ESEs raises questions about other
types of gene expression signals. For example, intronic splicing
enhancers (ISE) are enriched in introns relative to exons. Our
initial exploration of the effects of mutation rate on intron/exon

sequence composition suggests sequences of low mutability tend
to accumulate in introns (Fig. 1c, blue line). Reimplementing the
analysis of Fig. 2d confirms intronically enriched motifs that
possess predicted ISE activity?® have a low level of mutability
(Fig. 5 and Supplementary Fig. 3d, e). This offers further exam-
ples of how selection against variants that alter the protein code
can shape the evolution of non-coding signals.

A model for ESE and ISE evolution. In summary, we present the
hypothesis that mutational bias in conjunction with selection on
the protein code gave rise to pre-ESE (and pre-ISE) motifs with
exonic (and intronic) distributions to which splicing activators
later adapted their binding specificity (Fig. 6). A mathematical
model of motifs evolving with varying degrees of mutational bias
and selection (Supplementary Note 1) demonstrates that both
forces are required to generate pre-ESE (and pre-ISE) distribu-
tions (Supplementary Fig. 8). As mutational bias increases, motif
enrichment in introns becomes more variable (Supplementary
Fig. 8a). However, as strength of purifying selection increases,
motif evolution in exons becomes more constrained and less
variable (Supplementary Fig. 8b), resulting in greater differences
in motif enrichment in exons versus introns (Supplementary
Fig. 8c). The main ESE, the GARGAR motif, illustrates both of
these properties (i.e. strong selection against and high mutation
rate for stop gains). It is interesting to consider the utility of high
mutability in reducing background occurrences of a signal
sequence, and perhaps consider other major signals, such as CpG
islands in vertebrate promoters, as additional examples of this
phenomenon. It is somewhat counterintuitive to regard certain
classes of functional elements as intrinsically more fragile than
other sequences. There is great interest for clinical genetics in
predicting the splicing effects of variants outside the canonical
splice sites. This work suggests exonic splicing mutations may
occur more frequently than intronic splicing mutations in clinical
genetics.
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activity are based on the effect (log, odds ratio) of intronic hexamers on alternative 3’/5’ splice site usage as measured by high-throughput minigene
experiments. a, b Squared Pearson’s correlations (n = 4096 hexamers). Source data are provided as a Source Data file.
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Fig. 6 A two-step model for the evolutionary origins of ESEs and ISEs.
(Step 1) Genomes consist of a mixture of more mutable (red) and less
mutable (blue) motifs. More mutable motifs are removed from the genome
over time and replaced by less mutable motifs (arrows from red to blue). In
coding exons, more mutable motifs may instead be retained by purifying
selection acting to preserve the protein sequence (blocked arrows from red
to blue motifs). Thus, mutation and selection jointly drive a skewed
enrichment of motifs in exons relative to introns. More mutable motifs
become enriched in exons (pre-ESEs) and less mutable motifs become
enriched in introns (pre-ISEs). (Step 2) The initial evolution of binding
specificity between splicing factors and cis-elements should be predicated
on the background motif distributions shaped by mutational bias and
protein-level selection. Exonic splicing activators (pink) will tend to evolve
to bind pre-ESEs, which are already enriched in exons. Intronic splicing
activators (green) will tend to evolve to bind pre-ISEs, which are already
enriched in introns.

Discussion

We present a parsimonious model for the evolution of exonic
splicing enhancers (ESEs). Counter to intuition, purifying selection
leaves functional elements more mutable than non-functional
regions of the genome. Constraint imposed by purifying selection
on the protein code creates a favorable distribution of mutable
k-mers in exons relative to introns through the background
mutational process (Fig. 6). Mutator phenotypes can alter muta-
tional bias, and there is evidence for evolution in mutational
spectra across human populations, mammal species, and eukar-
yotic lineages3>-38. Tt is thus unlikely that sequence composition
ever reaches a mutation-selection equilibrium. Moreover, the
stringency of selection varies across and even within proteins.
Although the effects of these uncertainties can be explored by
varying simulation parameters (Supplementary Fig. 9) and math-
ematical modeling (Supplementary Fig. 8), our simulations
demonstrate how this passive mechanism with mutational bias and
constraint of the protein code can create pre-ESE k-mers with all
the properties of an ESE (i.e. high EI scores and high exon/intron
occurrence frequency). Similar processes can create pre-ISEs in
introns (Fig. 5).

It has been suggested that exons can accommodate interweaved
protein and splicing information by exploiting non-overlapping
coding and non-coding sites, respectively, due to the redundancy
in the protein code*’->l. Our model instead predicts a large
proportion of the information coding for ESEs must be coin-
cident with the information coding for proteins (simulations
suggests ~50%, Supplementary Fig. 9d). Many mutations that
disrupt protein function have also been shown to disrupt splicing
function?®. High-throughput splicing analysis indicated selection
against stop gain mutations is a primary driver of ESE evolution,
but a signature of protein-based selection was not seen for
missense mutations (Fig. 3). One explanation for this loss of
resolution is that splicing assays return both mutations that create

silencers and mutations that disrupt enhancers. Analyzing
mutation in enriched amino acid pairs is instead focused on
disruption of positive signals (i.e. ESEs), and in this analysis it can
be seen that missense mutations disrupt splicing more than
synonymous variants (Fig. 4 and Supplementary Fig. 7). It has
also recently been shown that exons co-regulated by the same
splicing factors have similar nucleotide composition bias and
code for physiochemically similar amino acids>2. Together, these
results support the predicted overlap between protein and spli-
cing codes in ESEs.

After the establishment of a network of ESEs and their trans-
acting splicing factors, it is certainly possible that the splicing
code has broadened to include information at synonymous
sites. Synonymous mutations have been shown to disrupt splicing
and contribute to disease?830>3>4 and studies of selective
constraint*49-51 and distributions of fitness effects®> support the
functional role of synonymous sites in ESEs. In addition, ESEs,
once established, will co-evolve with their trans-acting partners
due to selection on the splicing phenotype?°, and differences in
genetic drift and genome size across eukaryotic lineages can affect
the efficacy of mutation and selection processes®®. Thus, there are
many additional forces that shape the evolution of the splicing
code. Nevertheless, mutational bias and protein selection should
continue to act passively to maintain favorable ESE distributions,
and changes to either can provide novel opportunities for ESE
evolution.

For non-coding recognition elements, we propose mutational
bias can play a profound, indirect role in their evolution.
Although the co-evolution of an element and the binding speci-
ficity of an activator is important, functional specificity is
impossible if the element occurs ubiquitously. The emergence of
well-known recognition elements such as CpG islands and ESEs
may have been driven by their mutability, which conferred a high
signal-to-noise ratio by ensuring a low frequency of occurrence in
the genomic background.

Methods

Estimated relative mutation (ERM) rates. Estimated relative mutation (ERM)
rates for heptamers were downloaded from a previous study>2. Each heptamer is
associated with three ERM rates for each of the three single nucleotide changes at
the middle position (e.g. AAA[A]JAAA > AAA[T]AAA, AAA[C]AAA, AAA[G]
AAA). Mean hexamer-level ERM rates were calculated as the average of heptamer-
level ERM rates over all 18 possible single nucleotide changes in the hexamer

(3 mutations for each position), and assuming uniform occurrence of all +3 nt
flanking sequence contexts (e.g. NNN[AAAAAA]NNN).

Exonic and intronic splicing enhancer scores. Hexamer-level scores of ESE/ISE
activity based on high-throughput minigene assays were downloaded from two
previous studies. Enrichment index (EI) scores were downloaded from a previous
study24. Rosenberg scores of ESE (exonic A3SS, exonic A5SS) and ISE (intronic
A3SS, intronic A5SS) activity?> were recalculated by running Notebook 4: Esti-
mating Motif Effects available at https://github.com/Alex-Rosenberg/cell-2015/
tree/master/ipython.notebooks.

Simulations with mutational bias and protein selection. Simulations were
initialized on a genome of 5000 random DNA sequences each of length 999 nt.
Each sequence was translated into their corresponding amino acid sequence for
simulations with selection. Sequences were evolved one substitution at a time. In
each time step, a position was mutated as follows: Step (1) each position was
assigned the mean ERM rate of the three possible single nucleotide changes based
on current heptamer context; Step (2) a position was selected to mutate based on its
ERM rate relative to that of other positions; Step (3) a mutant allele was selected
based on the ERM rates of the three possible single nucleotide changes; Step (4a) in
simulations with protein-coding constraint, a mutant allele is introduced if it does
not change the amino acid sequence and if it does not create a stop codon,
otherwise the mutation is rejected; Step (4b) in simulations without constraint, the
mutation is introduced. Sequences were circularized in silico to account for edge
effects at positions <3 nt from the ends.

As the simulations progressed, the state of the simulation was recorded at time
intervals of 0.2 mutations per base (mutations per base = the number of mutations
introduced scaled by the total length of sequences in base pairs) up to 10 mutations
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per base (allowing plenty of time for the simulations to reach a dynamic mutation-
selection equilibrium). The mean ERM rate of a sequence was calculated as the
mean of all heptamer ERM rates for all possible single nucleotide changes. The
mean Enrichment Index (EI) score?* was calculated as the mean of all hexamer EI
scores. Individual hexamer frequencies were recorded to compute their enrichment
in simulated exons versus introns. Mean ERM rates and mean EI scores were
calculated over all sequences weighted by sequence length.

To vary mutational bias, the ERM rates used in Step 1 of the simulation were
modified as follows: Step (1) the ERM rates were log-transformed; Step (2) the log-
transformed ERM rates were multiplied by a mutational bias parameter (1: original
mutational bias, 0: no mutational bias, 0.5: reduced mutational bias, and 2:
increased mutational bias); Step (3) the rescaled log-transformed ERM rates were
inverse log-transformed. This approach was used because: (a) it allows for the
dynamic range of mutation rates (ERM rates) between the most and least mutable
heptamers to be tuned with a single scaling parameter (the mutational bias
parameter); (b) it preserves non-negativity and the rank order of ERM rates; and
(c) it returns the original ERM rates when the mutational bias parameter is 1 and
uniform ERM rates when it is 0. In Supplementary Fig. 9¢, d, simulations were
instead initialized on a genome of human exonic sequences based on UniProt
SwissProt®” coding domain sequences for 21,328 protein-coding genes downloaded
from the UCSC Table Browser®S. UniProt SwissProt intronic sequences from the
UCSC Table Browser were also used to compute genome-wide means ERM rates.

ERM rates and El scores of genomic regions. GENCODE V17 exon-intron
coordinates and sequences were downloaded from the UCSC Table Browser?S.
Genomic windows 300 nt into the intron and 150 nt into the exon relative to each
3’ and 5’ splice site were annotated for their ERM rate. All positions were assigned
an ERM rate based on the heptamer sequence spanning +3 to —3 nt of the given
position. For exonic or intronic positions within 3 nt of an exon boundary, the
heptamer was extended into the neighboring intron or exon. For a given position
relative to the exon boundaries, ERM rates associated with that position were
averaged genome-wide.

For simulated exons and introns, ~1/3 of the 5000 sequences were used as
middle exons (using the simulations with protein-coding constraint), and ~2/3 of
the remaining sequences were used as flanking introns (using the simulations
without constraint). Each sequence was trimmed to the first 300 nt. Distinct triples
of intron, exon, intron sequences were concatenated into 900 nt sequences
(these are analogous to the concatenation of 3’ and 5’ genomic windows based on
GENCODE exons). For a given pseudo-position from 1 to 900, ERM rates
associated with that position were averaged across all concatenated sequences.

Exome Aggregation Consortium (ExAC) analysis. ExAC variants were down-
loaded from a previous study along with derived allele frequency (DAF), ancestral/
derived states, and predicted variant effects*3. Variants with ambiguous ancestral
state, or predicted variant effects other than intronic, synonymous, missense, or
stop gain were removed. Extremely rare variants (DAF < 0.00005), whose site
frequency spectrum is strongly affected by recurrent mutations at large sample
sizes and high mutation rates>®, were also removed. ERM rates were assigned to
each site containing an ExAC variant based on the ancestral to derived nucleotide
change at the site and the heptamer context based on human reference GRCh37/
hgl9. Mean ERM rates were calculated for all variants in each variant effect x
DAF bin.

De novo variant splicing assay. De novo variants from the Simons Simplex
Collection*® were downloaded and mapped to the human reference GRCh37/hg19.
707 variants that mapped to exons <115 nt in length were selected for the splicing
assay?? (Supplementary Fig. 4). A 180 nt window of endogenous sequence, which
includes the exon of interest and either the wild-type or mutant allele, 15 nt of the
downstream intron, and at least 50 nt of the upstream intron, was flanked by 25 nt
primer sequences (forward primer: 5-GTCCACCATACCTTCGATTGTCGCG-3/,
reverse primer: 5-ACCGTGCACCTACCGAATCTCCTTA-3’), yielding a 230-mer
oligonucleotide library synthesized by Agilent Technologies.

The in vivo splicing minigene reporter construct includes a cytomegalovirus
(CMV) promoter, exon 7 of ACTN4 exon with part of its downstream intron, the
230-mer de novo library, exon 10 of ACTN4 with part of intron 9 and the bGH
poly(A) signal sequence (Supplementary Fig. 4b). Common sequences (everything
except the 230-mer de novo library) were concatenated by overlapping PCR and
cloned with TOPO TA (Invitrogen) to generate a 5 common sequence and a 3’/
common sequence. Equimolar amounts of the 5’ common sequences, the 3’
common sequences, and the oligonucleotide library (de novo 230-mers) were
concatenated in a single PCR reaction. The PCR product was purified and size
selected with Agencourt AMPure beads (Beckman Coulter). The in vivo minigene
constructs were transfected into human embryonic kidney HEK 293T cells
obtained from the American Type Culture Collection (ATCC# CRL-3216) in four
cell culture replicates using Lipofectamine 3000 (Invitrogen) in a 6-well plate. HEK
293T is not listed in the ICLAC Register of Misidentified Cell Lines (v10), and was
confirmed mycoplasma free in previous passage. Thirty hours after transfection,
RNA was extracted using TRIzol (ThermoFisher) and treated with DNase
(Invitrogen). cDNA was generated with SuperScript IV Reverse Transcriptase

(Invitrogen) and random 9-mers. 20 cycles of PCR reactions (GoTaq, Promega)
were carried out using the cDNA as template.

Input minigene reporters (in two technical replicates) and output spliced
species for each of the four transfection were sequenced on an Illumina HiSeq 3000
(2 x 150). Reads from input and output sequencing were aligned to minigene
reporter sequences using the STAR aligner® (version 2.5.1b). For input alignment,
split reads were not allowed, whereas for output alignment, split reads were
allowed. Uniquely mapped reads with up to ten mismatches were tabulated for
each input and output sequencing library, and were shown to be highly correlated
across input and output replicates (Supplementary Fig. 5). The M/W splice ratio

mt, /mt;
wt, /wt;

for each de novo variant was calculated as log, ( ), where mt, is the count of

mutant spliced species, mt; is the count of mutant unspliced input, wt, is the count
of wild-type spliced species, and wt; is the count of wild-type unspliced input,
where we have used the sum of read counts across input and output replicates for
each species (Supplementary Data 1).

Annotations of splicing assay variants. MaPSy data for de novo mutations
generated in this study were combined with previously published high-throughput
splicing data from a study of disease-causing variants in HGMD®! (original MaPSy
paper??), and two studies of EXAC exome variants*3 (Vex-seq?? and MFASS23). All
variants were annotated for their functional effect using SnpEff tool (version 4.3T)
with default parameters and the -canon option®2. 54 de novo variants annotated as
splice region variants by SnpEff and were scored for change in 3’ or 5 MaxEntScan
splice site scores®3. 17 variants annotated by SnpEff as structural interaction, 5’
UTR, 3’ UTR, and sequence feature variants were removed from downstream
analysis. The remaining variants were binned by synonymous, missense, or stop
gain effect, and compared to their measured splicing disruption in each assay’s
respective units: log, M/W splice ratio (MaPSy), Apercent spliced in (Vex-seq), or
Ainclusion index (MFASS).

Analysis of nonsense-medicated decay (NMD). MaPSy data for disease-causing
mutations in HGMD in in vitro context (incubated in HeLa cell nuclear extract
instead of transfected into HEK 293T cells) were downloaded from a previous
study?, and annotated as synonymous, missense, or stop gain using SnpEff. In
vitro splicing assay results for stop gain mutations should not be affected by NMD
(which occurs in the cytoplasm), whereas NMD may be present in vivo (depending
on if the minigene preserves the native reading frame of the exon).

Associating El scores with amino acid pairs. Using human exonic sequences
from the Consensus Coding Sequence (CCDS) Project®, each occurrence of a
hexamer was identified. The two codons with the largest overlap with the hexamer
in the reading frame were translated into an amino acid pair and associated with
that hexamer instance. The mean EI score for each amino acid pair was determined
by taking a mean of the EI scores of the ensemble of associated hexamers weighted
by the number of times the hexamer was translated to that particular amino
acid pair.

Amino acid pair enrichment in humans versus bacteria. Using human exonic
sequences from the CCDS project®, a protein sequence set was generated by
concatenating and translating exonic sequences for each gene. The frequency of
each amino acid pair was determined in this protein sequence set and amino acid
pair enrichment was calculated as the frequency of the amino acid pair divided by
the product of the individual amino acid frequencies (observed/expected frequency
ratio). This calculation was repeated using the set of protein sequences belonging to
gammaproteobacteria from the Cluster of Orthologous Groups®®.

AEI of mutation types by amino acid pairs. Each amino acid pair can be coded
by multiple codon pairs. Each codon pair can be mutated at each of six positions to
each of three different nucleotides. For each of these possible mutations, we labeled
the mutation as synonymous, missense, or stop gain; we computed a mean ERM
rate for the mutation based on the heptamer contexts of all relevant positions in the
human genome; and we computed a mean AEI score for the mutation as follows:
each mutation was assigned the EI scores of the two hexamers where the mutation
occurs in the third or fourth position, the difference between the mean EI score of
the mutated and unmutated hexamers was assigned to that mutation, and finally
the mean AEI was calculated over all relevant potential mutations in the human
genome. We plot the distribution of mean AEI score for synonymous, missense,
and stop gain mutation classes for individual amino acid pairs (Fig. 4c and Sup-
plementary Fig. 7), and aggregates of amino acid pairs with high or low mean EI
scores (Fig. 4d, e).

Statistical methods. Statistical tests were performed using R software (version
3.6.1) for Pearson’s correlation tests and Mann-Whitney two-tailed tests where
noted in figure legends.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

8 | (2020)11:2845 | https://doi.org/10.1038/s41467-020-16673-z | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Data availability

The authors declare the data supporting the findings of this study are available within the
paper and its supplementary files, and are available from the corresponding author upon
reasonable request. The source data underlying Figs. 2¢, d, 3a-d, 4a-e, 5a, b and
Supplementary Figs. 1, 2a, b, 3a-e, 4c, d, 5a-g, 6, and 7 are provided as a Source Data
File. Other datasets referenced in this study are available from the following web links:
ERM rates [https://www.nature.com/articles/s41467-018-05936-5#Sec22], EI scores
[https://genome.cshlp.org/content/21/8/1360/suppl/DC1], Rosenberg intronic and
exonic A3SS and A5SS scores [https://github.com/Alex-Rosenberg/cell-2015/blob/
master/ipython.notebooks/Cell2015_N4_Motif_Effect_Sizes.ipynb], EXAC variant
annotations [https://github.com/macarthur-lab/exac_2015], MaxEntScan scores [http://
hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html], MaPSy in vivo and
in vivo splicing assay results for HGMD pathogenic variants [http://fairbrother.biomed.
brown.edu/data/bulk_download.txt], Vex-seq splicing assay results [https://github.com/
scottiadamson/Vex-seq/blob/master/processed_files/delta_PSI_values.tsv], and MFASS
splicing assay results [https://github.com/KosuriLab/MFASS/blob/master/
processed_data/snv/snv_data_clean.txt]. Source data are provided with this paper.

Code availability

All custom scripts for the evolutionary simulations and the mathematical model are
available at https://github.com/stephenrong/mutation-paper (https://doi.org/10.5281/
zen0do.3727198, released under the MIT License). Source data are provided with
this paper.
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