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Abstract

evolutionary history.

Background: The Sox family of transcription factors is an important part of the genetic ‘toolbox’ of all metazoans
examined to date and is known to play important developmental roles in vertebrates and insects. However, outside
the commonly studied Drosophila model little is known about the repertoire of Sox family transcription factors in
other arthropod species. Here we characterise the Sox family in two chelicerate species, the spiders Parasteatoda
tepidariorum and Stegodyphus mimosarum, which have experienced a whole genome duplication (WGD) in their

Results: We find that virtually all of the duplicate Sox genes have been retained in these spiders after the WGD.
Analysis of the expression of Sox genes in P. tepidariorum embryos suggests that it is likely that some of these
genes have neofunctionalised after duplication. Our expression analysis also strengthens the view that an
orthologue of vertebrate Group B1 genes, SoxNeuro, is implicated in the earliest events of CNS specification in both
vertebrates and invertebrates. In addition, a gene in the Dichaete/Sox21b class is dynamically expressed in the spider
segment addition zone, suggestive of an ancient regulatory mechanism controlling arthropod segmentation as
recently suggested for flies and beetles. Together with the recent analysis of Sox gene expression in the embryos
of other arthropods, our findings support the idea of conserved functions for some of these genes, including a
potential role for SoxC and SoxD genes in CNS development and SoxF in limb development.

Conclusions: Our study provides a new chelicerate perspective to understanding the evolution and function of
Sox genes and how the retention of duplicates of such important tool-box genes after WGD has contributed to
different aspects of spider embryogenesis. Future characterisation of the function of these genes in spiders will help
us to better understand the evolution of the regulation of important developmental processes in arthropods and
other metazoans including neurogenesis and segmentation.

Keywords: Sox genes, Parasteatoda tepidariorum, Stegodyphus mimosarum, Spider, Evolution, Development

Introduction

The evolution of metazoan life forms was in part driven
by the acquisition of novel families of transcription factors
and signalling molecules that were subsequently expanded
by gene duplications and evolved new functions [1, 2].
One such family, encoded by Sox genes, encompasses a
set of conserved metazoan specific transcriptional regula-
tors that play critical roles in a range of important devel-
opmental processes, in particular, aspects of stem cell
biology and nervous system development [3-5].
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The Sox family is defined by a set of genes containing
an HMG class DNA binding domain sharing greater than
50% sequence identity with that of SRY, the Y-linked sex
determining factor in eutherian mammals [6]. In the chor-
dates the family is represented by approximately 20 genes,
which have been subdivided into eight groups (A-H)
based mainly on homology within the DNA binding do-
main but also related group-specific domains outwith the
HMG domain [7, 8]. In all metazoans examined to date
representatives of the Sox family have been identified and
these are largely restricted to Groups B to F with other
groups specific to particular lineages [9]. While Sox-like
sequences have been reported in the genome of the choa-
noflagellate Monosiga brevicollis, these are more closely
related to the non-sequence specific HMG1/2 class of
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DNA binding domain and thus true Sox genes are re-
stricted to metazoans [10—12].

While vertebrate Sox genes have been intensively
studied due to their critical roles in development, with
the exception of the fruit fly Drosophila melanogaster,
they are less well characterised in invertebrates [3]. D.
melanogaster contains eight Sox genes (four group B
and one each in groups C to F), which is generally consist-
ent across the insect genomes examined to date [9, 13,
14]. Of particular interest are the Group B genes of in-
sects, which share a common genomic organisation that
has been conserved across all insects examined to date,
with three genes closely linked in a cluster [13-15].
Dichaete (D) plays critical roles in early segmentation and
nervous system development, while SoxNeuro (SoxN) is
essential for CNS development, and where the expression
of these two genes overlaps in the embryonic CNS they
exhibit phenotypic redundancy [16-19].

The evolutionary conservation of Sox protein sequence
and function has been shown in rescue or swap experi-
ments, where mouse Sox2 rescues Dichaete null mutant
phenotypes in the D. melanogaster embryo and Drosoph-
ila SoxN can replace Sox2 in mouse ES cells [20, 21].
Furthermore, a comparison of Dichaete and SoxN gen-
omic binding in the D. melanogaster embryo with Sox2
and Sox3 binding in mouse embryonic or neural stem
cells indicates that these proteins share a common set of
over 1000 core target genes [22-24]. These and other
studies suggest that Sox proteins have ancient roles, par-
ticularly in the CNS, where their functions have been con-
served from flies to mammals.

Of the other two D. melanogaster group B genes,
Sox21a plays a repressive role in maintaining adult intes-
tinal stem cell populations but there is no known function
for Sox21b [25, 26]. The group C gene, Sox14, is involved
in the response to the steroid hormone ecdysone and is
necessary for metamorphosis [27]; Sox102F (Group D) has
a role in late neuronal differentiation [28]; SoxI00B
(Group E) is involved in male testis development [29] and
Sox15 (Group F) is involved in wing metamorphosis and
adult sensory organ development [30, 31].

While functional studies are lacking in other insects,
gene expression analysis in Apis mellifera and Bombyx
mori indicates that aspects of Sox function are likely to
be conserved across species [13, 14]. More recently, a
similar role for Dichaete in the early segmentation of
both Drosophila and the flour beetle Tribolium casta-
neum suggests that aspects of regulatory function as well
as genomic organisation may have been conserved
across insects [32]. Outside the insects little is known,
however genome sequence analysis and gene expression
studies suggest key roles for Sox family members in stem
cell and cell fate processes in Ctenophores [12] and Pori-
fera [33], as well as neural progenitor development in
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Cnidarians [34] and a Dioplopod [35]. Taken together
with the extensive work in vertebrate systems, it is clear
that Sox genes play critical roles in many aspects of
metazoan development, at least some of which appear to
be deeply conserved.

Arthropods comprise approximately 80% of living
animal species [36], exhibiting a huge range of bio-
logical and morphological diversity that is believed to
have originated during the Cambrian Period over 500
million years ago [37]. While the analysis of traditional
model arthropods such as D. melanogaster has taught
us much about conserved developmental genes and
processes, it is only more recently that genomic and
other experimental approaches are beginning to shed
light on the way genes and regulatory networks are de-
ployed to generate the diversity of body plans found in
other insects [38] and more widely in chelicerates and
myriapods [39]. In terms of the Sox family, recent work
indicates conserved Group B expression in the early neu-
roectoderm of the myriapod Glomeris marginata [35] and
neuroectodermal expression of a Group B gene has been
reported in the chelicerate P. tepidariorum [40].

Chelicerates in particular offer an interesting system
for exploring the evolution and diversification of devel-
opmental genes since it has emerged that some arach-
nid lineages, including spiders and scorpions, have
undergone a whole genome duplication (WGD) [41].
Interestingly, duplicated copies of many developmental
genes, including Hox genes and other regulatory factors
such as microRNAs, have been retained in P. tepidar-
iorum and other arachnids [41, 42]. Thus, chelicerate ge-
nomes provide an opportunity to explore issues of gene
retention, loss or diversification [43].

Here we report an analysis of the Sox gene family in
the spiders, P. tepidariorum and S. mimosarum, and
show that most duplicate Sox genes have been retained
in the genomes of these spiders after the WGD, as well
as retention of some paralogs generated from tandem
duplications. Furthermore, while group B genes show
highly conserved expression in the developing CNS, the
expression of other spider Sox genes suggests they have
evolved potentially novel functions in other aspects of
embryogenesis.

Results and discussion

Characterisation of Sox genes in spiders

In order to characterise the Sox gene complement of spi-
ders we conducted TBLASTN searches of the genomes of
P. tepidariorum [41] and S. mimosarum [44] using the
HMG domain of the mouse Sox2 protein, recovering 15
and 14 sequences respectively. All but three of these con-
tained the highly conserved RPMNAFMVW motif that is
characteristic of Sox proteins and the three exceptions
(ptSoxC-2, ptSoxB-like and ptSox21b-2) only show minor
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conservative substitutions in this motif (see Fig. 3 for
full alignments). 14 of the P. tepidariorum sequences
corresponded to annotated gene models. Moreover, two
sequences were identical (ptSox21b-1, aug3.24914.t1
and aug3.g24896.t1) and since the latter maps to a gen-
omic scaffold of only ~ 7 kb, we presume this represents
an assembly error and thus consider them as a single
gene. One genomic scaffold encoding a Sox domain
(ptSoxB-like, Scaffold3643:28071..28299) is in a region
of poor sequence quality and we cannot be sure it rep-
resents a bona fide gene but have nevertheless included
it in our subsequent analysis.

In the case of S. mimosarum we identified 14 genomic
regions, 11 of which correspond to annotated Sox genes.
Reciprocal BLAST searches of D. melanogaster or verte-
brate genes recovered Sox proteins as top scoring hits.
In addition to these true Sox gene sequences, we also
recovered sequences that correspond to the D. melano-
gaster capicua (cic) and bobby sox (bbx) genes in both
spider species but here we do not consider these Sox-re-
lated genes further.

To classify the spider Sox proteins we generated
MUSCLE sequence alignments and PhyML maximum
likelihood phylogenies using the HMG domains recov-
ered from the BLAST searches, along with those from
the eight D. melanogaster Sox genes and representatives

Page 3 of 14

of each subgroup from mouse (Additional file 1: Table
S1). These analyses resulted in a clear classification of
spider Sox genes into groups B-F as found in other in-
vertebrate genomes (Fig. 1). Note that Group A only
contains the SRY gene specific to eutherian mammals
and there are no Group G, H or I Sox genes found out-
side the vertebrates. Supporting this classification, phylo-
genetic trees constructed with the full-length sequences of
the predicted spider Sox proteins and those from D. mela-
nogaster yielded virtually identical results (Additional file
2: Figure S1). Following the recommended nomenclature
for Sox genes [7], we have named the spider Sox genes as
indicated in Additional file 1: Table S1. The naming of D.
melanogaster Sox genes is confusing with some carrying
historic names based on their phenotype (Dichaete and
SoxN), others named after cytological locations (Sox100B
and SoxI02F) and others with inappropriate numerical
designations (D. melanogaster Sox14 is a Group C gene
while in vertebrates Sox14 is in Group B and D. melano-
gaster SoxI5 is in group F, while vertebrate Sox15 is in
Group G). For these reasons we propose renaming the D.
melanogaster group C-F genes according to the standard
nomenclature used in the Sox field: these designations are
already recognised as synonyms in FlyBase [45]. With
respect to the Group B genes, since the sequence and
organisation of these appears to be invertebrate specific,

divided into different colours as highlighted outside the circle

Fig. 1 Phylogeny of Sox HMG domains in selected metazoans. Phylogenetic tree showing the relationship between Mus musculus (Mm),
D. melanogaster (Dm), P. tepidariorum (Pt) and S. mimosarum (Sm) Sox genes based on HMG domain sequences. The grouped genes are

omso?®

MmSox2!

7L ptsoxzta-1

Group B

98 [ PtDichaeqe




Bonatto Paese et al. BMIC Evolutionary Biology (2018) 18:205

we propose a nomenclature based on the current D. mela-
nogaster gene names: SoxN, Dichaete, Sox21a and Sox21b
(Additional file 1: Table S1).

In common with many other gene families in spiders
[41], the Sox genes are mostly represented by two or more
copies in each group (Fig. 2). In other arthropods exam-
ined to date, as well as the onychophoran Euperipatoides
kanangrensis [46], there is usually only a single copy of
each gene, although there is a recent report of two Group
E genes in the millipede G. marginata [46]. In the case of
spider Groups D and E, the duplications likely predate the
divergence of the two spider species we analysed since the
duplicates group together in the phylogenetic analysis and
show extensive homology across the length of the coding
sequence (Fig. 1). With Group E there is only one gene
identified in S. mimosarum but two in P. tepidariorum. In
the case of group C, there appears to have been additional
duplication events in S. mimosarum. When we consider
the full-length protein sequences (Additional file 2: Figure
S1), ptSoxC-1 groups with smSoxC-1 and ptSoxC-2 with
smSoxC-2. smSoxC-2 has undergone a local head-to-head
duplication, with smSoxC-2 and smSoxC-3 adjacent in the
genome. smSoxC-4 has no predicted gene model but the
region of the genome encodes an uninterrupted HMG
domain closely related to those of the smSoxC-2 and C-3
duplicates. Whether this is a bona fide gene remains to be
determined.

In many organisms, some genes in Groups D, E and F
contain an intron within the DNA binding domain se-
quence in a position that is highly conserved and specific
for each group [7]: our analysis indicates that this is also
the case for the spider genes in these three groups (see ar-
rows in Fig. 3). While there is an intron within the region
encoding the DNA binding domains of spider Group D
genes, it has been lost in the D. melanogaster orthologue.
Secondary intron loss is also observed in Group F, where
mouse Sox7 has no intron but the related SoxI7 and
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Sox18 genes do. The location of these HMG domain in-
trons suggests they were present in the common ancestor
of the vertebrates and the arthropods.

While the Group B genes of insects and vertebrates
show considerable sequence similarity in their DNA
binding domains, they are clearly different in terms of
their genomic organisation and functions. Vertebrate
Group B genes are not linked in the genome and are
subdivided into B1 (Sox1, 2 and 3) and B2 (Sox14 and
21). This classification manifests both at sequence and
functional levels, with Group B1 proteins acting as tran-
scriptional activators particularly important for nervous
system specification, while the Group B2 proteins act as
transcriptional repressors [47—49]. In contrast, the organ-
isation and functional classification of Group B genes in
insects is subject to some debate. There is a clear ortholo-
gue of the Group B1 proteins, represented by SoxN in D.
melanogaster and genes named SoxBI or Sox2 in every
invertebrate genome examined. The remaining three
D. melanogaster Group B genes (Dichaete, Sox21 and
Sox21b) have been characterised as Group B2 based
on sequence alignments with vertebrate proteins. In D.
melanogaster these three genes are arranged in a cluster
on Chromosome 3L, an organisation that is conserved
across at least 300 MY of evolution, with a similar gene ar-
rangement found in flies, mosquitoes, wasps, bees and
beetles [11, 13, 15]. While there is evidence that Sox21a
has a repressive role consistent with the vertebrate B2
class [25, 26], considerable genomic evidence clearly
shows Dichaete mainly acts as a transcriptional activator,
a role inconsistent with that observed for vertebrate
SoxB2 proteins [22, 50].

The phylogenies generated with the HMG domains
from a range of species (Fig. 1; Additional file 2: Figure
S1) or full-length proteins sequences from spiders and D.
melanogaster (Additional file 3: Figure S2) support a clas-
sification of arthropod Group B genes where there is a
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Fig. 2 Repertoire of Sox genes in selected arthropods. Diagrammatic representation of the complement of Sox genes in insects (Drosophila
melanogaster, Tribolium castaneum and Apis mellifera), the spiders (Parasteatoda tepidariorum and Stegodyphus mimosarum), the myriapod
(Glomeris marginata) and an onychophoran (Euperipatoides kanangrensis). Each coloured circle represents a gene
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single SoxN gene, one or more Sox2la genes and two or
more Dichaete-Sox21b genes. In spiders, we find strong
support for a single SoxN gene, duplications of the
Sox2la class and a single Dichaete-like gene in both
species. In P. tepidariorum we find a duplication of the
Sox21b genes and the possibility of a further tandem
duplication of ptSox21b-2 gene if the ptSoxB-like ORF
is a genuine gene. S. mimosarum, in contrast, has a single
Sox21b class gene. Intriguingly, we find that two P. tepi-
dariorum Group B genes (ptDichaete and ptSox21a-1) are
located in the same genomic region, separated by over
200kb of intervening DNA that is devoid of other pre-
dicted genes (Fig. 4), an organisation reminiscent of that
found in insects. Indeed, the linkage of ptDichaete and
ptSox21a-1 supports the idea that these genes were
formed by a tandem duplication in the protostome/deu-
terostome ancestor [11, 15]. The separation of SoxN from
the Dichaete/Sox21a-1 cluster in the spider suggests that
either this fragmentation happened early in arthropod
evolution [11] or that the duplication and separation of
SoxN and Dichaete (or Sox21a) occurred early in Sox evo-
lution [11, 15] (Fig. 4).

Taken together, our analysis clearly shows that the
spider genomes we examined have the full complement
of Sox genes found in insects, have mostly retained du-
plicates in Groups C, D, E and F after the WGD, and
have a Group B organisation that more closely resembles
insects than vertebrates.

Arrangement of P. tepidariorum and S. mimosarum Sox
genes after WGD

The phylogenetic relationships of Sox genes in P. tepidar-
iorum suggest that there are two paralogs of each Sox
gene in groups C to F, the exception being in Group B
where we found single copies of SoxN and Dichaete, but
duplicates of Sox21a and Sox21b (Figs. 1 and 2). To inves-
tigate if all of these duplicated Sox genes arose from the
WGD event in the ancestor of these animals [41], the syn-
teny of Sox genes was analysed in the P. tepidariorum and
S. mimosarum genomes (Fig. 4).

Most of the Sox genes in P. tepidariorum and S. mimo-
sarum were found dispersed in the genome on separate
scaffolds consistent with the expectation that they arose
via WGD. Analysis of the five upstream and five down-
stream genes flanking each Sox gene, however, revealed
that dispersed duplicated Sox genes are generally not
closely linked to other duplicated genes (Fig. 4, Additional
file 4: Table S2 and Additional file 5: Table S3). While it is
likely that this is a consequence of extensive loss of
ohnologs and genomic rearrangements since the WGD
430 MYA, we cannot rule out that at least some of the
duplicated Sox genes in this spider arose via tandem
duplication followed by rearrangements after the WGD.
The only obvious evidence for retention of similar synteny
between the two spiders was observed between ptSoxD-2
and smSoxD-1, which both have RIOK and KRR1 genes
located directly upstream with a conserved transcriptional
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Fig. 4 Sox gene synteny in the P. tepidariorum genome. The synteny o

(TEs) (blue). Genes that lack homology are shown in grey with their ge
orientation as upstream TEs. Of the thirteen Sox containing scaffolds, si
is indicated by arrows. The DoveTail/HiRise scaffold ID numbers are giv

compared between the Sox paralogs. Homology of flanking genes was also used to indicate tandem duplicates (pink), transposable elements

f Sox genes (red) and flanking genes that have putative homology (black)

ne model IDs. Only the SoxF genes were found in the same transcriptional
x scaffolds contained TEs that flank the Sox genes. Transcriptional direction
en on the right

orientation (Additional file 4: Table 2 and Additional file 5:
Table S3). These observations further evidence, in conjunc-
tion with phylogenetic relationships, that Group D genes
were duplicated in the ancestor of both spiders.

The only tentative example of retained synteny within
a species was in the SoxF group, where we found that
the two SoxF genes of P. tepidariorum have an upstream

flanking sequence with homology to a transposable
element (TE) with matching transcriptional orientation.
Interestingly, six of the thirteen P. tepidariorum Sox
containing scaffolds also have TE-like sequences nearby
(Fig. 4). Furthermore, of the nine S. mimosarum scaf-
folds that have flanking gene information, three have
TEs flanking Sox genes (Additional file 5: Table S3). TEs
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have previously been linked to the expansion of genes
and their rearrangements [51, 52], however further ana-
lysis is needed to determine if TEs identified in this syn-
teny analysis are involved in the evolution of Sox genes
in spiders.

The exceptions to the dispersion of Sox genes in P. tepi-
dariorum are ptDichaete and ptSox21a-1 on scaffold #756
(as discussed above), ptSox21b-2 and SoxB-like on scaffold
#642 (Fig. 4), as well as smSoxC-2 and smSoxC-3 that are
adjacent on scaffold #4648 (Additional file 4: Table S2).
The sequences of the HMG domains of the clustered
ptSox21b-2 and SoxB-like genes grouped together with
high bootstrap confidence, indicative of a head-to-head
tandem duplication (Figs. 1 and 4). However, the HMG
domain of SoxB-like is split across two reading frames and
although the sequence quality is poor in parts of this scaf-
fold, it’s sequence similarity to ptSox21b-2 suggests that
SoxB-like may have been pseudogenised (Fig. 4).

Sox gene expression during P. tepidariorum
embryogenesis

We next studied the expression of Sox genes during em-
bryogenesis in P. tepidariorum using in situ hybridisa-
tion. For the SoxB family genes ptSox21a-1, ptSox21a-2,
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ptSox21b-2 and Dichaete, we did not detect any expres-
sion during embryogenesis. This might indicate that they
are only expressed at very low levels, only in a few cells
or that these genes are used during post-embryonic
development.

ptSoxN expression is visible from late stage 7 in the
most anterior part of the germ band, a region correspond-
ing to the presumptive neuroectoderm (Fig. 5a). This
head-specific expression in P. tepidariorum is similar to
early expression of SoxN observed in D. melanogaster [53]
and in A. mellifera, where SoxBl1 is expressed in the gas-
trulation fold and the anterior part of the presumptive
neuroectoderm [13]. ptSoxN is subsequently expressed
broadly in the developing head and follows neurogenesis
in a progressive anterior-to-posterior pattern as new seg-
ments are added (Fig. 5b). By mid stage 9, ptSoxN is
strongly expressed in the head lobes and in the ventral
nerve cord (Fig. 5¢c), however, after this stage no further
expression was detected. In both D. melanogaster and A.
mellifera, SoxN expression is also observed throughout
the neuroectoderm and becomes restricted to the neuro-
blasts [13, 18, 19].

In chelicerates, neurogenic progenitors delaminate in
clusters of cells rather than single neuroblast-like cells

Fig. 5 Expression of ptSoxN. Flat-mounted embryos at different stages of development after RNA in situ hybridization. a) ptSoxN expression is
restricted to the presumptive neuroectoderm in the most anterior region of the germ band in stage 7 embryos (white arrow). b) At stage 8.2,
expression is in the most anterior part of the embryo (black arrowhead) and in the ventral nerve cord appearing sequentially from anterior to
posterior: white arrows indicate expression in clusters that will subsequently broaden. Expression in the posterior region adjacent to the SAZ is
also observed (black arrowhead). €) At stage 9.2 expression is observed throughout the ventral nerve cord, with differentiating neural clusters
indicated by arrows. Ch: chelicerae, L1 — L4: prosomal segments 1 to 4, O1 — O4: opisthosomal segments 1 to 4, Pp: pedipalps; SAZ: segment
addition zone. Ventral views are shown for all embryos with the anterior to the left. Scale bars: 150 um
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found in dipterans and some hymenopterans [54]. How-
ever, even with these different modes of neurogenic differ-
entiation, the expression of SoxN orthologues suggests
this gene performs the same function. Indeed, the recent
study of T. castaneum, E. kanangrensis and G. marginata
also shows that the SoxN orthologues in these species
have widespread and early neuroectodermal expression
[46]. Taken together with published SoxN expression, our
results clearly support the view that throughout the Bila-
teria a SoxN class protein is a marker of the earliest stages
of neural specification.

Another member of the B group, ptSox21b-1, shows ex-
pression in the nascent prosomal segments and in the
posterior segment addition zone (SAZ) from stage 7
(Fig. 6a and b). At stage 8.2 expression is observed in the
most anterior part of the germ band, which corresponds
to the presumptive neuroectoderm in the future head and
prosomal segments (Fig. 6¢). At stages 9 and 10, strong
expression is apparent throughout the ventral nerve cord,
similar to ptSoxN. Comparing expression in the SAZ at
different stages in these fixed preparations suggest that
Sox21b-1 may be dynamic in this region (Fig. 6d and e).

In T. castaneum, Sox21b has similar expression to in-
sect Dichaete genes, early in the SAZ and then in the
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developing CNS. In E. kanangrensis and G. marginata,
there is no early Sox21b expression [46], however in
these species Dichaete is expressed during segmentation
and then later in the CNS. This suggests that the role of
Dichaete in D. melanogaster and T. castaneum segmen-
tation [32] could extend to E. kanangrensis and G. mar-
ginata, whereas in spiders the closely related Sox21b-1
gene may play this role. The widespread expression of
both SoxN and Sox21b-1 throughout the neuroectoderm
strongly suggest that, as has been shown in vertebrates
and flies, many cells in the developing CNS co-express
two related SoxB genes. We confirmed their overlapping
expression in the CNS, but not in the SAZ, with double
in situ hybridisations, using SoxN and Sox21b-1 probes
(Additional file 6: Figure S3). While both genes clearly
show extensive expression overlap throughout the de-
veloping CNS, we were interested to note that at the
very lateral regions of the neuroectoderm, Sox21b-1 is
uniquely expressed. This is similar to the situation in
Drosophila where SoxN has a unique lateral expression
domain [18, 19].

In the case of the Sox C genes, we did not detect any
expression for ptSoxC-2. However, ptSoxC-1 expression
was found at mid-stage 6, in a pattern similar to that of

shown for all embryos with the anterior to the left. Scale bars: 150 um

Fig. 6 Expression of ptSox21b-1. Flat-mounted embryos at different stages of development after RNA in situ hybridization. a) ptSox216-1
expression is detected from mid-stage 7 in the nascent segment (black arrowhead) and in the SAZ (white arrow). b) At stage 8.1, expression in
the SAZ appears to be dynamic (white arrow, cf. Figure 6a), and broadens in forming segments (black arrowheads). €) At stage 8.2, white arrows
at the anterior indicate expression in the presumptive ventral nerve cord, with expression in the posterior SAZ still prominent (black arrowhead).
d) At stage 9 strong expression in the entire anterior part of the ventral nerve cord is indicated by white arrows, expression is lower at the most
posterior but appears to remain dynamic in the SAZ (black arrowhead). e) At stage 10, expression is visible in the ventral nerve cord beneath the
growing limb buds (black arrowheads) and becomes strong in the entire ventral nerve cord (white arrows). Ch: chelicerae, HL: head lobes,

L1 - L4: prosomal segments 1 to 4, O1 — O4: opisthosomal segments 1 to 4, Pp: pedipalps; SAZ: segment addition zone. Ventral views are

L2 L3 L4

ch Pp L1
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ptSoxN in the most anterior part of the germ band in
the presumptive neuroectoderm (Fig. 7a). By stage 8.2
expression is apparent in neuroectodermal progenitors
along the germ band and at the anterior region of the
SAZ (Fig. 7b), however by stage 9.1 (Fig. 7c) expression
is lost from the SAZ. Interestingly, from stage 9.1,
ptSoxC-1 is expressed in the ventral nerve cord, from
the head to the SAZ, however unlike the uniform ex-
pression of ptSoxN, ptSoxC-1 is observed in clusters of
cells, presumably undergoing neurogenic differentiation,
progressively from the head through to opisthosomal
segments as they differentiate in an anterior to posterior
manner (Fig. 7c).

In D. melanogaster, the single SoxC gene has been
shown to play a role in the response to ecdysone at the
onset of metamorphosis and has no known role in the em-
bryonic CNS [27]. In contrast, the vertebrate SoxC genes
(Sox4, 11 and 12) play critical roles in the differentiation
of post-mitotic neurons, acting after the Group B genes,
which specify neural progenitors [55]. In A. mellifera, late
expression of the SoxC gene was observed in the embry-
onic cephalic lobes and in the mushroom bodies [13]. The
expression of SoxC orthologues in the embryonic CNS of
other invertebrates [46] suggests that this class of Sox
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gene may play a conserved role in aspects of neuronal
differentiation, which has been lost in D. melanogaster.
Interestingly, a comparison of target genes bound by
Sox11 in differentiating mouse neurons and SoxN in the
D. melanogaster embryo shows a conserved set of neural
differentiation genes, suggesting that in D. melanogaster
the role of SoxC in neuronogenesis has been taken over by
SoxN [23, 56].

We identified two genes in each of the SoxD, E and F
families, however, we found no in situ evidence for expres-
sion of SoxD-2, SoxE-2 or SoxF-1 during the P. tepidar-
iorum embryonic stages we examined. For ptSoxD-2 we
found no expression prior to stage 10, but we then ob-
served expression in the ventral nerve cord from the head
to the most posterior part of the opisthosoma (Fig. 8a).
The D. melanogaster SoxD gene is also expressed at later
stages of embryonic CNS development [57] and has been
shown to play roles in neurogenesis in the larval CNS
[28]. While SoxD has been reported to be ubiquitously
expressed in A. mellifera embryos, it is also expressed in
the mushroom bodies of the adult brain [13]. Embryonic
brain expression of SoxD orthologues in beetles, myria-
pods and velvet worms [46], as well as a known role for
SoxD genes in aspects of vertebrate neurogenesis [55, 58],

Fig. 7 Expression of ptSoxC-1. Flat-mounted embryos at different stages of development after RNA in situ hybridization. a) ptSoxC-1 is strongly
expressed in the most anterior region of the presumptive neuroectoderm at stage 6 (white arrow). b) At stage 8.2, strong expression is observed
in the ventral nerve cord (white arrows) with the exception of the most posterior part of the SAZ (black arrowhead) c) At stage 9.1, expression is
apparent in clusters of cells in the head and each anterior segment until the third opisthosomal segment (O3): white arrows indicate localized
expression. The signal in the limb buds is background and staining at the most posterior part of the O5 segment is an artefact of incomplete
chorion removal. Ch: chelicerae, L1 - L4: prosomal segments 1 to 4, O1 — O4: opisthosomal segments 1 to 4, Pp: pedipalps; SAZ: segment
addition zone. Ventral views are shown for all embryos with the anterior to the left. Scale bars: 150 um
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Fig. 8 Expression of Sox D, E and F group orthologues. Flat-mounted embryos at different stages of development after RNA in situ hybridization.
a) ptSoxD-1 expression is observed throughout the ventral nerve cord in stage 10 embryos as indicated by the arrows. b) ptSoxE-1 expression at
stage 9 is visible as single foci in the forming chelicerae, broader expression in the pedipalps and L1 to L3 (white arrows), and as two strong foci
in the L4 limb buds (black arrowhead). €) The expression of ptSoxf-2 is only visible in the L1 limb buds forming at stage 9 (arrows). Ch: chelicerae,
L1 - L4: prosomal segments 1 to 4, O1 — O4: opisthosomal segments 1 to 4, Pp: pedipalps; SAZ: segment addition zone. Ventral views are shown
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again suggests conserved roles for SoxD during metazoan
evolution.

ptSoxE-1 is expressed in the developing limbs from
stage 9 in small regions of the chelicerae, pedipalps and
L1 buds, with broader expression in L2 and L3, and in
two prominent foci in the L4 limbs, that correspond to
the differentiating peripheral nervous system (PNS) (Fig.
8b). At the stages we examined we did not observed any

expression of ptSoxE-1 in opisthosomal segments 2 to 6
where the germline is believed to originate [59].

In D. melanogaster, the SoxE orthologue is associated
with both endodermal and mesodermal differentiation,
is expressed in the embryonic gut, malpighian tubules
and gonad [60], and has been shown to be required for
testis differentiation during metamorphosis [29]. Both
the A. mellifera SoxE genes are also expressed in the
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testis [13]. Janssen and colleagues observed expression
of SoxE genes in other invertebrates, associated with
limb buds as we observed in the spider, but they also de-
tected posterior expression associated with gonadogen-
esis [46]. These observations are particularly intriguing
since the vertebrate Sox9 gene has a crucial function in
testis development [61]. Therefore, while we did not ob-
serve SoxE expression associated with early gonadogenesis
it remains possible that the spider genes are used later in
this process. We note that while the fly SoxE gene is
expressed from the earliest stages of gonadogenesis, null
mutant phenotypes are not apparent until the onset of
metamorphosis [29]. In vertebrates, Group E genes are re-
quired in neural crest cells that contribute to the PNS [3,
62, 63] and we suggest the spider orthologue may have a
similar function in the mechanoreceptors. These receptors
are distributed all over the body, but the trichobothria
only appear on the extremities of the limbs [64] where
they differentiate from PNS progenitors.

Finally, the expression of ptSoxF-2 is only detected at
stage 9, in single foci at the tips of the L1 segment limb
buds (Fig. 8c). In D. melanogaster the SoxF gene is
expressed in the embryonic PNS [57] and plays a role in
the differentiation of sensory organ precursors [31],
whereas in A. mellifera, the SoxF orthologue is expressed
ubiquitously throughout the embryo [13]. In T. casta-
neum, E. kanangrensis and G. marginata, SoxF expres-
sion is also associated with the embryonic limb buds
[46], again suggesting that this was an ancestral function
of this Sox family in the Euarthropoda.

Taken together, our study expands our understanding
of a highly conserved family of transcriptional regulators
that appear to have played prominent roles in metazoan
evolution. Our analysis indicates that the classification
of Sox genes in the invertebrates appears to be robust
and that genes in all Groups have aspects of their ex-
pression patterns that suggest evolutionary conservation
across the Bilateria. In particular, it is becoming increas-
ingly clear that a SoxN orthologue (SoxB1 in vertebrates)
has a prominent role in the earliest aspects of CNS de-
velopment. The finding that a Dichaete/Sox21-b class
gene is implicated in the segmentation of both long and
short germ band insects as well as the spider, and more
widely in other arthropods [46], supports the view that
formation of the segmented arthropod body plan is driven
by an ancient mechanism [32], involving these Sox genes.

Conclusions

Our analysis provides insights into the fate of duplicate
genes in organisms that have undergone WGD. We find
that virtually all the duplicates have been retained in the
spider genome but the expression analysis suggests that
some have possibly been subject to subfunctionalisation
and/or neofunctionalisation. It is interesting to note that
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in teleost fish, which have also undergone WGD events, the
pattern we observe for the Sox family in spiders is mirrored,
with considerable gene retention and lineage-specific
neo-functionalisation [65]. Clearly, future functional studies
in P. tepidariorum will help to reveal the precise roles
played by Sox genes during spider embryogenesis and how
this relates to other metazoans.

Materials and methods

Genome analysis

TBLASTN searches of the P. tepidariorum and S.
mimosarum genomes were performed with the HMG
domain of mouse Sox2 (UniProtKB - P48432) at http://
bioinf.uni-greifswald.de/blast/parasteatoda/blast.php and
http://metazoa.ensembl.org/Stegodyphus_mimosarum/Inf
o/Index respectively. Gene models were retrieved from
the P. tepidariorum Web Apollo genome annotations via
https://apollo.nal.usda.gov/partep/jbrowse/ and  from
http://metazoa.ensembl.org/Stegodyphus_mimosarum/
Info/Index. Sox gene sequences for other insects and verte-
brates  were retrieved from  UniProt  https://
www.uniprot.org.

Multiple sequence alignments and phylogenetic analysis
were performed with Clustal Omega [66] at http://www.e-
bi.ac.uk/Tools/msa/clustalo/ or with MUSCLE and PhyLM
3.0 [67, 68] at http://www.phylogeny.fr/index.cgi. Pairwise
sequence alignments were performed with SIM [69] at
http://web.expasy.org/sim/.

Synteny analysis of Sox genes in P. tepidariorum and S.
mimosarum

The synteny of Sox genes was analysed to determine
whether Sox genes were duplicated during the reported
WGD [41].

For P. tepidariorum the AUGUSTUS gene models are
already mapped against the DoveTail/HiRise genome as-
sembly [41] and using these data the locations of Sox
genes along with five upstream and five downstream
flanking genes were compared. Gene models were re-
moved if they were partial, chimeric or artefacts of the
AUGUSTUS annotation to the HiRise assembly. To infer
putative homology of flanking genes, their protein se-
quences were compared with BLASTP to the NCBI
non-redundant protein sequence database [70].

For S. mimosarum the Sox gene models and their loca-
tion in the genome were obtained from [44]. Similar to
P. tepidariorum, the synteny of the five upstream and
five downstream genes relative to each Sox gene were
compared. Annotations of flanking genes was previously
performed by Sanggaard et al [44].

Embryo collection and procedures
Embryos were collected from adult female spiders from
the temperature controlled (25 °C) laboratory culture at
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Oxford Brookes University. Embryos at stages 5 to 12
were fixed as described in [71] and staged according
to [72].

In situ hybridisation

RNA in situ hybridisation was carried out as described in
[71], with the following minor modifications: Proteinase K
treatment and post-fixations steps in the original protocol
were omitted, and prior to hybridization, the probes were
heated to 80 °C for 5 min and immediately put on ice be-
fore adding to the pre-hybridization buffer. Fluorescent in
situ hybridization was performed following [40]. Tyramide
Signal Amplification (TSA) was performed with TSA kits
from PerkinElmer (TSA Fluorescein and TSA Cyanine).
Post hybridisation, nuclear staining was achieved by incu-
bating embryos in 1 pg/ml 4—6-diamidino-2-phenylindol
(DAPI) in PBS with 0.1% Tween-20 for 15 min. Embryos
were mounted in glycerol on Poly-L-lysine (Sigma-Al-
drich) coated coverslips, where the germband tissue at-
taches making it easier to remove the yolk before imaging.
Images were taken with an AxioZoom V16 stereomicro-
scope (Zeiss) equipped with an Axiocam 506 mono and
colour digital camera. Brightness and intensity of the pic-
tures were adjusted in Corel PhotoPaint X5 (CorelDraw).

Gene isolation and cloning

Gene-specific ¢cDNA fragments were amplified with
primers designed with Primer Blast (https://www.ncbi.
nlm.nih.gov/tools/primer-blast/) and PCR products cloned
in the pCR4-TOPO vector (Invitrogen, Life Technologies).
The primers to generate probe fragments for RNA in situ
hybridization were designed to regions outside the con-
sensus HMG domain to produce DNA fragments between
500 and 800 bp. The probes were in vitro transcribed as
described in [71]. Primers and fragment sizes are de-
scribed in Additional file 7: Table S4.

Additional files

Additional file 1: Table S1. HMG-domain and, where available, full-
length protein sequences from D. melanogaster, P. tepidariorum, S. mimo-
sarum and M. musculus. Gene indicates the proposed names (or defined
names for mouse). DB_Name indicates gene or gene model name from
databases. DB_ID is the gene or protein accession. Scaffold indicates
chromosome or genomic scaffold location. Annotation is the designation
from spider annotations. (XLSX 53 kb)

Additional file 2: Figure S1. Phylogeny of Group B Sox HMG domains
PhyLM tree and multiple sequence alignment of group B HMG domains
from Mus musculus (Mm), Drosophila melanogaster (Dm), Anopheles
gambiae (Aqg), Tribolium castaneum (Tc) Parasteatoda tepidariorum (Pt)
and Stegodyphus mimosarum (Sm). Branch support values from PhyML
are indicated in red. Arrow indicates the conserved Isoleucine reside
indicative of invertebrate Dichaete/Sox21b class genes [15]. (PNG 849 kb)

Additional file 3: Figure 2. Phylogeny of full-length Sox proteins from

Drosophila and spiders. PhyLM tree of Sox genes from D. melanogaster
(Dm), P. tepidariorum (Pt) and S. mimosarum (Sm) based on available full-
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length protein sequence (Additional file 1: Table S1). Branch support
values from PhyML are indicated in red. (PNG 1624 kb)

Additional file 4: Table 2. Gene and scaffold IDs of Sox and linked
genes in the P. tepidariorum genome. (TXT 8 kb)

Additional file 5: Table 3. Gene and scaffold IDs of Sox and linked
genes in the S. mimosarum genome. (TXT 3 kb)

Additional file 6: Figure S3. Double Fluorescent in situ Hybridization
Double in situ hybridization with (A) digoxigenin-labelled pt-sox21b-1 in
red and (B) fluorescein pt-SoxN in green. C) Merged figures A and B
shows the overlap. (PNG 2968 kb)

Additional file 7: Table S4. Genes, primers sequences and sizes for all
the fragments used for in situ hybridisations. (DOCX 15 kb)
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