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Introduction

Breast cancer is frequently detected and ranks second 
in terms of causing death among women due to cancer 
(1,2). It constitutes around 30% of all newly diagnosed 
cancer cases (3-8). The survival rates of breast cancer are 
greatly influenced by the stage at which it is diagnosed, 
with early detection leading to higher chances of survival 
(3,5,7). Multiple factors such as family history, alcohol 

consumption, and hormone exposure play a role in the 
development of breast cancer (9-11). Triple-negative breast 
cancer (TNBC) is a highly aggressive and heterogeneous 
form of breast cancer, distinguished by the absence of three 
prominent receptors: estrogen receptor (ER), classic nuclear 
progesterone receptor (nPR), and receptor tyrosine-protein 
kinase erbB-2 (HER2) (12,13). TNBC is known for its 
significant heterogeneity, encompassing various histological, 
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molecular, and immune subtypes that contribute to distinct 
clinical outcomes that are still not fully understood (14-16).  
Among TNBCs, over 70% are of basal phenotype, one of 
the most aggressive TNBCs, and non-classic membrane 
progesterone receptors (mPRs) role in tumorigenesis, 
especially in basal phenotype, is of great interest since 
basal phenotype-derived breast cancer cells do not express 
nPRs (17). The cerebral cavernous malformation signaling 
complex (CSC)-mPR-progesterone (PRG) (CmP)/
CSC-mPR-PRG-nPR (CmPn) signaling network, which 
integrates the CSC with mPRs and nPRs, plays a role 
in breast cancer tumorigenesis. Understanding these 
pathways can provide insights into potential treatments. 
The involvement of mPRs in tumorigenesis is still under 
study, with initial beliefs suggesting their lack of genomic 

actions, but recent research has identified PRG receptors 
(PRs) throughout the cell. This paper aims to provide a 
comprehensive overview of the CmP/CmPn pathways and 
their significance in TNBC.

Cerebral cavernous malformations (CCMs) are abnormal 
dilations of small blood vessels in the brain, increasing the 
risk of stroke (18,19). Familial CCMs are hereditary and 
follow an autosomal dominant pattern (18-23). Deficiency 
of CCM1, CCM2, and CCM3 proteins, resulting from loss-
of-function genetic mutations, contributes to this condition 
by disrupting the CSC (Figure 1) (20-23). Initially, PRG 
was thought to have a primary role in preparing the 
endometrium (24-26). Current understanding has reached 
a consensus that PRG can exert its effects through both 
classic and non-classic pathways, influencing the progression 
of breast cancer during tumorigenesis. It can independently 
bind to classic nuclear PRG receptors (nPRs) or non-classic 
mPRs, activating parallel signaling cascades (24-32). The 
CSC can modulate the interaction between mPRs and 
nPRs, merging these pathways into CmPn signal networks 
(Figure 2) (33). These signal networks are relevant in other 
types of tumorigenesis and vascular malformation during 
angiogenesis (8,33-40). The feedback regulation between 
PRG-mediated signaling and the CSC signaling within the 
CmPn signal network plays a crucial role in breast cancer 
development (41). Long-term exposure to PRG is associated 
with increased breast cancer risk (10), highlighting the 
significance of this network in tumorigenesis (8,33-40). 
Considering the influence of factors on the CmPn signaling 
network, various elements like trace minerals, antagonists, 
and agonists for PRs (mPRs/nPRs) have been considered 
for their potential application in breast cancer prevention 
and treatment (8,33-36,42-44).

This review aims to provide a concise overview of the 
signaling networks linked to the CmP/CmPn pathways 
and their involvement in the development of TNBC. 
Additionally, it presents an evolving understanding of the 
role of mPRs in tumorigenesis (8,33-36,42-45).

Potential roles of CCM proteins in tumorigenesis

CCMs are characterized by abnormal dilation of small blood 
vessels in the brain, increasing the risk of stroke (18,19). 
This condition can be hereditary, following an autosomal 
dominant pattern of inheritance, and is associated with 
specific genes such as CCM1, CCM2, and CCM3 (18-23).  
These genes encode proteins that interact with each 
other, forming the CSC (20-23). While the majority of 

Figure 1 Schematic representation of binding interaction among 
CCM proteins within the CSC. Our current data suggests that CCM1 
utilizes its pY to bind to CCM2 classic PTB. One of three CCM1 pY 
can also compete with the CCM3 (FAT-H) to bind to the aPTB of the 
CCM2, suggesting CCM2, as a scaffold protein, plays a central role 
in the CSC. CCM1: blue color; CCM2: light green color; CCM3: 
brown color. CCM, cerebral cavernous malformation; CSC, CCM 
signal complex; N, N-terminus; C, C-terminus; pY, NPXY motifs; 
PTB, phosphotyrosine binding domain; aPTB, atypical PTB domain; 
FAT-H, Focal Adhesion Targeting-Homology domain. 
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research on CCMs has centered around their impact on 
cerebral cavernous hemangiomas and the increased risk of 
hemorrhagic stroke (20-23), there is emerging evidence 
indicating a potential involvement of CCM genes in tumor 
formation of major types of cancers (37). CCM1, one of 
the CCM genes, exhibits expression in various tissue types, 
indicating its diverse contribution to cellular physiology 
and its broader involvement in tumorigenesis across 
multiple tissues. This suggests that the CSC may play a 
role in tumorigenesis. While the full extent of these roles 
requires more research, there is strong suspicion that 
they significantly contribute to reproductive cancers, as 
evidenced by the increased expression of CCM1 and CCM3 
correlating with higher severity and stages of endometrial 
tumors (37). The altered expression of CCM genes in liver 
disease and cancer, such as CCM1 in early liver cirrhosis/
hepatitis and stage one liver tumors, indicates a complex 
role in liver tumor development (37). Other members of 
the CSC, like CCM2, have also been observed in different 
types of tissues and cancers (46), including lymphomas, 
highlighting the intricate role of the CSC in tumorigenesis 
that requires further elucidation (37). These findings are 

not unexpected, as studies have revealed that growing 
CCMs often coincide with mutations in the PIK3CA gene, 
which is commonly associated with cancer (47,48). The 
correlation between angiogenesis, shared genes implicated 
in tumorigenesis (47,48), and CCMs has provided insights 
into the possible role of CmPn signaling network in the 
development of both diseases.

Inception of CmPn signaling networks

Originally, PRG was thought to primarily play a role in 
female reproductive systems, specifically in the preparation of 
the endometrium throughout pregnancies (24-26). However, 
current consensus acknowledges that PRG can influence 
breast cancer progression (27,29-32). It can independently 
bind to nPRs or mPRs, activating parallel signaling cascades 
(27-32). Previously, the CSC, which regulates microvascular 
integrity, was regarded as a distinct entity (20-23). However, 
recent studies have uncovered a connection between these 
formerly independent signaling pathways, as the CSC has 
the ability to modulate the interaction between mPRs and 
nPRs (33). This finding has led to the integration of these 

Figure 2 Schematic diagram of mPR-specific PRG actions (PRG + MIF) within CmPn signal network. Within the CmPn signaling 
network, the CSC plays a regulatory role in modulating the interactions of PRG between nPRs and mPRs. This feedback regulation 
within the network involves the CSC acting as a modulator, influencing the channeling of PRG between nPRs and mPRs. CCM, cerebral 
cavernous malformation; CSC, CCM signal complex; PRG, progesterone; MIF, mifepristone; nPR, classic nuclear progesterone receptor; 
mPR, non-classic membrane progesterone receptor; eNOS, endothelial nitric oxide synthase; MMP, matrix metalloproteinase; CmPn, CSC-
mPRs-PRG-nPRs. 
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three “independent” signaling cascades, giving rise to the 
complexes referred to as CmPn signal network (Figure 2) 
(33-36). This network is present in both nPR-positive cells, 
providing a comprehensive framework for understanding 
the interconnectedness of these pathways (8,33-40,49). 
The comprehension of mPRs’ role in tumorigenesis has 
undergone an evolving process, in contrast to the well-
established classic nPRs. Initially, it was proposed that 
mPRs are a novel type of PRs that does not elicit genomic 
actions. However, several studies have identified PRs in 
different cellular locations, including the nucleus (41).  
The CmPn signaling network has been proven to play 
a crucial role in breast cancer development. Long-term 
exposure to PRG has been associated with an increased risk 
of breast cancer (10), further emphasizing the significance 
of this network in tumorigenesis (8,33-40). The discovery of 
the role of CmPn signaling network and tumorigenesis has 
sparked further investigation into their potential role in early 
detection. In summary, this section provides an overview 
of the present understanding of the signaling networks 
related to the CmPn network. It investigates the role of 
these signaling pathways in the development of TNBC 
and discusses potential applications for future treatment 
strategies.

Factors influencing CmPn/CmP signaling 
networks

Considering the influence of some key factors on the CmPn 
signaling network, various elements like trace minerals, 
antagonists, and agonists for PRs for their potential 
application in breast cancer prevention and treatment. 
This section aims to provide a brief summary of the factors 
associated with the CmPn network, the shift from CmPn to 
CmP network in nPR(−) TNBC cells, and the significance 
of the CmP network in TNBC development. Furthermore, 
we will examine the possible application of these factors in 
forthcoming treatment strategies.

Mifepristone has demonstrated potential in reducing the 
growth of TNBC cell lines (42-45), which can be partly 
attributed to its mechanism of action within the CmP 
signaling pathway (8). Acting as both an antagonist for nPRs 
and an agonist for mPRs (42-45), mifepristone has shown 
the ability to suppress basal TNBC stem cells and inhibit 
the growth of both nPR(+/−) and nPR(−) TNBC cells in 
the presence of elevated levels of PRG (8,33-36,42-44).  
It is important to note that in nPR(−) TNBC cells, the 
combined effects of mifepristone and PRG specifically 

target mPRs, working synergistically on these receptors. 
Using mifepristone to target breast cancer stem cells 
in TNBC has been identified as a treatment approach, 
opening up possibilities for exploring other functions within 
the CmP signaling cascade that could be targeted in future 
treatments (41,45). The ongoing investigation of the CmP 
pathway provides hope for the development of innovative 
therapeutic strategies for TNBC.

Zinc, an essential mineral with diverse physiological 
functions, plays a critical role in activating numerous 
enzymes in the body (8). It is involved in processes such 
as DNA synthesis, regulation of the female reproductive 
system, and maintenance of the immune system (50). 
Recent research has investigated the complex relationship 
between zinc and breast cancer development. Reduced 
zinc consumption has been linked to an increased risk 
of breast cancer, likely due to low levels of zinc between 
cells and elevated levels within cells (41). In the case of 
mutated mPRs, higher intracellular zinc levels facilitate 
the binding of PRG to mPRs, thereby restoring PRG’s 
ability to exert its effects within the cell (51). This finding 
provides insights into breast cancers that lack nPRs and 
highlights how PRG can still induce cellular mutations. 
The evidence of intracellular zinc enabling PRG binding 
through mPRs to influence CmP signaling network, 
presents challenges in the treatment of all nPR-negative 
cancers, particularly TNBC (8).

Role of CmP in TNBC

TNBC is recognized as one of the most lethal types of 
breast cancer due to its aggressive nature and the absence 
of ER, PR, and HER2 expression (12,13). TNBC displays 
substantial heterogeneity, involving diverse histological, 
molecular, and immune subtypes that contribute to distinct 
clinical outcomes that are not yet fully comprehended 
(14-17). TNBC poses challenges for treatment due to 
its aggressive nature and lack of ER, nPRs, and HER2 
expression (34,35). However, recent findings have shown 
that TNBC still interacts with PRG through non-classic 
membrane receptors (34,35). This discovery led to the 
identification of the novel hormone route known as the 
CmP, where PRG utilizes mPRs and the CSC to deliver 
PRG to the nuclear membrane (Figure 3) (34,35,41). 
Further research has confirmed the higher abundance of 
mPRs in TNBC compared to cancers with nPRs (34,35). 
This suggests that TNBC may receive continuous PRG 
signaling, creating an environment favorable for rapid 
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metastasis (8,33-36,38-40). These findings have also been 
supported by treatment options that have shown greater 
success in TNBC.

Biomarkers discovered through CmP in TNBC

Breast cancers exhibit significant clinical heterogeneity, and 
this variability is particularly prominent in TNBCs (52-55). 
TNBCs exhibit distinct variations in tumor aggressiveness, 
relapse rates, response to endocrine therapy, and sensitivity 
to cytotoxic chemotherapy (56-58). Hence, it is crucial 
to identify specific prognostic and predictive biomarkers 
unique to TNBC subtypes to guide clinical decision-
making (59-62). Biomarkers, encompassing objectively 
measurable characteristics, play a vital role in predicting, 
diagnosing, prognosing, and assessing disease progression, 
regression, and treatment outcomes. Lehmann’s proposed 
sub-classification of TNBCs has demonstrated variability, 
ranging from seven to four subtypes, each with advantages 
and disadvantages based on the context Technological 

advancements and expression profiling have significantly 
contributed to a more comprehensive characterization of 
TNBC subgroups, leading to the identification of precise 
biomarkers, therapeutic targets, and a better understanding 
of the underlying molecular mechanisms associated with 
TNBC (63-67). Tumor immune interactions in TNBCs 
are intricate and heterogeneous, influenced by diverse gene 
expressions within the tumor immune microenvironment. 
Various immune subtypes have been identified, impacting 
tumor-immune interactions and patient survival (68). 
Numerous biomarkers and signatures tailored to TNBC 
subtypes, addressing the challenges of immunotherapy, 
have been reported with prognostic value (16,69-73). 
Early detection of breast cancer is crucial for saving lives, 
and diagnostic and prognostic biomarkers play a pivotal 
role in achieving this goal (71,74-77). Biomarkers provide 
valuable information regarding cancer staging, location, 
and signaling cascades involved in cancer development 
(38,78-82). The discovery of novel biomarkers continues 
to advance our understanding of TNBC and holds promise 

Figure 3 CmP signal network-based biomarker discovery and therapeutic application. The depicted model showcases our current 
comprehension of the CmPn/CmP signal network’s role in breast cancer tumorigenesis, emphasizing the importance of mPRs in facilitating 
the continued influence of progesterone on both genomic and non-genomic actions. Investigating this network further holds potential for 
discovering innovative therapeutic strategies and prognostic biomarkers that specifically target the CmP signaling pathways in TNBC. 
nPRs, classic nuclear progesterone receptors; CCM, cerebral cavernous malformation; CSC, CCM signal complex; PRG, progesterone; 
mPRs, non-classic membrane progesterone receptors; TNBC, triple-negative breast cancer; CmP, CSC-mPRs-PRG; CmPn, CSC-mPRs-
PRG-nPRs. 
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for improved diagnosis and treatment. While numerous 
biomarkers have been identified, it is important to recognize 
the potential of prognostic and etiological biomarkers 
for early detection and as targets for treatment options 
(34,83,84). These biomarkers hold the key to unlocking 
pathways that can be utilized for developing effective 
therapies (33-35,37,38).

Alternative options

The current treatment options for TNBC are limited to 
chemotherapy, targeted agents, and immune checkpoint 
inhibitors, with chemotherapy being the standard 
approach (85). However, even with the introduction 
of targeted agents and immune checkpoint inhibitors, 
the overall survival rate for metastatic TNBC beyond 
5 years remains at only 11% (86). In order to improve 
this outcome, it is crucial to explore alternative signaling 
cascades such as the CmP pathway, which holds potential 
for novel treatment strategies that have yet to be 
investigated (33-35,37,38). Notably, changes in CCM gene 
expression have been observed in reproductive cancers, 
including breast cancer, indicating a potential avenue for 
preventing tumor metastasis, which is associated with poor 
prognosis (34,35,37). Further research and understanding 
of the mechanisms involved in the CmP signaling cascade 
could lead to the identification of additional targeted 
therapies for future treatments, offering hope for improved 
outcomes in TNBC.

Investigating biomarkers derived from the CmP signal 
network holds promise for TNBC diagnosis and treatment. 
By analyzing the components of this network, researchers 
are able to identify specific molecular markers that can 
distinguish TNBC from other breast cancer subtypes. 
These biomarkers can provide valuable information about 
the prognosis and potential therapeutic targets for TNBC 
patients (34,35).

Addit ional ly,  understanding the dynamics  and 
interactions within the CmP signal network can help 
identify novel therapeutic approaches. By targeting specific 
components of this network, such as mPRs or CSC, 
researchers may develop personalized treatments for TNBC 
patients. This approach could potentially improve patient 
outcomes and reduce the aggressiveness of this subtype.

Conclusions

This review focuses on the development of diagnostic 

and prognostic biomarkers in breast cancer, particularly 
in the context of TNBC. It highlights the importance of 
understanding the CmP signaling cascade and its associated 
factors in breast cancer tumorigenesis. The discovery of 
mPRs and the involvement of the CSC have provided new 
insights into the mechanisms underlying breast cancer 
progression. These findings contribute to the identification 
of prognostic biomarkers and the development of targeted 
therapies that interact with the CmP signaling cascade and 
its key components. The review emphasizes the potential 
of targeting various components of the CmP network, such 
as mPRs or CCM proteins, and utilizing biomarker-guided 
approaches to improve the prognosis and life expectancy of 
breast cancer patients and those with related conditions.

In summary, the exploration of biomarkers derived from 
the CmP signal network in TNBCs holds great promise 
for advancing our understanding of this aggressive subtype 
of breast cancer. By deciphering the intricate mechanisms 
within this network, researchers can potentially develop 
targeted therapies and improve patient outcomes in TNBC.
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