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Purpose of review

The process of aging involves biological changes that increases susceptibility for disease. In the aging lung
disease IPF, GWAS studies identified genes associated with risk for disease. Recently, several of these
genes were also found to be involved in risk for COPD or lung cancer. This review describes GWAS-
derived risk genes for IPF that overlap with risk genes for lung cancer or COPD.

Recent findings

Risk genes that overlap between aging lung diseases, include FAM13A, DSP and TERT. Most interestingly,
disease predisposing alleles for IPF are opposite to those for COPD or lung cancer. Studies show that the
alleles are associated with differential gene expression and with physiological traits in the general
population. The opposite allelic effect sizes suggest the presence of trade-offs in the aging lung. For TERT,
the trade-off involves cellular senescence versus proliferation and repair. For FAM13A and DSP, trade-offs
may involve protection from noxious gases or tissue integrity.

Summary

The overlap in risk genes in aging lung diseases provides evidence that processes associated with FAM13A,
DSP and TERT are important for healthy aging. The opposite effect size of the disease risk alleles may
represent trade-offs, for which a model involving an apicobasal gene expression gradient is presented.
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INTRODUCTION

It is well accepted that the influence of genetic varia-
tion on disease development is large. In the last
decades, tremendous progress was made in identify-
ing spurious deleterious alleles of high penetrance
that strongly contribute to disease development. This
has provided unique opportunities, not only for dis-
ease diagnostics, but also for development of thera-
pies that aim to biologically compensate or nullify
the mutational effect. However, most diseases are not
caused by deleterious alleles but are associated with
common polymorphisms in our DNA. These poly-
morphisms have a minor effect on gene function and
in ideal circumstances have neutral impact on sus-
taining healthy life. However, under changing cir-
cumstances and in certain combinations, their
impact may be altered and particular alleles may
contribute to disease development.
uthor(s). Published by Wolters Kluwe
The results of over a decade’s worth of genome-
wide association studies (GWAS) have taught us a
lot. On the down-side, the effect size of common
polymorphisms is most often extremely low, which
precludes translation to the clinic. However, on
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KEY POINTS

� Disease genes for IPF in TERT, DSP and FAM13A
overlap with lung cancer or COPD and underline the
importance of these genes in disease development.

� Risk alleles have opposite effect size and differential
gene expression: low-expressing alleles confer risk for
IPF, high-expressing alleles confer risk for COPD and
lung cancer.

� Co-occurrence of aging lung diseases is frequently
observed, also in monogenic disease, and point
towards shared pathways.

� Lung disease-associated polymorphisms in FAM13A
and TERT also influence nonpathogenic age-associated
characteristics of the general population: decrease in
FEV1/FVC and leukocyte telomere length, respectively.
Levels of DSP decrease with age.

� In aging lung, it is conceivable that trade-offs between
optimal levels for different lung or cell compartments
exist, and may follow an apicobasal gradient. For
homozygotes, optimal levels will be difficult to
maintain, suggesting heterozygotes are at an
advantage for healthy lung aging.

Genetics
the up-side, patterns between diseases are starting
to arise [1]. Disease-associated genes overlap
among many diseases, and these patterns indicate
that similar pathobiological processes underlie
widely varying clinical entities [2–6,7

&&

]. Recent
GWAS results provide evidence that one such
group of diseases with overlapping genes consists
of pulmonary aging diseases: idiopathic pulmonary
fibrosis (IPF), chronic obstructive pulmonary disease
(COPD) and lung cancer [7

&&

,8
&&

]. With increasing
age, the lung changes to the extent that alleles that
initially had neutral impact, may increase risk for
disease development in aged tissue. Most interest-
ingly though is that the implicated genes in aging
pulmonary diseases do overlap, but the alleles do not:
opposing alleles at the same locus confer risk for very
differentclinical entities. This reviewfocuses on over-
lapping genes and opposite risk alleles in the aging
lung diseases IPF, COPD and lung cancer.
AGING AND LUNG DISEASE

As we get older, the chance of developing a lung
disease increases. Older persons, aged at least
65 years, report high rates of respiratory symptoms,
which commonly associate with COPD, IPF and
lung cancer [9

&

]. Overall, there is an almost five-fold
increase in incidence of IPF and COPD related solely
to age [10], and two-thirds of new lung cancer cases
are diagnosed in patients over the age of 65 [11].
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COPD is prevalent and a significant cause of
mortality in the elderly population. The key element
in the diagnosis of COPD is the presence of a persis-
tently reduced ratio of forced expiratory volume in
one second/forced vital capacity (FEV1/FVC), which
is also a characteristic of a naturally aged lung [12].
Increase in alveolar size with emphysematous
changes in theupper lobesof the lungsarecommonly
present in more severe COPD. An increase in alveolar
size is also a feature of a naturally aging lung [13],
however, in COPD the process is associated with
inflammation and alveolar wall destruction [12].

IPF is a rare fibrotic lung disease and typically
characterized by symmetric bibasilar peripheral
fibrogenesis of the lung [14]. IPF survival is 2–3
years and worsens with increasing age [14]. Progres-
sive decline in lung function parameters such as
diffusing capacity of the lungs for carbon monoxide
(DLCO) is characteristic for IPF. However, in con-
trast to the decrease in DLCO that is seen in the
naturally aging lung, the decrease in IPF is associated
with ongoing interstitial fibrogenesis. Naturally
aging lung may also contain increased thickening
of alveolar septa, without inflammation or fibrosis
[13]. A characteristic of IPF lung biopsy is spatial
heterogeneity, showing normal lung areas inter-
spersed among areas of fibrosis [15]. Interestingly,
these normal areas commonly show thickening of
alveolar septa, which may be a sign of aging.

Malignant transformation of cells in lung cancer
is caused by accumulated DNA damage. Usually,
smoking is the main source of the damage, however,
natural biological processes do also contribute. Sev-
eral forms of lung cancer exist and all are positively
associated with age [16]. Median survival in lung
cancer is extremely low, and depends on cancer type
and stage. Age is a major risk factor with 72% of
deaths in lung cancer occurring in patients over
65 years of age [11].
AGING LUNG DISEASES MAY OVERLAP

COPD is an independent risk factor for lung cancer.
Several epidemiologic studies and lung cancer
screening trials have shown a two- to four-fold
increase in lung cancer risk in patients with COPD
in comparison with non-COPD smokers [12]. This
risk is highest when airflow obstruction and emphy-
sema coexist in a patient [17]. Squamous cell carci-
noma in particular is more commonly seen in
patients with COPD, and tumor localization
strongly associates with areas with the highest
degree of emphysema [17].

The risk of developing lung cancer in patients
with IPF is approximately seven times higher than
that of the general population [18]. IPF patients with
Volume 24 � Number 3 � May 2018
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lung cancer seem to be slightly older and more
commonly male. They most often develop squa-
mous cell carcinoma in the fibrotic areas in the
lower lung periphery. Patients with co-occuring
lung cancer and IPF have worse survival than with
only lung cancer or only IPF [19,20].

IPF and COPD features may coexist, a condition
known as combined pulmonary fibrosis and
emphysema (CPFE). CPFE is characterized by
both upper-lobe emphysema and lower-lobe fibro-
sis [21]. Patients with CPFE are at increased risk
of developing lung cancer than with IPF only,
and tumors are commonly localized in fibrotic
areas [22

&&

].
GENETIC DISEASE

Although aging is a risk factor for IPF, COPD and
lung cancer, the majority of the aging population
does not develop any of these diseases. This is also
true for smokers, and indicates that genes play an
important role in disease development.

Germline mutations associated with COPD
account for approximately 5% of cases, almost all
smokers. The most frequent cause is the presence of
autosomal recessive mutations in SERPINA1 [23]
which associates with lower lobe emphysema. How-
ever, a few cases with dominant mutations in TERT
and upper lobe emphysema have also been
described [24,25].

The most common consequence of TERT muta-
tions, however, is IPF [26]. In IPF, approximately
20% of patients have a familial form of the disease.
Familial IPF is most often caused by mutations in
telomere related genes [27–29] or by mutations in
surfactant processing genes. A remarkable overlap
between aging lung diseases and mutations in sur-
factant processing genes exists. Carriers of autoso-
mal recessive [30] or dominant surfactant processing
mutations [31], can have coexisting emphysema-
tous or large cystic changes [32–34] or may develop
lung cancer [35–37], all depending on which gene
harbors the mutation.

In lung cancer, somatic mutations are the main-
stay and these mutations are also found in tumors of
patients with preexisting COPD [38] or IPF [39,40].
Twin siblings of affected persons had a 7-fold
increased risk for lung cancer, with no difference
in risk between monozygous and dizygous twins,
underlining the importance of the environment in
development of lung cancer [41].
GENOME-WIDE ASSOCIATION STUDIES

The majority of elderly lung patients do not carry
highly penetrant mutations. In these patients, small
1070-5287 Copyright � 2018 The Author(s). Published by Wolters Kluwe
constitutional genetic differences, may become of
consequence during aging and a history of noxious
exposure.

Observations that GWAS risk loci for COPD and
lung cancer overlap have been numerous [42–44].
However, recently it was found that several risk
genes for COPD or lung cancer were also involved
in IPF. A recent GWAS showed that the genes
FAM13A and DSP that associate with COPD overlap
with IPF although with opposite risk alleles [7

&&

].
Furthermore, meta-analysis of cancerous diseases
showed that the gene TERT confers risk for lung
cancer [8

&&

], and for IPF [45,46] although again,
opposite risk alleles are involved [3].

Although the risk alleles in FAM13A, DSP and
TERT are intronic, genetic and physiological con-
sequences of allele carriership have been described.
Figure 1 and Table 1 summarize shared risk genes,
alleles, associated phenotypes and expression.
FAMILY WITH SEQUENCE SIMILARITY 13
MEMBER A

Alleles localized at chromosome 4q22, in the gene
Family with sequence similarity 13 member A
(FAM13A) are among the strongest risk factors for
aging lung diseases. The same risk allele is indepen-
dently associated with COPD [42,57] and lung can-
cer [43]. Moreover, variants in the gene are
independently associated with lung function in
the general population [42,48,58,59]. In COPD,
the allele is not only associated with risk for disease,
but also with phenotypes of disease, such as reduced
FEV1/FVC ratio and presence of chronic bronchitis
[50,60–62]. In IPF the same allele also associates
with worse lung function (low DLCO) and with
worse survival [47

&

]. However, surprisingly, the risk
for IPF disease development is conferred by the
opposite allele [46].

For several FAM13A polymorphisms a quantita-
tive effect on gene expression has been demon-
strated [59,63]. Risk alleles for COPD, and lung
cancer associate with increased gene expression of
FAM13A [49,59,64,65]. The risk allele for IPF is
the opposite and associates with decreased gene
expression.

So far FAM13A was only shown to contribute to
development of disease in the elderly, however its
contribution to changes in lung function was also
found in pediatric cohorts [66]. In human fetal lung,
expression of FAM13A is influenced by polymor-
phisms, and expression levels increase with fetal
lung age [67] but an essential role in lung develop-
ment seems unlikely because Fam13a-deficient mice
showed no gross defects in major organs and had
normal lung function [68

&&

].
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Table 1. Characteristics of shared disease loci in idiopathic pulmonary fibrosis, lung cancer and chronic obstructive

pulmonary disease

Risk allele Expression

Gene Locus
Ancestral
allele a

Variant
allele

Global
MAF a COPD

Lung
cancer IPF

General
population

Risk
allele High Low Ref

FAM13A rs2609255 T G G¼0.35 T (7) G (7,46,47) Lower FEV1/FVC T d (48) T G [49]

rs7671167 T C C¼0.48 T (42,43) T (43) Cb Lower FEV1/FVC c T (50) T C [51]

DSP rs2076295 G T G¼0.43 T (7) G (7,52) T G [52
&

]

TERT rs2736100 A C C¼0.48 C (53) A (45,46,54) Short leukocyte
telomere length

A (55) C A [56
&

]

COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; MAF, minor allele frequency; Ref, reference.
aThe minor allele differed per study population, therefore, the ancestral allele and MAF were derived from https://www.ncbi.nlm.nih.gov/projects/SNP.
bJoint analysis United States Patent Application 20160060701 at http://www.freepatentsonline.com/y2016/0060701.html.
cCases and controls.
dThe referenced study presents results for rs2609264; however, there is complete/tight linkage disequilibrium (r2) between rs2609255 and rs2609264: r2¼
0.97 in Asian and r2¼1 in European population computed at http://archive.broadinstitute.org/mpg/snap/ldsearchpw.php.

Decrease in DSP expression

COPD

Changes associated with aging

Decrease in telomere length

Aging associated 
accumula�on of 

DNA damage
Disease associated 

accumula�on of 
DNA damage

Decrease in FEV1/FVC

Associated gene

TERT high
FAM13A high

DSP high

FAM13A high FAM13A low

DSP low

TERT low

FAM13A high
DSP

TERT low

IPF

Lung cancer

History of noxious exposure

Disease associated 
accumula�on of 
DNA damage

FIGURE 1. Genes associated with development of aging lung diseases idiopathic pulmonary fibrosis, chronic obstructive
pulmonary disease and lung cancer. Disease-predisposing genes overlap but alleles have opposite effect size. Aging and a
history of noxious exposure changes genetic requirements for maintenance of a healthy lung. In the aged lung, subtle
differences in gene expression conferred by risk alleles in DSP, FAM13A and TERT, can influence biological processes and
increase risk for specific aging-associated lung diseases. Presence of disease contributes to tissue aging and increase the risk
for secondary lung cancer. GENENAME high, allele associated with increased gene expression; GENENAME low, allele
associated with decreased gene expression.
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The mechanisms by which FAM13A contributes
to disease is not understood. FAM13A has a diverse
role in signal transduction that seems to be highly
dependent on context [68

&&

,69–71]. In lung cancer,
FAM13A was identified as a key regulator of tumor
growth and progression [69]. In human lungs,
FAM13A is expressed in airway epithelial and muco-
sal cells, club cells, alveolar type II epithelial cells
and macrophages [68

&&

,70] and can be induced by
hypoxia [72]. In COPD and IPF lung tissue, FAM13A
expression was not influenced by allele carriage and
was not significantly different from controls [46,49].
However, increased protein levels of FAM13A were
detected in very severe COPD lungs whenever com-
pared with healthy ex-smokers [68

&&

]. Furthermore,
only Fam13a wild type mice can develop emphy-
sema, whereas Fam13a-deficient mice are protected
from emphysema development, even after 6 months
of exposure to cigarette smoke [68

&&

]. This suggests
that FAM13A expression may be essential for
emphysema development, in line with the finding
that higher expressing alleles associate with devel-
opment of COPD.
DESMOPLAKIN

The desmoplakin (DSP) gene at 6p24 harbors one of
the top risk alleles in IPF GWAS [46,73], and the
opposite allele was recently found to confer risk for
COPD [7

&&

].
In both control and IPF lung samples, the DSP

risk locus associated with differential expression of
DSP. Lower expression levels associated with the risk
allele for IPF [52

&

], higher expression levels associ-
ated with the opposite allele. Interestingly, the
expression of DSP decreased with age in control
lung samples [52

&

]. However, in case of disease,
the expression of DSP increases and levels in IPF
lung samples are higher than in controls [52

&

].
Desmoplakin is a critical component of desmo-

somes that are important for cell–cell adhesion.
Desmosomes have also been shown to influence cell
proliferation, differentiation, migration and apo-
ptosis [74]. Staining of fibrotic and normal human
lung tissue localized DSP to airway epithelia and
epithelial cells lining cystic areas of the fibrotic lung
[52

&

]. Staining in normal alveolar tissue was not
detected, but one must keep in mind that DSP
may be present at the intersections of alveolar
type I cells, which may not be visible by immuno-
histochemistry.

DSP is essential for development, mutations in
DSP cause Mendelian disorders primarily affecting
the skin and heart. Dsp-deficient mice are not viable
[75], and mice heterozygous for cardiac-restricted
deficiency of DSP have reduced survival and develop
1070-5287 Copyright � 2018 The Author(s). Published by Wolters Kluwe
arrhythmogenic right ventricular cardiomyopathy,
including fibrosis in the myocardium [76].

Desmosomes are found in tissue that experience
intense mechanical stress or shear stress, hence the
association with cardiomyopathy [77]. Induction of
loss of desmoplakin in cardiomyocytes causes upre-
gulation of profibrotic genes [78]. A possible cause of
IPF was suggested to involve increased tractional
stress, because IPF is typically characterized by fibro-
genesis at bibasilar peripheral lung regions wherever
mechanical stress is the highest [79]. This process
was further suggested to be accelerated by dysfunc-
tional surfactant fluid through admixture with
MUC5B protein [80]. The IPF predisposing allele
in DSP associates with decreased expression of des-
moplakin, which may decrease structural integrity
at sites of highest tractional stress and subsequently
trigger fibrogenesis.

Interestingly, loss of DSP is also considered an
early step in carcinogenesis. Reduction of DSP can be
caused by an epigenetic mechanism and reduced
levels are present in primary lung tumors indepen-
dent of tumor grade, tumor stage and lymph node
status [81]. Further cancer cell experiments showed
that overexpression of DSP led to significant reduc-
tion of lung cancer cell proliferation and anchorage-
independent growth [81].
TELOMERASE REVERSE TRANSCRIPTASE

Telomerase reverse transcriptase (TERT) at 5p15
encodes an enzyme essential for telomere length
maintenance. The TERT allele that increases risk
for IPF [45,46,54] is the opposite of the risk allele
for lung cancer [3,8

&&

,53]. The risk allele for IPF
associates with lower expression of the gene [56

&

]
and with shorter leukocyte telomere length in the
general population [55]. The allele for lung cancer is
the opposite and associated with higher expression
and longer telomeres. Moreover, longer leukocyte
telomere length associates with an increased risk of
developing lung cancer [82].

Germline mutations in TERT that cause IPF or
(rarely) emphysema lead to haploinsufficiency of
telomerase and accelerated shortening of telomeres
upon cell division [83]. Critically short telomeres
signal senescence or apoptosis [84]. Mouse models
deficient for normal telomere function develop pul-
monary emphysema when exposed to cigarette
smoke [24], or pulmonary fibrosis when exposed
to bleomycin [85].

Telomere shortening or dysfunction in alveolar
type II cells seems critical for fibrogenesis. Telomere
shortening was observed in alveolar epithelial cells
from patients with COPD [86] and IPF [87

&&

].
Recently, shortest telomeres were found in alveolar
r Health, Inc. www.co-pulmonarymedicine.com 313
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type II cells in fibrotic areas of IPF lung in compari-
son with nonfibrotic areas [87

&&

]. Furthermore,
selective shortening of telomeres in alveolar type
II cells in mice resulted in age-dependent lung
remodeling and fibrosis [88

&&

].
Progressive telomere shortening from cell divi-

sion, also known as replicative aging, provides a
barrier for tumor progression [89]. However, in lung
tumors, somatic mutations in the promoter region
of TERT contribute to increased transcription and
cellular immortality [90]. Tumorigenesis is depen-
dent on sequential accumulation of mutations,
which are crucial for malignant transformation of
the cell [91]. Carriage of the allele for longer telo-
meres may allow for more cell divisions and increase
the chance of accumulating critical oncogenic
mutations. Furthermore, longer telomere length
associates with higher intrinsic epigenetic age accel-
eration [92]. Telomerase is thought to regulate the
balance between ageing and cancer. Indeed, Tert
overexpression in mice increased tumor develop-
ment, but in a model of tumor-resistant mice, Tert
overexpression showed to be beneficial and
increased longevity [89].

Reduction in leukocyte telomere length was
proposed as a biomarker of aging [93]. Patients with
COPD have accelerated shortening of leukocyte
telomere length, but this is not related to clinical
parameters [94]. Patients with IPF, however, not
only have very short telomeres, the decrease in
blood and lung is also associated with worse survival
[87

&&

,95]. Furthermore, the leukocyte telomere
length in IPF is significantly shorter than in other
lung diseases with comparable disease burden [96].
It can, therefore, be concluded that only in IPF –
and not in COPD or lung cancer – the genetic
constitution of the patient is the cause of the short
telomeres.
TRADE-OFFS IN THE AGING LUNG

The identification of genetic correlations
between diseases can provide useful pathological
insights [1]. In the aging lung, polymorphisms in
FAM13A, DSP and TERT connect three lung diseases:
IPF, COPD and lung cancer. Clinically, these three
diseases are also connected by shared risk factors:
noxious particles and gases (i.e. from smoking),
and aging.

Aging involves changes in cellular levels of gene
transcript and proteins that are partly regulated by
the presence of genetic variants. The risk alleles in
FAM13A, DSP and TERT for IPF were opposite to
those for COPD or lung cancer. Furthermore, the
polymorphisms were shown to influence gene
expression levels: risk alleles for IPF associate with
314 www.co-pulmonarymedicine.com
low expression and risk alleles for COPD and lung
cancer associate with high expression.

The opposing alleles in TERT, FAM13A and DSP
probably represent trade-offs in an aging organism.
A trade-off exists whenever a benefit in one context
entails a cost in another [97]. A textbook example of
trade-off is the sickle cell causing mutation HbS,
which also protects against malaria. The trade-off
associated with the TERT variant is easiest to under-
stand: high expression of TERT is associated with the
capacity of rejuvenation and repair but confers an
increased risk of developing cancer. Trade-offs for
FAM13A and DSP may involve protection from nox-
ious gases or tissue integrity.

Trade-offs associated with optimal expression
levels may be caused by involvement of different
cell types or different lung areas. Hypothetically,
low FAM13A levels in airway cells may be optimal
to decrease risk for COPD but may be too low in
alveolar cells to prevent IPF. In the context of lung
localization, a gradient of optimal expression levels
may exist. In IPF, fibrogenesis follows an apicobasal
gradient with basal and peripheral predominance of
fibrosis [14]. The cause of this gradient is unknown,
but may be associated with regional differences in
lung mechanical stress or perfusion. Its presence,
however, suggests that a trade-off between the upper
and lower parts of the lung may exist. The low-
expressing alleles – associated with IPF – may be
too low at basal lung areas. Moreover, the high
expressing alleles – associated with COPD – may
be too high for the apical lung regions (Fig. 2).
Further research is required to understand which
trade-offs are present in the aging lung.

Given the presence of opposite risk alleles and
the additive effect of each allele on expression, it
appears that in the aging lung, heterozygotes are at
an advantage. In fact, in humans a significant asso-
ciation between increased genome-wide heterozy-
gosity and survival is present [98]. Lung diseases
contribute significantly to mortality; thus it is pos-
sible that individuals heterozygous for the studied
polymorphisms in TERT, DSP and FAM13A are at an
advance whenever becoming of age. Allele frequen-
cies are driven by evolutionary processes, maintain-
ing the alleles best fitted for survival in the context
of reproduction. Alleles are, therefore, not opti-
mized for aging. The alleles in TERT, DSP and
FAM13A that influence susceptibility for aging lung
diseases IPF, lung cancer and COPD are well toler-
ated in early life, they influence phenotypic traits
but do not associate with disease. It is conceivable
that alleles influencing expression of these genes to
a higher degree may not be well tolerated and will
affect health at a prereproductive age. Some experi-
mental studies on over-expression and under-
Volume 24 � Number 3 � May 2018
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FIGURE 2. Trade-off gene expression gradient in the aging lung: a model for genotype dependent risk for development of
COPD and IPF. As a consequence of aging, optimal expression levels may differ between lung areas. A model is presented
for optimal expression levels that follow an apicobasal gradient. Optimal gene expression levels for healthy aging lung are
low in the apical zones and high in the basal zones. (a) Carriers of COPD risk alleles that confer high-gene expression have
optimal levels (green) in the basal lung, whereas levels for the middle and apical zones are too high (dark blue). This
increases the risk for development of COPD. (b) Carriers of IPF risk alleles that confer low-gene expression have optimal levels
(green) in the apical and middle lung, whereas levels are too low for the basal zones (light yellow). This increases the risk for
development of IPF. COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis.
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expression of the genes showed deleterious conse-
quences, supporting this hypothesis. This has to be
kept in mind whenever trying to translate findings
on risk alleles into therapies that interfere with
expression levels of genes associated with aging
lung diseases.
CONCLUSION

In conclusion, IPF risk genes, FAM13A, DSP and
TERT are shared with COPD or lung cancer. This
underlines the importance of these genes in the
development of lung disease in the aging popula-
tion. Risk alleles were shown to have opposite effect
size and opposite influence on expression levels
(Fig. 1 and Table 1). A trade-off model is presented
(Fig. 2) demonstrating how opposing alleles may
influence disease risk. Further studies are required
to understand how these genes contribute to health
and disease in the aging lung.
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39. Guyard A, Danel C, Théou-Anton N, et al. Morphologic and molecular study of
lung cancers associated with idiopathic pulmonary fibrosis and other pul-
monary fibroses. Respir Res 2017; 18:120.

40. Hwang JA, Kim D, Chun S-M, et al. Genomic profiles of lung cancer
associated with idiopathic pulmonary fibrosis. J Pathol 2018; 244:25–35.

41. Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable
factors in the causation of cancer — analyses of cohorts of twins from
Sweden, Denmark, and Finland. N Engl J Med 2000; 343:78–85.

42. Cho MH, Boutaoui N, Klanderman BJ, et al. Variants in FAM13A are asso-
ciated with chronic obstructive pulmonary disease. Nat Genet 2010;
42:200–202.

43. Young RP, Hopkins RJ, Hay BA, et al. FAM13A locus in COPD is indepen-
dently associated with lung cancer - evidence of a molecular genetic link
between COPD and lung cancer. Appl Clin Genet 2011; 4:1–10.

44. Ziółkowska-Suchanek I, Mosor M, Gabryel P, et al. Susceptibility loci in lung
cancer and COPD: association of IREB2 and FAM13A with pulmonary
diseases. Sci Rep 2015; 5:13502.

45. Mushiroda T, Wattanapokayakit S, Takahashi A, et al. A genome-wide
association study identifies an association of a common variant in TERT with
susceptibility to idiopathic pulmonary fibrosis. J Med Genet 2008;
45:654–656.

46. Fingerlin TE, Murphy E, Zhang W, et al. Genome-wide association study
identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet 2013;
45:613–620.

47.
&

Hirano C, Ohshimo S, Horimasu Y, et al. FAM13A polymorphism as a
prognostic factor in patients with idiopathic pulmonary fibrosis. Respir
Med 2017; 123:105–109.

Analysis of a Japanese cohort of patients with IPF shows that both DLCO and
survival is better in carriers of the IPF disease predisposing allele in FAM13A.
48. Kim WJ, Lee MK, Shin C, et al. Genome-wide association studies identify

locus on 6p21 influencing lung function in the Korean population. Respirology
2014; 19:360–368.

49. Morrow JD, Zhou X, Lao T, et al. Functional interactors of three genome-wide
association study genes are differentially expressed in severe chronic ob-
structive pulmonary disease lung tissue. Sci Rep 2017; 7:44232.

50. Hardin M, Zielinski J, Wan ES, et al. CHRNA3/5, IREB2, and ADCY2 are
associated with severe chronic obstructive pulmonary disease in Poland. Am J
Respir Cell Mol Biol 2012; 47:203–208.
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94. Córdoba-Lanús E, Cazorla-Rivero S, Espinoza-Jiménez A, et al. Telomere
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