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Residue fluctuations in protein structures have been shown to be highly associatedwith various protein functions. Gaussian network
model (GNM), a simple representative coarse-grained model, was widely adopted to reveal function-related protein dynamics. We
directly utilized the high frequency modes generated by GNM and further performed Gaussian Naive Bayes (GNB) to identify hot
spot residues. Two coding schemes about the feature vectors were implemented with varying distance cutoffs for GNM and sliding
window sizes for GNB based on tenfold cross validations: one by using only a single highmode and the other by combiningmultiple
modes with the highest frequency. Our proposed methods outperformed the previous work that did not directly utilize the high
frequency modes generated by GNM, with regard to overall performance evaluated using 𝐹1 measure. Moreover, we found that
inclusion of more high frequency modes for a GNB classifier can significantly improve the sensitivity. The present study provided
additional valuable insights into the relation between the hot spots and the residue fluctuations.

1. Introduction

Flexibility and dynamics play key roles for proteins in imple-
menting various biological processes and functions [1, 2].
Residue fluctuations or atomic motions, contributing to
large-scale conformational changes of protein structures, are
shown to be closely related to functions of native proteins [3–
5].

Two methods, molecular dynamic (MD) simulation and
normal mode analysis (NMA), are widely used to investigate
the dynamic link between protein structures and functions.
Themain drawback ofMD simulations is their computational
cost [6, 7]. Coarse-grained NMA, such as elastic network
model (ENM) [7], has been increasingly used in recent years
as a powerful tool to elucidate the structure-encoded dynam-
ics of biomolecules [2]. The ENMs, including the isotropic
Gaussian network model (GNM) [8, 9] and the anisotropic
network model [10], define spring-like interactions between
residues that are within a certain cutoff distance. They
simplify the computationally costly all-atom potentials into
a quadratic function in the vicinity of the native state, which

allows the decomposition of the motions into vibrational
modes with different frequencies that are often known as
normal modes. Being simple and efficient, ENM and GNM
have been validated in numerous applications that resulted
in reasonable agreement with a wealth of experimental data,
including prediction of X-ray crystallographic B-factors for
amino acids [9, 11], identifications of hot spots [12–14],
catalytic sites [15], core amino acids stabilizing rhodopsin
[16] and important residues of HLA proteins [17], elucidation
of the molecular mechanisms of motor-protein motions
[18], and general conformational changes and functions
[3, 4, 19–31].

Previous studies have shown in many cases that the
normalmodes including the high frequency (fast)modes and
the low frequency (slow) modes by the GNM are very useful
for recognizing several specific types of protein functions.
In particular, the highest frequency modes that reflect local
events at the residue level can be utilized to identify core
residues or binding sites [16, 17, 20, 32], while the lowest
frequency modes are usually responsible for the collective
functional dynamics of the global protein motions [23, 33].
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In area of protein-protein interaction, several studies such
as Ozbek et al. [12], Haliloglu et al. [13], and Demirel et
al. [14] utilized GNM to identify hot spots that are defined
as the residues contributing more than 2 kcal/mol to the
binding energy. Their results suggested that hot spots are
predefined in the dynamics of protein structures and forming
the binding core of interfaces. However, the mean square
distance fluctuations of residue pairs and the mean square
fluctuations of residues calculated from the highest frequency
modes by GNM, rather than the direct usage of the highest
frequency modes themselves, were applied to detect the hot
spots in the work by Ozbek et al. [12] and by Haliloglu et al.
[13] and Demirel et al. [14], respectively.

In addition, several computational methods by utilizing
machine learning tools have been developed to predict hot
spots from protein sequences and structures [34–37]. The
advantage of learning methods is the ability to result in
higher quality by sufficiently integrating the extracted feature
information from protein structures. In this paper, we follow
the work by Ozbek et al. [12] but focus on the direct usage
of the highest frequency modes to investigate the relation
between the residue fluctuations and the hot spots.The top 20
highest frequency modes by GNM were used as an original
feature set inputted into Gaussian Naive Bayes (GNB), as a
representative of learning methods, to identify hot spots. The
main purpose of this study is to examine whether the raw fast
modes can be directly used to differentiate hot spots or non-
hot spots andwhether the utilization of learningmethods can
improve the identification quality of hot spots for unbound
protein structures.

2. Material and Methods

2.1. Dataset. We used the dataset that was collected by Ozbek
et al. [12].This set was filtered with PISCES culling server [38]
at the sequence identity of 25% and was originally composed
of 33 unbound protein structures. We had to remove one
protein with ID 1lrp from the dataset since its structure
cannot be currently found in Protein Data Bank (PDB)
[39]. Therefore, the final dataset had 32 unbound protein
structures with a total of 4270 residues of which 171 are hot
spot residues. The dataset including the detailed information
about hot spot residues can be derived fromOzbek et al. [12].

2.2. Gaussian Network Model and Its Applications to Iden-
tification of the Hot Spots. GNM describes each protein as
an elastic network, where the springs connecting the nodes
represent the bonded and nonbonded interactions between
the pairs of residues located within a cutoff distance 𝑅𝐶 [8, 9].
Assuming that the springs are harmonic and the residue
fluctuations are isotropic andGaussian, the network potential
of𝑁 nodes (residues) in a protein structure is

𝑉GNM = 𝛾
2
𝑁

∑
𝑖,𝑗

Γ𝑖𝑗 (R𝑖𝑗 − R0𝑖𝑗)2 , (1)

where R𝑖𝑗 and R0𝑖𝑗 are instantaneous and original distance
vectors between residues 𝑖 and 𝑗, respectively, 𝛾 is the force

constant assumed to be uniform for all network springs, and
Γ = (Γ𝑖𝑗) is the Kirchhoff connectivity matrix defined as

Γ𝑖𝑗 =
{{{{{
{{{{{{

−1, if 𝑖 ̸= 𝑗 and 𝑅0𝑖𝑗 ≤ 𝑅𝐶
0, if 𝑖 ̸= 𝑗 and 𝑅0𝑖𝑗 ≥ 𝑅𝐶
− ∑
𝑗:𝑗 ̸=𝑖

Γ𝑖𝑗, if 𝑖 = 𝑗,
(2)

where 𝑅0𝑖𝑗 is the distance between residues 𝑖 and 𝑗 and 𝑅𝐶 is
given as a cutoff.Then, the mean correlation between residue
fluctuations is calculated as

⟨ΔR𝑖 ⋅ ΔR𝑗⟩ = (3𝑘𝐵𝑇
𝛾 ) [Γ−1]

𝑖𝑗

= (3𝑘𝐵𝑇
𝛾 ) [UΛ−1U𝑇]

𝑖𝑗
,

(3)

where U is the orthogonal matrix of eigenvectors (u𝑖), Λ is
the diagonal matrix of eigenvalues (𝜆𝑖), 𝑘𝐵 is the Boltzmann
constant, and 𝑇 is the absolute temperature.

To identify hot spot residues, Ozbek et al. [12] used
the mean square distance fluctuations (MSDF), ⟨ΔR2𝑖𝑗⟩, of
residues 𝑖 and 𝑗 given as

⟨ΔR2𝑖𝑗⟩ = ⟨(ΔR𝑖 − ΔR𝑗)2⟩
= ⟨ΔR2𝑖 ⟩ + ⟨ΔR2𝑗⟩ − 2 ⟨ΔR𝑖 ⋅ ΔR𝑗⟩ ,

(4)

which were calculated using high frequency modes of GNM
based on a cutoff of 6.5 Å. The residues with relatively high
MSDF value were considered functionally probable; seemore
details in Ozbek et al. [12].

In addition, both Haliloglu et al. [13] and Demirel et al.
[14] similarly defined mean square fluctuation (or vibration)
(MSF) of residues in the weighted average of several high
frequency modes based on a cutoff of 7.0 Å, to identify the
hot spot residues. The MSF of residue 𝑖 weighed by a subset
of modes 𝑘1 ≤ 𝑘 ≤ 𝑘2 is given as

⟨ΔR2𝑖 ⟩𝑘
1
−𝑘
2

= (3𝑘𝐵𝑇/𝛾)∑𝑘2
𝑘=𝑘
1

𝜆−1𝑘 [𝑢𝑘]2𝑖
∑𝑘2
𝑘=𝑘
1

𝜆−1
𝑘

. (5)

Then, one residue was predicted as a hot spot if the nor-
malized MSF of the residue (i.e., the measure expressed in
(5) divided by 3𝑘𝐵𝑇/𝛾) is larger than a given threshold. The
main difference between the work by Haliloglu et al. [13] and
that by Demirel et al. [14] is the different thresholds adopted.
Haliloglu et al. [13] used a constant threshold of 0.005 while it
was 6𝑁−1 given by Demirel et al. [14] where𝑁 is the number
of residues in a protein sequence.

2.3. Gaussian Naive Bayes. A Naive Bayes (NB) classifier
calculates the probability of a given instance (example)
belonging to a certain class [40]. Given an instance 𝑋
described by its feature vector (𝑥1, . . . , 𝑥𝑛) and a class target
𝑦, the conditional probability 𝑃(𝑦 | 𝑋) can be expressed as
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a product of simpler probabilities using the Naive indepen-
dence assumption according to Bayes’ theorem:

𝑃 (𝑦 | 𝑋) = 𝑃 (𝑦) 𝑃 (𝑋 | 𝑦)
𝑃 (𝑋) = 𝑃 (𝑦)∏𝑛𝑖=1𝑃 (𝑥𝑖 | 𝑦)

𝑃 (𝑋) . (6)

Here, the target 𝑦 may have two values where 𝑦 = 1
means a hot spot residue and 𝑦 = 0 represents non-hot spot
residue. 𝑋 for one residue (one instance) is a feature vector
with the same size for describing its characteristic using high
frequencymodes generated byGNM. For example,𝑋 is equal
to a vector composed of 𝑖th component u𝑘𝑖 for 𝑖th residue
in a sequence when only one high frequency mode u𝑘 is
used. If three high frequency modes, denoted by u1, u2, and
u3, are taken into account, the vector 𝑋 will be (u1𝑖, u2𝑖, u3𝑖)
for residue 𝑖 in a protein sequence. Moreover, if a window
size of 3 with respect to the residue 𝑖 is adopted, 𝑋 becomes
(u1𝑖−1, u1𝑖, u1𝑖+1, u2𝑖−1, u2𝑖, u2𝑖+1, u3𝑖−1, u3𝑖, u3𝑖+1).

Since 𝑃(𝑋) is constant for a given instance, the follow-
ing rule is adopted to classify the instance whose class is
unknown:

�̂� = argmax
𝑦

𝑃 (𝑦)
𝑛

∏
𝑖=1

𝑃 (𝑥𝑖 | 𝑦) , (7)

where “arg”means a value of 𝑦 so that the above expression is
maximized; that is, if 𝑃(𝑦 = 1)∏𝑖𝑃(𝑥𝑖 | 𝑦 = 1) is larger than
𝑃(𝑦 = 0)∏𝑖𝑃(𝑥𝑖 | 𝑦 = 0), �̂� = 1; otherwise, �̂� = 0.

Moreover, when the likelihood of the features (i.e., 𝑃(𝑥𝑖 |𝑦)) is assumed to be Gaussian, a NB classifier is called
Gaussian Naive Bayes (GNB). Due to its simplicity and being
computationally fast compared to other more sophisticated
methods, GNB has been widely applied to prediction prob-
lems in bioinformatics [41, 42]. In this study, GNBwasmainly
used to train the models by inputting the highest frequency
modes to identify hot spot residues.

2.4. Performance Evaluation. In a classification task, the
following quality indices, including sensitivity (also known
as recall), specificity, precision, and the overall accuracy, were
generally used to assess prediction performance:

Sensitivity: sen = TP
TP + FN

,

Specificity: spe = TN
TN + FP

,

Precision: pre = TP
TP + FP

,

Accuracy: acc = TP + TN
TP + TN + FP + FN

,

(8)

where true positives (TP) and true negatives (TN) corre-
spond to correctly predicted hot spot residues and non-hot
spot residues, respectively, false positives (FP) denote non-
hot spot residues predicted as hot spot residues, and false
negatives (FN) denote hot spot residues predicted as non-hot
spot residues.

Obviously, the dataset used in this study is extremely
unbalanced with a very high proportion of non-hot spot

residues. For this reason, the accuracy value is not a good
choice to evaluate the overall performance of results. When
a dataset includes 95% negative samples but 5% positive
samples, a classifier may identify all of them as negative,
resulting in 95% overall accuracy and 100% specificity.This is
really shown as excellent performance, but it fails to identify
the positive samples that we actually need pay close attention
to. Moreover, two indices, sensitivity and precision, can both
measure the classification correctness for positive samples. It
is strongly expected that these two indices can synchronously
reach high values, but there exists a trade-off between them in
general.Therefore, we used𝐹1measure to evaluate the overall
prediction performance:

𝐹1 measure: 𝐹1 = 2 × sen × pre
sen + pre

, (9)

which can balance the sensitivity and the precision in case
of the unbalanced dataset. The formula of the 𝐹1 measure
can be changed to be 𝐹1 = 2/((1/sen) + (1/pre)) when both
sen and pre are exactly larger than zero. Thus, 𝐹1 measure
can be viewed as an increasing function of sen and pre. The
minimum of 𝐹1 is 0 when sen = 0 or pre = 0, and the
maximum of 𝐹1 is 1 when sen = 1 and pre = 1.

2.5. Identification of Hot Spots Using GNM and GNB. The
experimental performance on identification of hot spot
residues is tested using 𝑛-fold cross validation (𝑛CV) on the
dataset composed of 32 unbound protein structures. In the
𝑛CV procedure, chains are randomly divided into 𝑛 subsets
with the same numbers of sequences, and the test is repeated
𝑛 times. In each time, the 𝑛 − 1 subsets are used to build the
model, and the remaining one subset is then tested by the
prediction model.

In the present study, we performed tenfold cross val-
idation (10CV) based on Gaussian Naive Bayes using the
highest modes as features from GNM outputs in different
ways.Then, wemainly implemented two schemes concerning
feature coding for investigating the relations between the
highest modes and the hot spot residues. Firstly, a classifier
was modeled by directly using single one of the top 20 high
frequency modes (i.e., the eigenvectors (u𝑖) that correspond
to the top 20 largest eigenvalues (𝜆𝑖)). Meanwhile, a sliding
window of the central residue with sizes ranging from 1 to
21 was utilized to examine the impact of the neighboring
residues’ fluctuations, and the computation of GNM was
carried out by usage ofmultiple distance cutoffs ranging from
6.0 to 8.0 with a step size of 0.1. Secondly, we combined top
𝑚 modes with the highest frequency (𝑚 = 1, 2, 3, . . . , 20)
and utilized similar scheme for the distance cutoff of GNM
computation and the sliding window of the central residue to
establish the models for identifying hot spot residues.

3. Results and Discussion

3.1. Identification of Hot Spot Residues Using Single One of
the Highest Modes. In this work, the overall performance
was evaluated by the 𝐹1 measure in (9), which is able to
balance the sensitivity and the precision. Table 1 lists twenty
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Table 1: List of top 20 𝐹1 measures based on tenfold cross validations of Gaussian Naive Bayes when using single 𝑖th highest mode (𝑖 =
1, 2, . . . , 20) inputted into the feature vector, where cutoffmeans the distance threshold for GNM computation that varies from 6.0 to 8.0 with
step size of 0.1 and sw represents the size of the sliding window for the central residue that ranges from 1 to 21 with step size of 2.

Top Cutoff i sw sen spe pre acc 𝐹1measure
1 7.3 8 3 0.1930 0.9436 0.1250 0.9136 0.1517
2 7.1 8 9 0.2515 0.9095 0.1039 0.8831 0.1470
3 7.1 8 7 0.2456 0.9119 0.1042 0.8852 0.1463
4 7.1 8 5 0.2164 0.9263 0.1091 0.8979 0.1451
5 7.1 8 3 0.1696 0.9473 0.1184 0.9162 0.1394
6 7.3 8 5 0.1871 0.9354 0.1077 0.9054 0.1368
7 8.0 3 5 0.1930 0.9310 0.1044 0.9014 0.1355
8 7.3 8 7 0.2164 0.9163 0.0974 0.8883 0.1343
9 7.1 8 13 0.2281 0.9090 0.0947 0.8817 0.1338
10 7.1 8 11 0.2281 0.9071 0.0929 0.8799 0.1320
11 7.0 19 17 0.2456 0.8963 0.0899 0.8703 0.1317
12 6.7 13 3 0.1345 0.9619 0.1285 0.9288 0.1314
13 7.8 3 3 0.1520 0.9507 0.1140 0.9187 0.1303
14 7.0 14 21 0.2339 0.901 0.0897 0.8742 0.1297
15 7.0 19 19 0.2456 0.8934 0.0877 0.8674 0.1292
16 7.1 8 15 0.2281 0.9039 0.0901 0.8768 0.1291
17 7.0 4 7 0.2281 0.9022 0.0886 0.8752 0.1277
18 6.6 6 3 0.1520 0.9480 0.1088 0.9162 0.1268
19 6.9 15 21 0.2222 0.9046 0.0886 0.8773 0.1267
20 7.2 14 13 0.2456 0.8897 0.0850 0.8639 0.1263

computational outcomes of the prediction performance that
are ordered by 𝐹1 measure, where the feature vector for a
GNB classifierwas extracted from single onemode, that is, 𝑖th
highest mode (𝑖 = 1, 2, . . . , 20), the distance cutoff in GNM
varied from 6.0 to 8.0 with the step size of 0.1, and the sliding
window for one mode ranged from 1 to 21 with a step size of
2. As shown in Table 1, the highest performance was achieved
by 𝐹1 measure of 0.1517 when the distance cutoff is 7.1 Å and
the size of the sliding window is 3 in case of the 8th highest
mode.

Moreover, top six 𝐹1 measures shown in Table 1 were
from the same 8th highest mode, indicating that the best
performance achieved may not belong to the first or second
highest frequency mode. Even the 19th and the 13th highest
modes can also result in relatively high 𝐹1 measures. From
the aspect of cutoff, it has been shown that majority of the
cutoff values shown in Table 1 are in or close to the [7.0, 7.3]
interval.

Given the cutoff of 7.3 Å in GNM, we plotted sensitivity,
precision, and 𝐹1 measure for all of the top 20 high modes;
see Figure 1. Three cases with sizes of the sliding windows
equal to 1, 3, and 5 were examined. It is apparent that the 𝐹1
measures and the sensitivity values for the majority of the 20
modes can be improved when the size of the sliding window
is from 1 to 3.However, there is no sufficient evidence to prove
that larger size of the sliding window can further increase the
𝐹1measure. On the other hand, themajority of the sensitivity
values were improved when the window size was increased
from 3 to 5, but no consistent trend can be found for precision
values in three cases of the window sizes.

3.2. Identification of Hot Spot Residues by Combining the
HighestModes. Furthermore, top𝑚modes (𝑚 = 1, 2, . . . , 20)
with the highest frequency were combined to establish the
GNB classifier and to investigate whether the prediction
performance can be improved. For example, when𝑚 is taken
to be 10, top ten high modes (i.e., hm1, hm2, . . . , hm10)
are together inputted into the feature vector of a GNB
classifier.Meanwhile, the classification experiments were also
performed on various cases in which the distance cutoff is
from 6.0 to 8.0 with the step size of 0.1 and the size of the
sliding window (sw) ranges from 1 to 21 with the step size
of 2. Table 2 lists twenty outcomes of these computational
experiments ordered by 𝐹1 measure. Among these results,
the size of the sliding window is almost 1 except the case of
the 10th highest 𝐹1 measure in which 9 high modes and the
window size of 3 were used, suggesting that the fluctuation
of the central residue may be sufficient to identify hot spot
residues by a combination of multiple high frequency modes.
Moreover, as shown in Table 2, the distance cutoff often
belongs to the [7.1, 7.5] interval, and it seems that a larger 𝑚
value tends to result in higher sensitivity. For instance, the
sensitivity value obtained by a combination of the top 10 high
modes with cutoff of 7.4 Å (i.e., the case of top 1 𝐹1 measure)
is 0.2924, while the sensitivity values in the cases of top 4, 6,
and 7 𝐹1 measures, which are achieved by the usage of the
top 20, 19, and 20 high modes, respectively, are all larger than
0.41.

In Figure 2, we plotted the sensitivity, the precision, and
the 𝐹1 measure against 𝑚 modes with the highest frequency
that were combined as features for five cases denoted by
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Table 2: List of the top 20 𝐹1 measures based on tenfold cross validations of Gaussian Naive Bayes when using 𝑚 modes with the highest
frequency inputted into the feature vector, where 𝑚 = {1, 2, . . . , 20}, the distance cutoff in GNM varies from 6.0 to 8.0 with step size of 0.1,
and the sliding window size (sw) for multiple high modes ranges from 1 to 21 with step size of 2.

Top Cutoff 𝑚 sw sen spe pre acc 𝐹1measure
1 7.4 10 1 0.2924 0.8992 0.1080 0.8749 0.1577
2 7.4 11 1 0.3041 0.8873 0.1012 0.8639 0.1518
3 7.4 13 1 0.3275 0.8736 0.0976 0.8518 0.1503
4 7.2 20 1 0.4269 0.8207 0.0903 0.8049 0.1491
5 7.4 12 1 0.3099 0.8809 0.0980 0.8581 0.1489
6 7.2 19 1 0.4152 0.8239 0.0895 0.8075 0.1473
7 7.3 20 1 0.4152 0.8229 0.0891 0.8066 0.1467
8 7.1 11 1 0.2924 0.8870 0.0975 0.8632 0.1462
9 7.5 15 1 0.3450 0.8592 0.0928 0.8386 0.1462
10 7.1 9 3 0.3977 0.8312 0.0895 0.8138 0.1461
11 7.3 10 1 0.2690 0.8992 0.1002 0.8740 0.1460
12 7.4 15 1 0.3450 0.8585 0.0923 0.8379 0.1457
13 7.1 13 1 0.3158 0.8727 0.0937 0.8504 0.1446
14 7.5 14 1 0.3275 0.8663 0.0927 0.8447 0.1445
15 7.5 16 1 0.3509 0.8529 0.0905 0.8328 0.1439
16 7.4 14 1 0.3275 0.8653 0.0921 0.8438 0.1438
17 7.6 15 1 0.3333 0.8622 0.0916 0.8410 0.1438
18 7.5 10 1 0.2632 0.9000 0.0989 0.8745 0.1438
19 7.3 9 1 0.2456 0.9090 0.1012 0.8824 0.1433
20 7.1 14 1 0.3275 0.8641 0.0914 0.8426 0.1429
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Figure 1: Plots of sensitivity (a), precision (b), and 𝐹1 values by the single 𝑖th highest mode (𝑖 = 1, 2, . . . , 20) in three cases of the sliding
window sizes (sw) (i.e., sw = 1, 3, 5) for GNB classifiers. The 𝑖th highest mode in the figure is denoted as hmi.
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Figure 2: Plots of sensitivity, precision, and𝐹1 values against𝑚modes with the highest frequency in five cases denoted by the distance cutoffs
of 7.1 Å (a), 7.2 Å (b), 7.3 Å (c), 7.4 Å (d), and 7.5 Å (e), respectively, for GNB classifiers.

the distance cutoffs of 7.1 Å, 7.2 Å, 7.3 Å, 7.4 Å, and 7.5 Å,
respectively, where the sizes of the sliding window for all
cases are 1. It can be seen from the figure that these three
indices are consistently improved with the number of top
highmodes used up to 10. Especially for the case of sensitivity,
its value is an increasing function of the number of modes
with the highest frequency. It can be concluded that inclusion
of more high frequency modes can improve the sensitivity,
but the precision values become slightly decreased by adding
more high frequencymodes when the number of highmodes
combined is larger than 10. In the meantime, the 𝐹1measure
tends to be no longer enhanced.

3.3. Performance Comparison with Existing Methods. In the
present work, we directly inputted the high frequency modes
to a GNB classifier for predicting hot spots when compared
with the existing methods proposed by Ozbek et al. [12],
Haliloglu et al. [13], and Demirel et al. [14]. Ozbek et al.
[12] utilized the mean square distance fluctuations of residue

pairs, which were computed at most based on five top high
frequency modes, to identify hot spot residues. It may be not
appropriate to directly compare our work with the results
obtained by Ozbek et al. [12], since the datasets used and
the test procedures are both slightly different. However, we
reported here again part of outcomes from Table 1 in Ozbek
et al. [12] for a comparison. The 𝐹1measures were calculated
on the reported sensitivity and precision values, as shown
in Table 3. In addition, no results concerning the prediction
quality of hot spot residues based on a nonredundant dataset
were reported in Haliloglu et al. [13] and Demirel et al. [14],
where only MSF profiles for a couple of protein cases were
depicted and shown as figures. The usage of the number of
high frequencymodes is not consistent that three, four, or five
fast modesmay be adopted for different cases. Due to the lack
of details and web servers, we here simulated their methods
on the dataset in this work by computing the normalizedMSF
values weighted by one up to five high frequencymodes using
a cutoff of 7 Å for GNM. A constant 0.005 and a varied value
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Table 3: Performance comparison of the proposedmodelswith thework byOzbek et al. [12] and the simulatedmethods proposed byHaliloglu
et al. [13] and Demirel et al. [14], where hm1–𝑖means that a total of 𝑖 high frequency modes (hm1, hm2, . . . , hm𝑖) are used together.

Reference GNMmodes Cutoff sw sen spe pre acc 𝐹1

Ozbek et al. [12]

hm1 0.14 0.89 0.05 0.86 0.0737
hm2 0.16 0.80 0.05 0.85 0.0762
hm3 6.5 Å 1 0.24 0.88 0.07 0.85 0.1084
hm1–3 0.25 0.86 0.07 0.83 0.1094
hm1–5 0.29 0.84 0.07 0.81 0.1128

Haliloglu et al. [13] (simulated)

hm1 0.1988 0.9019 0.0780 0.8738 0.1120
hm1-2 0.2690 0.8819 0.0868 0.8574 0.1312
hm1–3 7.0 Å 1 0.3041 0.8580 0.0820 0.8358 0.1292
hm1–4 0.3275 0.8429 0.0800 0.8222 0.1286
hm1–5 0.3450 0.8339 0.0797 0.8143 0.1295

Demirel et al. [14] (simulated)

hm1 0.0468 0.9773 0.0792 0.9400 0.0588
hm1-2 0.0526 0.9697 0.0677 0.9330 0.0592
hm1–3 7.0 Å 1 0.0409 0.9615 0.0424 0.9246 0.0417
hm1–4 0.0819 0.9573 0.0741 0.9222 0.0778
hm1–5 0.0936 0.9532 0.0769 0.9187 0.0844

This work

hm8 7.3 Å 3 0.1930 0.9436 0.1250 0.9136 0.1517
hm8 7.1 Å 9 0.2515 0.9095 0.1039 0.8831 0.1470

hm1–10 7.4 Å 1 0.2924 0.8992 0.1080 0.8749 0.1577
hm1–11 7.4 Å 1 0.3041 0.8873 0.1012 0.8639 0.1518
hm1–13 7.4 Å 1 0.3275 0.8736 0.0976 0.8518 0.1503
hm1–20 7.2 Å 1 0.4269 0.8207 0.0903 0.8049 0.1491

6𝑁−1 with respect to the sequence length 𝑁 were used to
identify hot spot residues for the simulations of the methods
by Haliloglu et al. [13] and Demirel et al. [14], respectively.
The quality indices including sensitivity, specificity, precision,
accuracy, and 𝐹1 measure for these simulations were then
reported in Table 3. We also listed part of the best outcomes
from this study in Table 3, two using single high mode and
four by a combination of multiple high modes, which have
been shown in Tables 1 and 2.

On the whole, if evaluated by 𝐹1 measure or precision,
all of the cases in Table 3 by this work outperformed the
results by Ozbek et al. [12] and by the simulated methods
of Haliloglu et al. [13] and Demirel et al. [14]. This suggests
that the direct usage of the high frequency modes is efficient
to identify hot spot residues. Besides, the improvement on
𝐹1 measure by combining multiple high frequency modes
seems to be very slight when compared with the methods
only using single high mode, while the sensitivity values in
general tend to be improved a lot. This is in good agreement
with the work by Ozbek et al. [12] and the simulation results
of Haliloglu et al. [13] and Demirel et al. [14] as outlined in
Table 3. Additionally, the specificity and accuracy values of
the simulated method for Demirel et al. [14] are higher than
those of other methods, but on the contrary the values of
sensitivity, precision, and 𝐹1 measure are in general lower.
The reason causing worse quality on 𝐹1measure achieved by
the simulation ofDemirel et al. [14] is due to a larger threshold
used when compared with the simulatedmethod of Haliloglu
et al. [13].

In addition, we also performed computational experi-
ments using several common classifiers, including logistic
regression, decision tree, 𝑘-nearest neighbor, and support
vector machine with default parameters, instead of GNB,
where all of themachine learningmethodswere implemented
in scikit-learn [43]. As a consequence, the results (data not
shown in this paper) showed that GNB exhibited better
performance than other classifiers. This is the reason why we
finally adopted GNB as the base classifier for identification of
the hot spot residues.

4. Conclusion

In this study, we followed previous work [12–14] focusing on
the identifications of hot spots by using GNM but directly
used the high frequency modes and further performed GNB
classifier.The proposedmethods outperformed the outcomes
reported in Ozbek et al. [12] and the simulated results of
Haliloglu et al. [13] and Demirel et al. [14] based on 𝐹1
measure to evaluate the overall performance. The results by
this work suggested that the high frequency modes can be
directly used to identify hot spot residues with reasonable
performance. In case of the scheme using only single high
frequency mode, the largest 𝐹1 measure may not be neces-
sarily achieved by one of the top five high frequency modes.
In our study, it was surprisingly gained by the 8th highest
mode with the distance cutoff of 7.3 and the window size
of 3. We further included more modes from total number
of 20 high frequency modes when compared with the work
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by Ozbek et al. [12] in which at most five frequency modes
are used. Of particular interest is the fact that inclusion of
more high frequency modes can significantly improve the
sensitivity value, but not the 𝐹1 measure and the precision
in general.

The dataset used in this work is obviously unbalanced.
There is a trade-off between the sensitivity and the precision.
It is not easy for researchers to find a perfect way to determine
the proper performance index to evaluate experimental
results.Therefore, we finally reportedmultiple results as listed
in Tables 1, 2, and 3, which were considered for choices
associated with different purposes in practice. Overall, the
present study provided additional valuable insight into the
relation between hot spots and residue fluctuations.
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